1
|
Pan TT, Jiang S, Yuan H, Wang ZY, He MT, Zhang CY. Construction of a chemiluminescent biosensor based on enzymatic extension and click chemistry for sensitive measurement of MGMT activity in human breast tissues. Talanta 2025; 282:127009. [PMID: 39383723 DOI: 10.1016/j.talanta.2024.127009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
O6-methylguanine methyltransferase (MGMT) is responsible for dealkylation of naturally occurring O6-methylguanines, and it is closely related with DNA replication, transcription, and cancers. Herein, we develop a chemiluminescent biosensor based on enzymatic extension and click chemistry for sensitive measurement of MGMT activity. When MGMT is present, the MGMT-catalyzed demethylation reaction initiates the cleavage of biotinylated dumbbell probes by PvuII restrictive enzyme, releasing two DNA fragments with 3'-OH end. The resultant DNA fragments can trigger terminal transferase (TdT)- and click chemistry-assisted isothermal amplification to obtain abundant G-rich sequences. The G-rich sequences can be captured by magnetic beads to produce a high chemiluminescence signal. This biosensor can greatly amplify the chemiluminescence signal, facilitating label-free and template-free measurement of MGMT. Especially, the introduction of dumbbell probe and PvuII enzyme can efficiently eliminate the false positive and improve the assay specificity. This biosensor possesses high sensitivity with a detection limit of 1.4 × 10-9 ng/μL, and it may accurately quantify the intracellular MGMT. Importantly, this biosensor can be used to screen the MGMT inhibitors and distinguish the MGMT level in breast tumor tissues and normal tissues, with great potential in drug discovery and cancer diagnosis.
Collapse
Affiliation(s)
- Ting-Ting Pan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Huimin Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Mao-Tao He
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Shi Y, Lei Y, Chen M, Ma H, Shen T, Zhang Y, Huang X, Ling W, Liu SY, Pan Y, Dai Z, Xu Y. A Demethylation-Switchable Aptamer Design Enables Lag-Free Monitoring of m 6A Demethylase FTO with Energy Self-Sufficient and Structurally Integrated Features. J Am Chem Soc 2024; 146:34638-34650. [PMID: 39628311 DOI: 10.1021/jacs.4c12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Cellular context profiling of modification effector proteins is critical for an in-depth understanding of their biological roles in RNA N6-methyladenosine (m6A) modification regulation and function. However, challenges still remain due to the high context complexities, which call for a versatile toolbox for accurate live-cell monitoring of effectors. Here, we propose a demethylation-switchable aptamer sensor engineered with a site-specific m6A (DSA-m6A) for lag-free monitoring of the m6A demethylase FTO activity in living cells. As a proof of concept, a DNA aptamer against adenosine triphosphate (ATP) is selected to construct the DSA-m6A model, as the "universal energy currency" role of ATP could guarantee the equally fast and spontaneous conformation change of DSA-m6A sensor upon demethylation and ATP binding in living organisms, thus enabling sensitive monitoring of FTO activity with neither time delay nor recourse to extra supply of substances. This ATP-driven DSA-m6A design facilitates biomedical research, including live-cell imaging, inhibitor screening, single-cell tracking of dynamic FTO nuclear translocation upon starvation stimuli, FTO characterization in a biomimetic heterotypic three-dimensional (3D) multicellular spheroid model, as well as the first report on the in vivo imaging of FTO activity. This strategy provides a simple yet versatile toolbox for clinical diagnosis, drug discovery, therapeutic evaluation, and biological study of RNA demethylation.
