1
|
Zhao R, Li M, Xiao P, Song D, Li H. Advances in D-dimer testing: progress in harmonization of clinical assays and innovative detection methods. Anal Bioanal Chem 2024; 416:3737-3750. [PMID: 38503987 DOI: 10.1007/s00216-024-05207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
The D-dimer is a sensitive indicator of coagulation and fibrinolysis activation, especially valuable as a biomarker of intravascular thrombosis. Measurement of plasma D-dimer levels plays a crucial role in the diagnosis and monitoring of conditions such as deep vein thrombosis, pulmonary embolism, and disseminated intravascular coagulation. A variety of immunoassays, including enzyme-linked immunosorbent assays, latex-enhanced immunoturbidimetric assays, whole-blood aggregation analysis, and immunochromatography assays, are widely used in clinical settings to determine D-dimer levels. However, the results obtained from different D-dimer assays vary significantly. These assays exhibit intra-method coefficients of variation ranging from 6.4% to 17.7%, and the measurement discrepancies among different assays can be as high as 20-fold. The accuracy and reliability of D-dimer testing cannot be guaranteed due to the lack of an internationally endorsed reference measurement system (including reference materials and reference measurement procedures), which may lead to misdiagnosis and underdiagnosis, limiting its full clinical application. In this review, we present an in-depth analysis of clinical D-dimer testing, summarizing the existing challenges, the current state of metrology, and progress towards harmonization. We also review the latest advancements in D-dimer detection techniques, which include mass spectrometry and electrochemical and optical immunoassays. By comparing the basic principles, the definition of the measurand, and analytical performance of these methods, we provide an outlook on the potential improvements in D-dimer clinical testing.
Collapse
Affiliation(s)
- Rong Zhao
- National Institute of Metrology, Beijing, 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Mengran Li
- Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Xiao
- National Institute of Metrology, Beijing, 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Dewei Song
- National Institute of Metrology, Beijing, 100029, China
| | - Hongmei Li
- National Institute of Metrology, Beijing, 100029, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China.
| |
Collapse
|
2
|
Yang X, Liu L, Feng Y, Guo X, Wu Y, Gao Q, Zhang C, Qi H. Automatic Electrochemiluminescence Method for the Detection of Cancerous Exosomes Incorporating Specific Aptamer-Magnetic Beads and Signal Nanoprobes. Anal Chem 2024; 96:10459-10466. [PMID: 38866706 DOI: 10.1021/acs.analchem.4c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Exosomes, as an emerging biomarker, have exhibited remarkable promise in early cancer diagnosis. Here, a highly sensitive, selective, and automatic electrochemiluminescence (ECL) method for the detection of cancerous exosomes was developed. Specific aptamer-(EK)4 peptide-tagged magnetic beads (MBs-(EK)4-aptamer) were designed as a magnetic capture probe in which the (EK)4 peptide was used to reduce the steric binding hindrance of cancerous exosomes with a specific aptamer. One new universal ECL signal nanoprobe (CD9 Ab-PEG@SiO2ϵRu(bpy)32+) was designed and synthesized by using microporous SiO2 nanoparticles as the carrier for loading ECL reagent Ru(bpy)32+, polyethylene glycol (PEG) layer, and anticluster of differentiation 9 antibody (CD9 Ab). A "sandwich" biocomplex was formed on the surface of the magnetic capture probe after mixing the capture probe, target exosomes, and ECL signal nanoprobe, and then it was introduced into an automated ECL analyzer for rapid and automatic ECL measurement. It was found that the designed signal nanoprobe shows a 270-fold improvement in the signal-to-noise ratio than that of the ruthenium complex-labeled CD9 antibody signal probe. The relative ECL intensity was proportional to MCF-7 exosomes as a model in the range of 102 to 104 particle/μL, with a detection limit of 11 particle/μL. Furthermore, the ECL method was employed to discriminate cancerous exosomes based on fingerprint responses using the designed multiple magnetic capture probes and the universal ECL signal nanoprobe. This work demonstrates that the utilization of a designed automated ECL tactic using the MBs-(EK)4-aptamer capture probe and the CD9 Ab-PEG@SiO2ϵRu(bpy)32+ signal nanoprobe will provide a unique and robust method for the detection and discrimination of cancerous exosomes.
Collapse
Affiliation(s)
- Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Lining Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yanlong Feng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Xuan Guo
- Changzhi People's Hospital, Changzhi 046000, P. R. China
| | - Yang Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
3
|
Luo Q, Qiu Z, Liang H, Huang F, Wei C, Cui J, Song Z, Tang Q, Liao X, Liu Z, Wang J, Gao F. Proximity hybridization induced molecular machine for signal-on electrochemical detection of α-synuclein oligomers. Talanta 2024; 271:125720. [PMID: 38309112 DOI: 10.1016/j.talanta.2024.125720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
α-synuclein oligomer is a marker of Parkinson's disease. The traditional enzyme-linked immunosorbent assay for α-synuclein oligomer detection is not conducive to large-scale application due to its time-consuming, high cost and poor stability. Recently, DNA-based biosensors have been increasingly used in the detection of disease markers due to their high sensitivity, simplicity and low cost. In this study, based on the DNAzyme-driven DNA bipedal walking method, we developed a signal-on electrochemical sensor for the detection of α-syn oligomers. Bipedal DNA walkers have a larger walking area and faster walking kinetics, providing higher amplification efficiency compared to conventional DNA walkers. The DNA walker is driven via an Mg2+-dependent DNAzyme, and the binding-induced DNA walker will continuously clamp the MB, resulting in the proliferation of Fc confined near the GE surface. The linear range and limit of detection were 1 fg/mL to 10 pg/mL and 0.57 fg/mL, respectively. The proposed signal-on electrochemical sensing strategy is more selective. It will play a significant role in the sensitive and precise electrochemical analysis of other proteins.
Collapse
Affiliation(s)
- Qisheng Luo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Zhili Qiu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Hongqu Liang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Fa Huang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Chen Wei
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Jiuying Cui
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Zichun Song
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Qianli Tang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, 221004, Xuzhou, China.
| | - Jiangbo Wang
- Department of Neurology, Xuzhou Central Hospital, 221004, Xuzhou, China; Xuzhou Institute of Cardiovascular Disease, 221004, Xuzhou, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|