1
|
Lei Y, Shen Y, Chen F, He R, Zhang Z, Zhou Y, Yu JC, Crommen J, Jiang Z, Wang Q. Multiepitope recognition technology promotes the in-depth analysis of antibody‒drug conjugates. Acta Pharm Sin B 2024; 14:4962-4976. [PMID: 39664422 PMCID: PMC11628813 DOI: 10.1016/j.apsb.2024.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 12/13/2024] Open
Abstract
The dynamic tracking of antibody‒drug conjugates (ADCs) in serum is crucial. However, a versatile bioanalytical platform is lacking due to serious matrix interferences, the heterogeneity and complex biotransformation of ADCs, and the recognition deficiencies of traditional affinity technologies. To overcome this, a multiepitope recognition technology (MERT) was developed by simultaneously immobilizing CDR and non-CDR ligands onto MOF@AuNPs. MERT's excellent specificity, ultrahigh ligand density, and potential synergistic recognition ability enable it to target the different key regions of ADCs to overcome the deficiencies of traditional technologies. The binding capacity of MERT for antibodies is ten to hundred times higher than that of the mono-epitope or Fc-specific affinity technologies. Since MERT can efficiently capture target ADCs from serum, a novel bioanalytical platform based on MERT and RPLC‒QTOF-MS has been developed to monitor the dynamic changes of ADCs in serum, including the fast changes of drug-to-antibody ratio from 3.67 to 0.22, the loss of payloads (maytansinol), and the unexpected hydrolysis of the succinimide ring of the linker, which will contribute to clarify the fate of ADCs and provide a theoretical basis for future design. In summary, the MERT-based versatile platform will open a new avenue for in-depth studies of ADCs in biological fluids.
Collapse
Affiliation(s)
- Yutian Lei
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuan Shen
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Feng Chen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Rui He
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhang Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Ying Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jin-Chen Yu
- Bio-Thera Solutions, Ltd, Guangzhou 510700, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Zuo C, Zhou J, Bian S, Zhang Q, Lei Y, Shen Y, Chen Z, Ye P, Shi L, Mu M, Qu JH, Jiang Z, Wang Q. Comparative study of trastuzumab modification analysis using mono/multi-epitope affinity technology with LC-QTOF-MS. J Pharm Anal 2024; 14:101015. [PMID: 39698314 PMCID: PMC11652880 DOI: 10.1016/j.jpha.2024.101015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 12/20/2024] Open
Abstract
Dynamic tracking analysis of monoclonal antibodies (mAbs) biotransformation in vivo is crucial, as certain modifications could inactivate the protein and reduce drug efficacy. However, a particular challenge (i.e. immune recognition deficiencies) in biotransformation studies may arise when modifications occur at the paratope recognized by the antigen. To address this limitation, a multi-epitope affinity technology utilizing the metal organic framework (MOF)@Au@peptide@aptamer composite material was proposed and developed by simultaneously immobilizing complementarity determining region (CDR) mimotope peptide (HH24) and non-CDR mimotope aptamer (CH1S-6T) onto the surface of MOF@Au nanocomposite. Comparative studies demonstrated that MOF@Au@peptide@aptamer exhibited significantly enhanced enrichment capabilities for trastuzumab variants in comparison to mono-epitope affinity technology. Moreover, the higher deamidation ratio for LC-Asn-30 and isomerization ratio for HC-Asn-55 can only be monitored by the novel bioanalytical platform based on MOF@Au@peptide@aptamer and liquid chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS). Therefore, multi-epitope affinity technology could effectively overcome the biases of traditional affinity materials for key sites modification analysis of mAb. Particularly, the novel bioanalytical platform can be successfully used for the tracking analysis of trastuzumab modifications in different biological fluids. Compared to the spiked phosphate buffer (PB) model, faster modification trends were monitored in the spiked serum and patients' sera due to the catalytic effect of plasma proteins and relevant proteases. Differences in peptide modification levels of trastuzumab in patients' sera were also monitored. In summary, the novel bioanalytical platform based on the multi-epitope affinity technology holds great potentials for in vivo biotransformation analysis of mAb, contributing to improved understanding and paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Chengyi Zuo
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Jingwei Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Sumin Bian
- School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Qing Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yutian Lei
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guang dong, 518107, China