Collapse
Affiliation(s)
- Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yutian Lei
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hansu Ma
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Taorong Shen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wanxuan Ling
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuzhi Xu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Zhang Y, Wang XY, Liu MH, Li W, Ren C, Li CC, Ma Y, Zhang CY. Assembly of Dandelion-Like Nanoprobe for Sensitive Detection of N6-Methyladenosine Demethylase by Single-Molecule Counting. Anal Chem 2024; 96:19519-19526. [PMID: 39601655 DOI: 10.1021/acs.analchem.4c04218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
N6-methyladenosine (m6A) demethylase is essential for enzymatically removing methyl groups from m6A modifications and is significantly implicated in the pathogenesis and advancement of various cancers, which makes it a promising biomarker for cancer detection and research. As a proof of concept, we select the fat mass and obesity-associated protein (FTO) as the target m6A demethylase and develop a dandelion-like nanoprobe-based sensing platform by employing biobar-code amplification (BCA) for signal amplification. We construct two meticulously designed three-dimensional structures: reporter-loaded gold nanoparticles (Reporter@Au NPs) and substrate-loaded magnetic microparticles (Substrate@MMPs), which can self-assemble to form dandelion-like nanoprobes via complementary base pairing. In the presence of FTO, the m6A-containing substrates are demethylated, triggering the MazF-assisted cleavage reaction and thereby releasing the Reporter@Au NPs. Furthermore, upon digestion by exonucleases, the Reporter@Au NPs may liberate a significant quantity of Cy3 signals. Remarkably, the combined effects of Au NPs' superior enrichment capacity, MMPs' exceptional magnetic separation efficiency, and the precision of the single-molecule detection platform endow the FTO sensor with exceptional sensitivity and specificity with a detection limit of 7.46 × 10-16 M. Additionally, this method offers a versatile platform for the detection of m6A demethylase and the screening of corresponding inhibitors, thereby advancing clinical diagnosis and drug development.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Xin-Yan Wang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Ming-Hao Liu
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Wenfei Li
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Chaoyi Ren
- Department of Hepatobiliary Surgery, The Third Central Hospital of Tianjin, Tianjin 300070, China
| | - Chen-Chen Li
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yukui Ma
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Liu H, Zhang X, Li X, Wu H, Shi Y, Lu W. A G-quadruplex/thioflavin T-based label-free biosensor to detect ClO - in stress-induced hypertension. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124231. [PMID: 38574610 DOI: 10.1016/j.saa.2024.124231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Hypochlorous acid (HClO), as an essential reactive oxygen species (ROS) in biological systems, plays a pivotal role in processes of physiology and pathology. Abnormal fluctuations in HClO concentration can lead to various diseases, such as inflammation, cardiovascular diseases, and neurodegeneration. Therefore, developing an approach to rapidly and sensitively quantify ClO- content is vital to biomedicine development and bioassays. Herein, we fabricated a novel "turn-on" label-free fluorescence DNA probe to specifically detect hypochlorite ion (ClO-) based on G-quadruplex formation. To this end, we designed a G-rich signal DNA sequence (S-DNA) and a block DNA sequence (B-DNA), followed by the introduction of ClO--responsive phosphorothioate (PS) into B-DNA. In the absence of ClO-, B-DNA hybridized with S-DNA, preventing G-quadruplex formation from S-DNA; this resulted in the relatively low fluorescence intensity of ThT. Once ClO- was added, the hydrolysis between PS and ClO- split the B-DNA into two fragments, resulting in B-DNA breaking away from S-DNA, allowing G-quadruplex formation from S-DNA and increasing the fluorescence intensity of ThT. Using this method, we can detect ClO- without the interference of additional reactive oxygen species. The detection limit of ClO- was as low as 10 nM. Furthermore, this method facilitates the detection of ClO- within the tissues of rats with stress-induced hypertension.
Collapse
Affiliation(s)
- Haisheng Liu
- College of Agriculture and Bioengineering, Heze University, Shandong, Heze 274000, China
| | - Xin Zhang
- College of Agriculture and Bioengineering, Heze University, Shandong, Heze 274000, China
| | - Xiangrong Li
- Shandong Provincial Hospital Group Heze Hospital, Shandong, Heze 274000, China
| | - Hongsong Wu
- College of Agriculture and Bioengineering, Heze University, Shandong, Heze 274000, China
| | - Yiwei Shi
- College of Agriculture and Bioengineering, Heze University, Shandong, Heze 274000, China
| | - Wen Lu
- College of Agriculture and Bioengineering, Heze University, Shandong, Heze 274000, China.
