1
|
Sun X, Liu H, Dai Z, Wang Y, Li L, Ding Y. A dual-functional monomer-based molecularly imprinted fluorescent aptasensor employing near-infrared carbon dots for selective detection of quinine in food. Food Chem 2025; 469:142317. [PMID: 39718314 DOI: 10.1016/j.foodchem.2024.142317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/21/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024]
Abstract
A molecularly imprinted fluorescent aptasensor was designed for selective detection of quinine (Qn) based on dual functional monomers. In the sol-gel polymerization of molecularly imprinted polymers (MIPs), 3-aminopropyltriethoxysilane (APTES) and quinine aptamer (Apt) were employed as dual functional monomers, and Qn was the template molecule. Near-infrared carbon dots (RCDs) were used as fluorescence signal probe, and effectively avoided the interference of fluorescence emitted by Qn. Due to the diverse interaction among APTES, Apt and Qn, the near-infrared fluorescent molecularly imprinted aptasensor (RCDs-Apt@MIPs) exhibited higher specificity towards Qn than the sensor with APTES or Apt as a single functional monomer. The sensor had a wide linear range of 5.0-110.0 μM with a low detection limit of 1.7 μM. Satisfactory recovery between 93.4% and 104.0% with relative standard deviation from 1.30% to 3.60% in drinks, which showed great potential that this method can be used to detect Qn in food.
Collapse
Affiliation(s)
- Xuyuan Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hao Liu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Zhengyuan Dai
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Ying Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
2
|
Meng X, Li Z, Yue W, Zhang L, Xie Z. Toward At-Home and Wearable Monitoring of Female Hormones: Emerging Nanotechnologies and Clinical Prospects. ACS Sens 2025; 10:54-75. [PMID: 39761986 DOI: 10.1021/acssensors.4c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Steroid hormones, especially progesterone (P4), estradiol (E2), and testosterone (T), are key bioactive regulators in various female physiological processes, including growth and development, ovulation, and the reproductive cycle, as well as metabolism and mental health. As lipophilic molecules produced in sex glands, these steroid female hormones can be transported through blood vessels into various body fluids such as saliva, sweat, and urine. However, the ultralow concentration of steroid hormones down to picomolar (pM) level necessitates great demands for ultrasensitive but low-cost analytic tools to implement accurate, point-of-care or even continuous monitoring in a user-friendly fashion. This review focuses on the latest advances in materials and nanotechnologies to allow the rapid detection of female hormones at the pM level or below and the potentials in at-home and wearable hormone monitoring. We specifically summarize the optical and electrochemical strategies in this category, particularly those affording low cost and portable signal readout for at-home use. Furthermore, emerging flexible/wearable innovations are highlighted, which allow the continuous hormone cycle tracking in a noninvasive manner. The potential of these techniques is discussed to address the need for real-time acquisition of the hormone fluctuation, facilitating health monitoring at home. Lastly, we provide a comprehensive introduction to the prospects of female hormone monitoring in clinical diagnosis and treatment, from the perspective of gynecology and reproductive medicine clinicians.
Collapse
Affiliation(s)
- Xingyu Meng
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhaoxian Li
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Wan Yue
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Limei Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Zhuang Xie
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
3
|
Wang H, Zhang J, Liu Z, Chen M, Ji G, Liu L, Chang Z, Wang Y, Gao Z, Shi H. CRISPR-Cas14a and allosteric transcription factors empowered cell-free electrochemical biosensor for highly sensitive and stable detection of progesterone in multiple scenarios. Biosens Bioelectron 2025; 268:116919. [PMID: 39522471 DOI: 10.1016/j.bios.2024.116919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, a cell-free electrochemical assay based on allosteric transcription factors (aTFs) and CRISPR-Cas14a was developed for the detection of progesterone in trace samples. This electrochemical biosensor helps to overcome the drawbacks of the traditional fluorescence assay based on the CRISPR-Cas system and aTFs combined for non-nucleic acid targets that is poorly effective for the detection of colored samples. By comparing and optimizing the concentration and length of the probes in the straight chain and hairpin structure, the sensor performance was improved. In addition, different sgRNA from other studies was designed to overcome the effect of sequence folding in the space region on Cas14a activation. Based on these optimization results, we constructed an electrochemical sensor for progesterone quantification in the range of 66.7pM to 3.33 × 10-1μM. This method requires only 2 μL of sample and does not necessitate complex pretreatment steps, with detection completed within 1.5 h. The method has been successfully applied to food, environmental, and biological samples, with recovery rates between 82.65% and 109%. This suggests that CRISPR and allosteric transcription factor-powered electrochemical detection methods have significant potential for use in the field of small molecule detection under various scenarios.