| | - Yuan Shen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Zhiwei Chen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Peijun Ye
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Leying Shi
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Mao Mu
- Guangdong Institute for Drug Control, Guangzhou, 510663, China
| | - Jia-Huan Qu
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
He Q, Chen F, Zhao Z, Pei P, Gan Y, Zhou A, Zhou J, Qu JH, Crommen J, Fillet M, Li Y, Wang Q, Jiang Z. Supramolecular Mimotope Peptide Nanofibers Promote Antibody-Ligand Polyvalent and Instantaneous Recognition for Biopharmaceutical Analysis. Anal Chem 2024; 96:5940-5950. [PMID: 38562013 DOI: 10.1021/acs.analchem.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Peptide-based supramolecules exhibit great potential in various fields due to their improved target recognition ability and versatile functions. However, they still suffer from numerous challenges for the biopharmaceutical analysis, including poor self-assembly ability, undesirable ligand-antibody binding rates, and formidable target binding barriers caused by ligand crowding. To tackle these issues, a "polyvalent recognition" strategy employing the CD20 mimotope peptide derivative NBD-FFVLR-GS-WPRWLEN (acting on the CDR domains of rituximab) was proposed to develop supramolecular nanofibers for target antibody recognition. These nanofibers exhibited rapid self-assembly within only 1 min and robust stability. Their binding affinity (179 nM) for rituximab surpassed that of the monomeric peptide (7 μM) by over 38-fold, highlighting that high ligand density and potential polyvalent recognition can efficiently overcome the target binding barriers of traditional supramolecules. Moreover, these nanofibers exhibited an amazing "instantaneous capture" rate (within 15 s), a high recovery (93 ± 3%), and good specificity for the target antibody. High-efficiency enrichment of rituximab was achieved from cell culture medium with good recovery and reproducibility. Intriguingly, these peptide nanofibers combined with bottom-up proteomics were successful in tracking the deamidation of asparagine 55 (from 10 to 16%) on the rituximab heavy chain after 21 day incubation in human serum. In summary, this study may open up an avenue for the development of versatile mimotope peptide supramolecules for biorecognition and bioanalysis of biopharmaceuticals.
Collapse
Affiliation(s)
- Qiaoxian He
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Feng Chen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zheng Zhao
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Pengfei Pei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yongqing Gan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Aixuan Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jingwei Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jia-Huan Qu
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000 Liege, Belgium
| | - Marianne Fillet
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000 Liege, Belgium
| | - Yingchun Li
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Yang J, Zhou A, Li M, He Q, Zhou J, Crommen J, Wang W, Jiang Z, Wang Q. Mimotope peptide modified pompon mum-like magnetic microparticles for precise recognition, capture and biotransformation analysis of rituximab in biological fluids. Acta Pharm Sin B 2024; 14:1317-1328. [PMID: 38487009 PMCID: PMC10935506 DOI: 10.1016/j.apsb.2023.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 03/17/2024] Open
Abstract
Due to low immobilized ligand density, limited binding capacity, and severe interference from serum proteins, developing ideal peptide-based biomaterials for precise recognition and in vivo analysis of biopharmaceuticals remains a huge challenge. In this study, mimotope peptide modified pompon mum-like biomimetic magnetic microparticles (MMPs, 3.8 μm) that mimic the specific functionalities of CD20 on malignant B cells were developed for the first time. Benefit from the numerous ligand binding sites (Ni2+) on the pompon mum-like MMPs, these novel materials achieved ≥10 times higher peptide ligand densities (>2300 mg/g) and antibody binding capacities (1380 mg/g) compared to previous reported biomaterials. Leveraging the high specificity of the mimotope peptide, rituximab can be precisely recognized and enriched from cell culture media or serum samples. We also established an LC‒MS/MS method using the MMPs for tracking rituximab biotransformation in patient serum. Intriguingly, deamidation of Asn55 and Asn33, as well as oxidation of Met81 and Met34 were observed at the key complementarity determining regions of rituximab, which could potentially influence antibody function and require careful monitoring. Overall, these versatile biomimetic MMPs demonstrate superior recognition and enrichment capabilities for target antibodies, offering interesting possibilities for biotransformation analysis of biopharmaceuticals in patient serum.