| |
Collapse
|
5
|
Liu MH, Zhao NN, Yu WT, Qiu JG, Jiang BH, Zhang Y, Zhang CY. Construction of a label-free fluorescent biosensor for homogeneous detection of m 6A eraser FTO in breast cancer tissues. Talanta 2024; 272:125784. [PMID: 38364555 DOI: 10.1016/j.talanta.2024.125784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Fat mass and obesity-associated protein (FTO) is a crucial eraser of RNA N6- methyladenosine (m6A) modification, and abnormal FTO expression level is implicated in pathogenesis of numerous cancers. Herein, we demonstrate the construction of a label-free fluorescent biosensor for homogeneous detection of m6A eraser FTO in breast cancer tissues. When FTO is present, it specifically erases the methyl group in m6A, inducing the cleavage of demethylated DNA by endonuclease DpnII and the generation of a single-stranded DNA (ssDNA) with a 3'-hydroxyl group. Subsequently, terminal deoxynucleotidyl transferase (TdT) promotes the incorporation of dTTPs into the ssDNA to obtain a long polythymidine (T) DNA sequence. The resultant long poly (T) DNA sequence can act as a template to trigger hyperbranched strand displacement amplification (HSDA), yielding numerous DNA fragments that may be stained by SYBR Gold to produce an enhanced fluorescence signal. This biosensor processes ultrahigh sensitivity with a detection limit of 1.65 × 10-10 mg/mL (2.6 fM), and it can detect the FTO activity in a single MCF-7 cell. Moreover, this biosensor can screen the FTO inhibitors, evaluate enzyme kinetic parameters, and discriminate the FTO expression levels in the tissues of breast cancer patients and healthy persons.
Collapse
Affiliation(s)
- Ming-Hao Liu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Wan-Tong Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Jian-Ge Qiu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bing-Hua Jiang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Shen T, Huang X, Zhang Y, Tong Y, Shi Y, Guo J, Zou X, Xu Y, Dai Z. Dephosphorylation Switch DNAzyme-RCA Circuit: A Robust Strategy for the Homogeneous and Reliable Detection of FTO Demethylase. Anal Chem 2024; 96:1686-1692. [PMID: 38118402 DOI: 10.1021/acs.analchem.3c04762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Fat mass and obesity-associated protein (FTO) plays a crucial role in regulating the dynamic modification of N6-methyladenosine (m6A) in eukaryotic mRNA. Sensitive detection of the FTO level and efficient evaluation of the FTO demethylase activity are of great importance to early cancer diagnosis and anticancer drug discovery, which are currently challenged by limited sensitivity/precision and low throughput. Herein, a robust strategy based on the dephosphorylation switch DNAzyme-rolling circle amplification (RCA) circuit, termed DSD-RCA, is developed for highly sensitive detection of FTO and inhibitor screening. Initially, the catalytic activity of DNAzyme is silenced by engineering with an m6A modification in its catalytic core. Only in the presence of target FTO can the methyl group on DNAzyme be eliminated, resulting in the activation of the catalytic activity of DNAzyme and thus cleaving the hairpin substrate to release numerous primers. Different from the conventional methods that use the downstream cleavage primer with the original 3'-hydroxyl end directly as the RCA primer with the problem of high background signal, which should be compensated by additional separation and wash steps in heterogeneous format, our DSD-RCA assay uses the upstream cleavage primer with a 2',3'-cyclic phosphate terminus at the 3'-end serving as an intrinsically blocked 3' end. Only after a dephosphorylation reaction mediated by T4 polynucleotide kinase can the upstream cleavage primers with a resultant 3'-hydroxyl end be extended by RCA. With the high signal-to-noise ratio and homogeneous property, the proposed platform can sensitively detect FTO with a limit of detection of 31.4 pM, and the relative standard deviations (RSDs %) ranging from 0.8 to 2.0% were much lower than the heterogeneous methods. The DSD-RCA method was applied for analyzing FTO in cytoplasmic lysates from different cell lines and tissues of breast cancer patients and further used for screening FTO inhibitors without the need for separation or cleaning, providing an opportunity for achieving high throughput and demonstrating the potential applications of this strategy in disease diagnostics, drug discovery, and biological applications.
