1
|
Liu J, Pan W, Pei T, Wang F, Zhao W, Wang E, Li L, Jing X. High-throughput semi-automated emulsive liquid-liquid microextraction for detecting SDHI fungicides in water, juice, and alcoholic beverage samples via UHPLC-MS/MS. Talanta 2024; 274:126038. [PMID: 38579419 DOI: 10.1016/j.talanta.2024.126038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Herein, a High-Throughput Semi-automated Emulsive Liquid-Liquid Microextraction (HTSA-ELLME) method was developed to detect Succinate Dehydrogenase Inhibitor (SDHI) fungicides in food samples via UHPLC-MS/MS. The Oil-in-Water (O/W) emulsion comprising a hydrophobic extractant and water was dilutable with the aqueous sample solution. Upon injecting the primary emulsion into the sample solution, a secondary O/W emulsion was formed, allowing SDHI fungicides to be extracted. Subsequently, a NaCl-saturated solution was injected in the secondary O/W emulsion as a demulsifier to rapidly separate the extractant, eliminating the need for centrifugation. A 12-channel electronic micropipette was used to achieve a high-throughput semi-automation of the novel sample pretreatment. The linear range was 0.003-0.3 μg L-1 with R2 > 0.998. The limit of detection was 0.001 μg L-1. The HTSA-ELLME method successfully detected SDHI fungicides in water, juice, and alcoholic beverage samples, with recoveries and relative standard deviations of 82.6-106.9% and 0.8-5.8%, respectively. Unlike previously reported liquid-liquid microextraction approaches, the HTSA-ELLME method is the first to be both high-throughput and semi-automated and may aid in designing pesticide pretreatment processes in food samples.
Collapse
Affiliation(s)
- Jin Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Wei Pan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Tao Pei
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Fuyun Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Wenting Zhao
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, 102206, China.
| | - Enhua Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
2
|
Zhao J, Mao X, Zhang Q, Xiao W, Yan A, Hu J, Jiang S, Li H, Wang Y. A convenient and effective method for determining organophosphorus pesticides in citrus fruits based on a novel dispersive solid phase extraction using UiO-66/Alg bead as the sorbent. Food Chem 2024; 438:137991. [PMID: 37980869 DOI: 10.1016/j.foodchem.2023.137991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
This work presents a novel, convenient and effective method for assaying organophosphorus pesticides (OPPs) in the pulp and peel of citrus fruits. In this method, shaped UiO-66/alginate (UiO-66/Alg) beads were employed to replace the powder sorbents used in traditional dispersive solid phase extraction (d-SPE) methods. The UiO-66/Alg beads can be easily separated by only using a tweezer within 1 min, which effectively simplifies the sample pretreatment and overcomes the shortages brought by the incomplete separation of powder sorbents. Moreover, the matrix compounds can be effectively excluded by UiO-66/Alg beads, and the UiO-66/Alg beads can be reused at least 8 times. The d-SPE conditions were optimized by a single factor test. The method shows satisfactory sensitivity, accuracy and precision. Furthermore, ATR-FTIR and UV-Vis-DRS were employed to investigate the adsorption mechanism. Finally, the developed method was applied to monitor the OPPs in ten different citrus fruits.
Collapse
Affiliation(s)
- Jiexue Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Qingqing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Weiming Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Aiping Yan
- Center of Analysis and Testing, Nanchang University, Nanchang 330047, China
| | - Jiateng Hu
- College of Food Science, Nanchang University, Nanchang 330047, China
| | - Songlin Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Haijun Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
Wang X, Dai M, Peng Y, Huang M, Han X, Cao J, Qiao J, Song Z, Shi J. Development of a novel 1-octen-3-ol-loaded agar/curdlan hydrogel for inhibiting peach fruit diseases. Int J Biol Macromol 2023; 251:126411. [PMID: 37598819 DOI: 10.1016/j.ijbiomac.2023.126411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Our previous study found that 1-octen-3-ol fumigation treatment could effectively induce the resistance of peach fruit diseases. However, 1-octen-3-ol is a liquid fumigant, which is not conducive to storage and application. Herein, the gel of 1 % agar compound with 1 % curdlan was used as a novel material for covering 1-octen-3-ol. The interaction of agar and curdlan was promoted by adding 1-octen-3-ol, leading to a higher thermostability compared to single-component antibacterial gels. Moreover, 1-octen-3-ol resulted in changes in the internal structure and mechanical properties of gel to form a pore-like structure, which is beneficial to the retention and release of 1-octen-3-ol. Additionally, the 2 % agar gel containing 1-octen-3-ol had the best inhibitory effect on the mycelial growth of Monilinia fructicola and Rhizopus stolonifer in vitro, and the compound hydrogel of 1 % agar and 1 % curdlan with 1-octen-3-ol could most effectively inhibit brown rot and soft rot caused by these two pathogens in vivo. Overall, the data indicated that the novel 1-octen-3-ol-loaded agar/curdlan hydrogels could effectively retain and release 1-octen-3-ol, and induce the resistance of peach fruit diseases.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Mei Dai