Collapse
Affiliation(s)
- Jiawen Yang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Aixuan Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Minyi Li
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qiaoxian He
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jingwei Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | | | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| |
Collapse
|
5
|
Erol K, Hasabnis G, Altintas Z. A Novel NanoMIP-SPR Sensor for the Point-of-Care Diagnosis of Breast Cancer. MICROMACHINES 2023; 14:mi14051086. [PMID: 37241709 DOI: 10.3390/mi14051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Simple, fast, selective, and reliable detection of human epidermal growth factor receptor 2 (HER2) is of utmost importance in the early diagnosis of breast cancer to prevent its high prevalence and mortality. Molecularly imprinted polymers (MIPs), also known as artificial antibodies, have recently been used as a specific tool in cancer diagnosis and therapy. In this study, a miniaturized surface plasmon resonance (SPR)-based sensor was developed using epitope-mediated HER2-nanoMIPs. The nanoMIP receptors were characterized using dynamic light scattering (DLS), zeta potential, Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and fluorescent microscopy. The average size of the nanoMIPs was determined to be 67.5 ± 12.5 nm. The proposed novel SPR sensor provided superior selectivity to HER2 with a detection limit (LOD) of 11.6 pg mL-1 in human serum. The high specificity of the sensor was confirmed by cross-reactivity studies using P53, human serum albumin (HSA), transferrin, and glucose. The sensor preparation steps were successfully characterized by employing cyclic and square wave voltammetry. The nanoMIP-SPR sensor demonstrates great potential for use in the early diagnosis of breast cancer as a robust tool with high sensitivity, selectivity, and specificity.
Collapse
Affiliation(s)
- Kadir Erol
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Environmental Health Program, Department of Medical Services and Techniques, Vocational School of Health Services, Hitit University, Corum 19030, Turkey
| | - Gauri Hasabnis
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Zeynep Altintas
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany
| |
Collapse
|
6
|
Zhu C, Han H, Chen Z, Shen Y, Zhang Q, Bao C, Qu JH, Wang Q, Jiang Z. Tetrapeptide-based mimotope affinity monolith for the enrichment and analysis of anti-HER2 antibody and antibody-drug conjugate. Anal Chim Acta 2023; 1246:340892. [PMID: 36764776 DOI: 10.1016/j.aca.2023.340892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Selective enrichment and analysis of therapeutic antibodies in biological fluids are crucial for the development of biopharmaceuticals. Recently, peptide-based affinity chromatography has exhibited fascinating prospects for antibody enrichment due to the high affinity and specificity of small peptides. However, the post-modification approach of peptide ligands on the material surface is complicated and time-consuming. In this study, a methacrylate modified tetrapeptide (m-EDPW) was firstly demonstrated as the affinity ligand of trastuzumab (Kd = 1.91 ± 1.81 μM). Next, the m-EDPW based affinity monolith was prepared using a facile one-step polymerization method, which could overcome the drawbacks of traditional post-modification preparation strategies. Based on the monolith as described above, a simple enrichment approach was developed under the optimal washing and elution conditions. Based on the excellent properties, such as high porosity (53.09%), weak electrostatic interaction and suitable affinity (1.00 ± 2.14 μM for anti-HER2 ADC), this novel monolith exhibited good specificity and recovery for antibodies (91.6% for trastuzumab, 98.37% for anti-HER2 ADC), and low nonspecific adsorption for human serum albumin (DBC10% = 0.5 mg/g polymer). Particularly, this material was successfully applied to enrich trastuzumab and its related antibody-drug conjugate (ADC) from different cell culture medias. The dynamic tracking analysis of ADC in the critical quality attributes (e.g., charge variants, drug to antibody ratio and subunit conjugation ratio) was also achieved by combining the enrichment approach, capillary electrophoresis or reversed phase liquid chromatography. In summary, the exploited peptide-based mimotope affinity materials showed a great potential for the application in biopharmaceutical analysis.
Collapse
Affiliation(s)
- Chendi Zhu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Hai Han
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Zhiwei Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Yuan Shen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Qiaoxuan Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Cai Bao
- Bio-Thera Solutions, Ltd., Guangzhou, 510700, China
| | - Jia-Huan Qu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Qiqin Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| | - Zhengjin Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|