Collapse
Affiliation(s)
- Taorong Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianhe Guo
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Ni J, Lu X, Gao X, Jin C, Mao J. Demethylase FTO inhibits the occurrence and development of triple-negative breast cancer by blocking m 6A-dependent miR-17-5p maturation-induced ZBTB4 depletion. Acta Biochim Biophys Sin (Shanghai) 2024; 56:114-128. [PMID: 38151999 PMCID: PMC10875348 DOI: 10.3724/abbs.2023267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 12/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer, and its mechanisms of occurrence and development remain unclear. In this study, we aim to investigate the role and molecular mechanisms of the demethylase FTO (fat mass and obesity-associated protein) in TNBC. Through analysis of public databases, we identify that FTO may regulate the maturation of miR-17-5p and subsequently influence the expression of zinc finger and BTB domain-containing protein 4 (ZBTB4), thereby affecting the occurrence and progression of TNBC. We screen for relevant miRNAs and mRNAs from the GEO and TCGA databases and find that the FTO gene may play a crucial role in TNBC. In vitro cell experiments demonstrate that overexpression of FTO can suppress the proliferation, migration, and invasion ability of TNBC cells and can regulate the maturation of miR-17-5p through an m 6A-dependent mechanism. Furthermore, we establish a xenograft nude mouse model and collect clinical samples to further confirm the role and impact of the FTO/miR-17-5p/ZBTB4 regulatory axis in TNBC. Our findings unveil the potential role of FTO and its underlying molecular mechanisms in TNBC, providing new perspectives and strategies for the research and treatment of TNBC.
Collapse
Affiliation(s)
- Jingyi Ni
- Department of OncologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Xiaoyun Lu
- Department of PathologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Xiangxiang Gao
- Department of OncologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Conghui Jin
- Department of OncologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Junfeng Mao
- Department of Breast SurgeryAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| |
Collapse
|
8
|
Liu WJ, Wang LY, Sheng Z, Zhang B, Zou X, Zhang CY. RNA methylation-driven assembly of fluorescence-encoded nanostructures for sensitive detection of m 6A modification writer METTL3/14 complex in human breast tissues. Biosens Bioelectron 2023; 240:115645. [PMID: 37660462 DOI: 10.1016/j.bios.2023.115645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
N6-methyladenosine (m6A) is an ubiquitous post-transcriptional modification catalyzed by METTL3/14 complex in eukaryotic mRNAs. The abnormal METTL3/14 complex activity affects multiple steps of RNA metabolism and may induce various diseases. Herein, we demonstrate the RNA methylation-driven assembly of fluorescence-encoded nanostructures for sensitive detection of m6A modification writer METTL3/14 complex in human breast tissues. METTL3/14 complex can catalyze the methylation of RNA probe to prevent it from being cleaved by MazF. The intact RNA probe is recognized by the magnetic bead (MB)-capture probe conjugates to induce duplex-specific nuclease (DSN)-assisted cyclic digestion, exposing numerous shorter ssDNAs with 3'-OH end. The shorter ssDNAs on the MB surface can act as the primers to initiate terminal deoxynucleotidyl transferase (TdT)-enhanced tyramide signal amplification (TSA), forming the Cy5 fluorescence-encoded nanostructures. After magnetic separation, the Cy5 fluorescence-encoded nanostructures are digested by DNase I to release abundant Cy5 fluorophores that can be simply quantified by fluorescence measurement. This assay achieves good specificity and high sensitivity with a detection limit of 58.8 aM, and it can screen METTL3/14 complex inhibitors and quantify METTL3/14 complex activity at the single-cell level. Furthermore, this assay can differentiate the METTL3/14 complex level in breast cancer patient tissues and healthy volunteer tissues.
Collapse
Affiliation(s)
- Wen-Jing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Lu-Yao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Zhimei Sheng
- Department of Pathology, Weifang Medical University, Weifang, 261053, China
| | - Baogang Zhang
- Department of Pathology, Weifang Medical University, Weifang, 261053, China.