Collapse
Affiliation(s)
- Haoran Wang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Military Medical Science Academy, Academy of Military Science, Tianjin, 300050, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiangshan Zhang
- Military Medical Science Academy, Academy of Military Science, Tianjin, 300050, China; Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zesheng Liu
- Military Medical Science Academy, Academy of Military Science, Tianjin, 300050, China
| | - Mengmeng Chen
- Military Medical Science Academy, Academy of Military Science, Tianjin, 300050, China
| | - Guangna Ji
- Military Medical Science Academy, Academy of Military Science, Tianjin, 300050, China; Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Linyuan Liu
- Military Medical Science Academy, Academy of Military Science, Tianjin, 300050, China
| | - Zhuxin Chang
- Military Medical Science Academy, Academy of Military Science, Tianjin, 300050, China; Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Wang
- Military Medical Science Academy, Academy of Military Science, Tianjin, 300050, China.
| | - Zhixian Gao
- Military Medical Science Academy, Academy of Military Science, Tianjin, 300050, China.
| | - Hongmei Shi
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
4
|
Zhou Q, Yang Y, Xu Z, Liu Z. Engineering of dual recognition functional aptamer-molecularly imprinted polymeric solid-phase microextraction for detecting of 17β-estradiol in meat samples. J Chromatogr A 2024; 1730:465138. [PMID: 38970874 DOI: 10.1016/j.chroma.2024.465138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
In this study, an enhanced selective recognition strategy was employed to construct a novel solid-phase microextraction fiber coating for the detection of 17β-estradiol, characterized by the combination of aptamer biorecognition and molecularly imprinted polymer recognition. Benefiting from the combination of molecularly imprinted and aptamer, aptamer-molecularly imprinted (Apt-MIP) fiber coating had synergistic recognition effect. The effects of pH, ion concentration, extraction time, desorption time and desorption solvent on the adsorption capacity of Apt-MIP were investigated. The adsorption of 17β-estradiol on Apt-MIP followed pseudo-second order kinetic model, and the Freundlich isotherm. The process was exothermic and thermodynamically spontaneous. Compared with polymers that only rely on imprinted recognition, non-imprinted recognition or aptamer affinity, Apt-MIP had the best recognition performance, which was 1.30-2.20 times that of these three materials. Furthermore, the adsorption capacity of Apt-MIP for 17β-estradiol was 885.36-1487.52 times than that of polyacrylate and polydimethylsiloxane/divinylbenzone commercial fiber coatings. Apt-MIP fiber coating had good stability and could be reused for more than 15 times. Apt-MIP solid-phase microextraction coupled with high-performance liquid chromatography was successfully applied to the determination of 17β-estradiol in pork, chicken, fish and shrimp samples, with satisfactory recoveries of 79.61 %-105.70 % and low limits of detection (0.03 μg/kg). This work provides new perspectives and strategies for sample pretreatment techniques based on molecular imprinting technology and improves analytical performance.
