Li Y, Han R, Feng J, Li J, Luo X. Phospholipid Bilayer Integrated with Multifunctional Peptide for Ultralow-Fouling Electrochemical Detection of HER2 in Human Serum.
Anal Chem 2024;
96:531-537. [PMID:
38115190 DOI:
10.1021/acs.analchem.3c04701]
[Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Electrochemical biosensing devices face challenges of severe nonspecific adsorption in complex biological matrices for the detection of biomarkers, and thus, there is a significant need for sensitive and antifouling biosensors. Herein, a sensitive electrochemical biosensor with antifouling and antiprotease hydrolysis ability was constructed for the detection of human epidermal growth factor receptor 2 (HER2) by integrating multifunctional branched peptides with distearoylphosphatidylethanolamine-poly(ethylene glycol) (DSPE-PEG) self-assembled bilayer. The peptide was designed to possess antifouling, antiprotease hydrolysis, and HER2 recognizing capabilities. Molecular dynamics simulations demonstrated that the DSPE was able to effectively self-assemble into a bilayer, and the water contact angle and electrochemical experiments verified that the combination of peptide with the DSPE-PEG bilayer was conducive to enhancing the hydrophilicity and antifouling performance of the modified surface. The constructed HER2 biosensor exhibited excellent antifouling and antiprotease hydrolysis capabilities, and it possessed a linear range of 1.0 pg mL-1 to 1.0 μg mL-1, and a limit of detection of 0.24 pg mL-1. In addition, the biosensor was able to detect HER2 in real human serum samples without significant biofouling, and the assaying results were highly consistent with those measured by the enzyme-linked immunosorbent assay (ELISA), indicating the promising potential of the antifouling biosensor for clinical diagnosis.
Collapse