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
9
|
Li N, Zhang L, Liu H, Xu Q, Ma F, Zhang CY. Label-free and sensitive detection of N6-methyladenosine demethylase activity in crude cell extracts and clinical cancer tissues based on demethylation-triggered exponential signal amplification. Anal Chim Acta 2023; 1278:341705. [PMID: 37709449 DOI: 10.1016/j.aca.2023.341705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
The m6A demethylase catalyzes the removal of m6A modification to establish proper RNA methylation patterns, and it has emerged as a promising disease biomarker and a therapeutic target. The reported m6A demethylase assays often suffer from tedious producers, expensive reagents, radioactive risk, limited sensitivity, and poor specificity. Herein, we develop a simple, selective, label-free, and highly sensitive fluorescent biosensor for m6A demethylase assay based on demethylation-triggered exponential signal amplification. In this biosensor, m6A demethylase-catalyzed demethylation can protect the circular DNA from the digestion by DpnI, subsequently triggering hyperbranched rolling circle amplification to achieve exponential signal amplification for producing abundant ssDNA and dsDNA products. The amplified DNA signal can be sensitively and simply detected by SYBR Gold in a label-free manner. This biosensor avoids any antibodies, washing/separation procedures, and fluorophore-/quencher-labeled probes, great simplifying the assay procedures and reducing the assay cost. Moreover, this biosensor achieves good specificity and excellent sensitivity with a detection limit of 1.2 fg/μL, which is superior to conventional ELISA (36.3 pg/μL). Especially, this biosensor enables direct monitoring of m6A demethylase activity in crude cell extracts with high accuracy, and it can be further applied for the screening of m6A demethylase inhibitor, measurement of m6A demethylase activity in different cell lines, and discrimination of m6A demethylase level in clinical cancer and healthy tissues, providing a facile and robust platform for RNA methylation-related biomedical research, disease diagnosis, and drug discovery.
Collapse
Affiliation(s)
- Na Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Lingfei Zhang
- Center for Disease Control and Prevention of Weihai City, Weihai, 264200, China
| | - Hao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
10
|
Zhao NN, Liu YZ, Zhang L, Liu W, Zou X, Xu Q, Zhang CY. Construction of Multiple DNAzymes Driven by Single Base Elongation and Ligation for Single-Molecule Monitoring of FTO in Cancer Tissues. Anal Chem 2023; 95:12974-12981. [PMID: 37590447 DOI: 10.1021/acs.analchem.3c02989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Fat mass and obesity-associated proteins (FTO) play an essential role in the reversible regulation of N6-methyladenosine (m6A) epigenetic modification, and the overexpression of FTO is closely associated with the occurrence of diverse human diseases (e.g., obesity and cancers). Herein, we demonstrate the construction of multiple DNAzymes driven by single base elongation and ligation for the single-molecule monitoring of FTO in cancer tissues. When target FTO is present, the m6A-RNA is specifically demethylated and subsequently acts as a primer to combine with the padlock probe, initiating single-base elongation and ligation reaction to generate a closed template probe. Upon the addition of phi29 DNA polymerase, a rolling circle amplification (RCA) reaction is initiated to produce large numbers of Mg2+-dependent DNAzyme repeats. Subsequently, the DNAzymes cyclically digest the signal probes, liberating numerous Cy5 molecules that can be precisely counted by single-molecule imaging. Taking advantage of the sequence specificity of the polymerase/ligase-mediated gap-filling and ligation as well as the high amplification efficiency of RCA, this biosensor shows excellent specificity and high sensitivity with a detection limit of 5.96 × 10-16 M. It can be applied to screen FTO inhibitors and quantify FTO activity at the single-cell level. Moreover, the proposed strategy can accurately distinguish the FTO expression level in tissues of healthy individuals and breast cancer patients, providing a new platform for drug discovery, m6A modification-related research, and clinical diagnostics.
Collapse
Affiliation(s)
- Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Ya-Zhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Lingfei Zhang
- Center for Disease Control and Prevention of Weihai City, Weihai, 264200, China
| | - Wenjing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|