1
|
Ortega-Zamora C, González-Sálamo J, Rivero DS, Carrillo R, Hernández-Borges J. Tetrazine-based dynamic covalent polymers as degradable extraction materials in sample preparation. Anal Chim Acta 2024; 1318:342925. [PMID: 39067932 DOI: 10.1016/j.aca.2024.342925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Current trends in Analytical Chemistry are highly focused on the introduction of new extraction materials with a high selectivity towards the target analytes, high extraction capacity as well as sustainable characteristics. In this context, the introduction of smart materials able to respond to an external stimulus constitutes a promising approach in the field. However, investigations regarding the development of such stimuli-responsive polymers have been basically centered on their synthesis and the control of their properties, and hardly on exploiting such properties to generate polymers that, once their extraction function is fulfilled, they can be degraded into fragments with little or negligible toxicity, or even into their constituent monomers for an efficient recycling. RESULTS The applicability of a degradable and recyclable dynamic covalent polymer based on the use of tetrazine as a linker was assessed as sorbent for the extraction of a group of 37 persistent organic pollutants, including 10 polycyclic aromatic hydrocarbons, 11 organochlorine pesticides, 14 polychlorinated biphenyls, and 2 antibacterial agents, from water samples. A microdispersive solid-phase extraction procedure was developed for the selective extraction of the target analytes, while their separation, determination, and quantification were achieved by gas chromatography coupled to mass spectrometry. The optimized procedure was validated for seawater and wastewater obtaining mean relative recovery values between 72 and 112 % for almost all the analytes, with satisfactory relative standard deviation values (<18 %). After extraction, the polymer could be degraded by adding the amino acid L-tyrosine, being possible a quantitative recovery of the initial functional monomer. SIGNIFICANCE A responsive polymer based on the chemical versatility of the tetrazine ring was used as sorbent in sample preparation providing excellent results, showing good physicochemical properties and the ability to be degraded after use. This polymer constitutes an interesting alternative to reduce chemical waste through the recycling of monomers, contributing to the development of more sustainable analytical methodologies.
Collapse
Affiliation(s)
- Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain.
| | - David S Rivero
- Instituto de Productos Naturales y Agrobiología, CSIC, Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología, CSIC, Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain.
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain
| |
Collapse
|
2
|
Scheid C, Monteiro SA, Mello W, Velho MC, Dos Santos J, Beck RCR, Deon M, Merib J. A novel honeycomb-like 3D-printed device for rotating-disk sorptive extraction of organochlorine and organophosphorus pesticides from environmental water samples. J Chromatogr A 2024; 1722:464892. [PMID: 38608369 DOI: 10.1016/j.chroma.2024.464892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
In this study, 3D-printing based on fused-deposition modeling (FDM) was employed as simple and cost-effective strategy to fabricate a novel format of rotating-disk sorptive devices. As proof-of-concept, twenty organochlorine and organophosphorus pesticides were determined in water samples through rotating-disk sorptive extraction (RDSE) using honeycomb-like 3D-printed disks followed by gas chromatography coupled to mass spectrometry (GC-MS). The devices that exhibited the best performance were comprised of polyamide + 15 % carbon fiber (PA + 15 % C) with the morphology being evaluated through X-ray microtomography. The optimized extraction conditions consisted of 120 min of extraction using 20 mL of sample at stirring speed of 1100 rpm. Additionally, liquid desorption using 800 µL of acetonitrile for 25 min at stirring speed of 1100 rpm provided the best response. Importantly, the methodology also exhibited high throughput since an extraction/desorption platform that permitted up to fifteen simultaneous extractions was employed. The method was validated, providing coefficients of determination higher than 0.9706 for all analytes; limits of detection (LODs) and limits of quantification (LOQs) ranged from 0.15 to 3.03 μg L-1 and from 0.5 to 10.0 μg L-1, respectively. Intraday precision ranged from 4.01 to 18.73 %, and interday precision varied from 4.83 to 20.00 %. Accuracy was examined through relative recoveries and ranged from 73.29 to 121.51 %. This method was successfully applied to analyze nine groundwater samples from monitoring wells of gas stations in São Paulo. Moreover, the greenness was assessed through AGREEprep metrics, and an overall score of 0.69 was obtained indicating that the method proposed can be considered sustainable.
Collapse
Affiliation(s)
- Camila Scheid
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Sofia Aquino Monteiro
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Wendell Mello
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Maiara Callegaro Velho
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Juliana Dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Ruy Carlos Ruver Beck
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Monique Deon
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil; Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Josias Merib
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil; Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| |
Collapse
|
3
|
Martello L, Rapti A, Bikiaris DN, Lambropoulou DA. Synthesis and evaluation of a chitosan nanomaterial as efficient sorbent for determination of fungicide residues in waters and wine by liquid chromatography high resolution mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:873-883. [PMID: 38240475 DOI: 10.1039/d3ay02014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In the present study a novel, cost-effective, environmentally friendly, and efficient analytical method was developed to analyze fungicide residues in water and wine. The method relies on the application of a newly developed sorbent nanomaterial named Nano-Cs-NAT, synthesized by modifying chitosan, a naturally occurring, low-cost polysaccharide, through grafting with two acrylic monomers and a cross-linker. Nano-Cs-NAT was introduced as analytical sorbent for Dispersive Micro Solid Phase Extraction (D-μ-SPE) before Liquid Chromatography-Orbitrap High-Resolution Mass Spectrometry (LC-Orbitrap HRMS) analysis of twelve fungicides commonly used in viticulture (among the others, triazoles, strobilurines and N-substituted imidazoles). Characterization of the sorbent was conducted, confirming the successful acrylation of chitosan. A multivariate approach was employed to optimize D-μ-SPE extraction parameters. The material was found to be highly effective in simultaneously purifying and concentrating the target analytes, enhancing overall analytical efficiency and sensitivity. The Nano-Cs-NAT-D-μ-SPE-LC-Orbitrap-HRMS method was thoroughly validated, exhibiting good recoveries (72-104%), reproducibility (average RSD ≤ 6%) and repeatability (average RSD ≤ 7%). It also achieved low limits of detection (LOD) in river water (average LOD of 0.04 μg L-1) and wine (average LOD of 0.72 μg kg-1), highlighting its potential for routine fungicide residue analysis. This developed method addresses environmental and food safety concerns by providing an efficient solution for detecting fungicide residues in waters and wine.
Collapse
Affiliation(s)
- Lorenzo Martello
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Androniki Rapti
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitra A Lambropoulou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
- Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km-Thermi Rd, 57001, Thessaloniki, Greece
| |
Collapse
|