Collapse
Affiliation(s)
- Qingqing Zhou
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Yi Yang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
5
|
Qi Y, Chen Y, Li Q, Dang X, Chen H. A novel ratiometric electrochemical sensing platform combined with molecularly imprinted polymer and Fe-MOF-NH 2/CNTs-NH 2/MXene composite for efficient detection of ofloxacin. Anal Chim Acta 2024; 1316:342876. [PMID: 38969434 DOI: 10.1016/j.aca.2024.342876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Ofloxacin (OFL) is often abused in medicine and animal husbandry, which poses a great threat to human health and ecological environment. Therefore, it is necessary to establish efficient method to detect OFL. Electrochemical sensor has attracted widespread attention due to the advantages of low cost and fast response. However, most electrochemical sensors usually use one response signal to detect the target, which makes it sensitive to the variable background noise in the complex environment, resulting in low robustness and selectivity. The ratio detection mode and employing molecularly imprinted polymer (MIP) are two strategies to solve these problems. RESULTS A novel molecular imprinting polymer-ratiometric electrochemical sensor (MIP-RECS) based on Fe-MOF-NH2/CNTs-NH2/MXene composite was prepared for the rapid and sensitive detection of OFL. The positively charged Fe-MOF-NH2 and CNTs-NH2 as interlayer spacers were introduced into the negatively charged MXene through a simple electrostatic self-assembly technique, which effectively prevented the agglomeration of MXene and increased the electrocatalytic activity. A glass carbon electrode was modified by the composite and a MIP film was electropolymerized on it using o-phenylenediamine and β-cyclodextrin as bifunctional monomers and OFL as template. Then a MIP-RECS was designed by adding dopamine (DA) into the electrolyte solution as internal reference, and OFL was quantified by the response current ratio of OFL to DA. The current ratio and the concentration of OFL displayed a satisfying linear relationship in the range of 0.1 μM-100 μM, with a limit of detection (LOD) of 13.2 nM. SIGNIFICANCE Combining molecular imprinting strategy and ratio strategy, the MIP-RECS has impressive selectivity compared with the non-imprinted polymer-RECS, and has better repeatability and reproducibility than non-ratiometric sensor. The MIP-RECS has high sensitivity and accuracy, which was applied for the detection of OFL in four different brands of milk and was verified by HPLC method with satisfactory results.
Collapse
Affiliation(s)
- Youfang Qi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Yu Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Qiao Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xueping Dang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Huaixia Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| |
Collapse
|
6
|
Ghanbarzadeh M, Ghaffarinejad A, Shahdost-Fard F. A nitrogen-doped hollow carbon nanospheres-based aptasensor for non-invasive salivary detection of progesterone. Talanta 2024; 273:125927. [PMID: 38521026 DOI: 10.1016/j.talanta.2024.125927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Developing an easy-to-use and non-invasive sensor for monitoring progesterone (P4) as a multi-functional hormone is highly demanded for point-of-care testing. In this study, an ultrasensitive electrochemical aptasensor is fabricated for monitoring P4 in human biofluids. The sensing interface was designed based on the porous nitrogen-doped hollow carbon spheres (N-HCSs). The N-HCSs covalently immobilized high-dense aptamer (Apt) sequences as the bioreceptor of P4. The electron transfer of the redox probe was hindered by incubating P4 on the aptasensor surface and forming the P4-Apt complexes. Meanwhile, the signaling was decreased under two wide linear dynamic ranges (LDRs) from 10 fM to 5.6 μM with a limit of detection (LOD) value of 3.33 fM. The aptasensor presented satisfactory selectivity in the presence of different off-target species with successful feasibility for P4 detection in some human urine and saliva samples. The aptasensor with high sensitivity, as an advantage for on-site and sensitive measurement of P4, can be considered a non-invasive tool for routine analysis of real-world clinical samples method.