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yong Peng
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xiongde Han
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jixuan Cao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jin Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zunyang Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
4
|
Bai B, Wu N, Yang H, Liu H, Jin X, Chen L, Huang Z, Zhou C, Wang S, Si W. Development of a Zeolite H-ZSM-5-Based D-μSPE Method for the Determination of Organophosphorus Pesticides in Tea Beverages. Processes (Basel) 2023. [DOI: 10.3390/pr11041027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this study, a novel dispersive micro-solid phase extraction (D-μSPE) technique with H-ZSM-5 zeolite as an adsorbent was developed for the determination of 21 trace pesticides in tea beverages. The adsorption and desorption of H-ZSM-5 zeolites were investigated based on structural characteristics and adsorption properties similar to those of H-beta zeolites. In combination with the properties of the adsorbates, it was explained that the adsorption reaction occurred on the microporous surface and mesopores of H-ZSM-5. Based on optimal parameters, the beverage samples were extracted by 50 mg of zeolite within 1 min. The zeolite was eluted with 2 mL of an acetonitrile-water mixture after separation, and the eluent was filtered prior to HPLC-MS/MS analysis. The D-μSPE protocol demonstrated acceptable accuracy and precision, with recoveries between 62.1% and 106.6% and relative standard deviations of 1.4% to 12.6%, as validated by analytical reliability. The correlation coefficient in the linear range of 0.2–50 ng·mL−1 was greater than 0.98, with limits of detection of 0.05–0.1 ng·mL−1 and limits of quantification of 0.1–0.2 ng·mL−1. The matrix effects ranged from 76.2% to 112.7%. The results indicate that the novel D-μSPE technique based on H-ZSM-5 is a rapid, simple, green and economical method for the determination of pesticide residues in tea beverages. The proposed method achieved simultaneously low adsorbent dosage, 20-fold enrichment factor, rapid pre-concentration in 12 min, minimal organic wastes, and effective reduction of matrix interference.
Collapse
|
5
|
Wang S, Yang G, Tang Y, Wang Y, Shen X, Si W, Yu H, Zhai W, Fodjo EK, Kong C. Multi-Residue Screening of Pesticides in Aquatic Products Using High-Performance Liquid Chromatography-Tandem High-Resolution Mass Spectrometry. Foods 2023; 12:foods12061131. [PMID: 36981058 PMCID: PMC10048222 DOI: 10.3390/foods12061131] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Pesticide residues in aquatic products are of great concern due to the risk of environmental transmission and their extensive use in aquaculture. In our work, a quick screening approach was developed for the qualitative and semi-quantitative screening of 87 pesticide residues in aquatic products. The sample preparation was investigated, including extract solvent, extract methods, buffer salts, lipid removal, cleanup materials and filter membranes for aquatic products. Samples were extracted using a modified QuEChERS procedure, and two clean-up procedures were developed for UHPLC-Q/Orbitrap MS analysis based on the fat content of the aquatic products. The screening detection limits for all studied pesticides were distributed between 1 and 500 μg/kg in the three representative matrices. Seventy-one pesticides could be analyzed with a screening limit between 1 and 25 μg/kg in grass carp and crayfish, sixty-one pesticides could be screened for limits between 1 and 50 μg/kg in crab. The accuracy results showed that recoveries ranged from 50 to 120% for 60, 56 and 52 pesticides at medium-level for grass carp, crayfish and crab, respectively. At high spiking levels, 74, 65 and 59 pesticides were recovered within the range of 50-120% for the three matrices, respectively. The relative standard deviations of most compounds in different matrices were less than 20%. With this method, the local farmed aquatic products were tested for pesticide residues. In these samples, ethoxyquinoline, prometryn and phoxim were frequently detected. The majority of these confirmed compounds did not exceed 2.00 μg/kg. A grass carp with trichlorfon at 4.87 μg/kg and two carps with ethoxyquinoline at 200 µg/kg were detected, indicating the potential dietary risk.
Collapse
Affiliation(s)
- Shouying Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Guangxin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yunyu Tang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yuan Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Xiaosheng Shen
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Wenshuai Si
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Huijuan Yu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Essy Kouadio Fodjo
- Laboratory of Constitution and Reaction of Matter (Physical Chemistry), Université Felix Houphouet-Boigny, 22 BP 582 Abidjan, Côte d'Ivoire
| | - Cong Kong
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
6
|
Omar NA, Jabbar HS. NiFe2O4 nanoparticles as nanozymes, a new colorimetric probe for 2,4-dichlorophenoxyacetic acid herbicide detection. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|