Collapse
Affiliation(s)
- Mahsa Ghanbarzadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
| | - Faezeh Shahdost-Fard
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| |
Collapse
|
7
|
Mansouri S. Recent Advancements in Molecularly Imprinted Polymers Based Aptasensors: Critical Role of Nanomaterials for the Efficient Food Safety Analysis. Crit Rev Anal Chem 2024:1-16. [PMID: 38754013 DOI: 10.1080/10408347.2024.2351826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Biosensors are being studied extensively for their ability to detect and analyze molecules. There has been a growing interest in combining molecular imprinted polymers (MIPs) and aptamers to create hybrid recognition elements that offer advantages such as target binding, sensitivity, selectivity, and stability. These hybrid elements have been successfully used in identifying a wide range of analytes in food samples. However, the application of MIP-based aptasensors in different sensing approaches is still challenging due to the low conductivity of MIPs-aptamers and limited adsorption capacity of MIPs. To address these limitations, researchers have been exploring the use of nanomaterials (NMs) to design efficient multiple-recognition systems that exploit the synergies between aptamers and MIPs. These hybrid systems can enhance the sensitivity and selectivity of MIP-based aptasensors in quantifying analytical samples. This review provides a comprehensive overview of recent advancements in the field of MIP-based aptasensors. It also introduces technologies that combine MIPs and aptamers to achieve higher sensitivity and selectivity in quantifying analytical samples. The review also highlights potential future trends and practical approaches that can be employed to address the limitations of MIP-based aptasensors, including the use of new NMs, the development of new fabrication techniques, and the integration of MIP-based aptasensors with other analytical tools.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabiain
- Laboratory of Biophysics and Medical Technologies, University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Tunis, Tunisia
| |
Collapse
|
8
|
Geng L, Wang H, Liu M, Huang J, Wang G, Guo Z, Guo Y, Sun X. Research progress on preparation methods and sensing applications of molecularly imprinted polymer-aptamer dual recognition elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168832. [PMID: 38036131 DOI: 10.1016/j.scitotenv.2023.168832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The aptamer (Apt) and the molecularly imprinted polymer (MIP), as effective substitutes for antibodies, have received widespread attention from researchers because of their creation. However, the low stability of Apt in harsh detection environment and the poor specificity of MIP have hindered their development. Therefore, some researchers have attempted to combine MIP with Apt to explore whether the effect of "1 + 1 > 2" can be achieved. Since its first report in 2013, MIP-Apt dual recognition elements have become a highly focused research direction in the fields of biology and chemistry. MIP-Apt dual recognition elements not only possess the high specificity of Apt and the high stability of MIP in harsh detection environment, but also have high sensitivity and affinity. They have been successfully applied in medical diagnosis, food safety, and environmental monitoring fields. This article provides a systematic overview of three preparation methods for MIP-Apt dual recognition elements and their application in eight different types of sensors. It also provides effective insights into the problems and development directions faced by MIP-Apt dual recognition elements.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| |
Collapse
|
9
|
Rizzotto F, Khalife M, Hou Y, Chaix C, Lagarde F, Scaramozzino N, Vidic J. Recent Advances in Electrochemical Biosensors for Food Control. MICROMACHINES 2023; 14:1412. [PMID: 37512723 PMCID: PMC10384134 DOI: 10.3390/mi14071412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The rapid and sensitive detection of food contaminants is becoming increasingly important for timely prevention and treatment of foodborne disease. In this review, we discuss recent developments of electrochemical biosensors as facile, rapid, sensitive, and user-friendly analytical devices and their applications in food safety analysis, owing to the analytical characteristics of electrochemical detection and to advances in the design and production of bioreceptors (antibodies, DNA, aptamers, peptides, molecular imprinted polymers, enzymes, bacteriophages, etc.). They can offer a low limit of detection required for food contaminants such as allergens, pesticides, antibiotic traces, toxins, bacteria, etc. We provide an overview of a broad range of electrochemical biosensing designs and consider future opportunities for this technology in food control.
Collapse
Affiliation(s)
- Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Yanxia Hou
- University Grenoble Alpes, CEA, CNRS, IRIG-SYMMES, 38000 Grenoble, France
| | - Carole Chaix
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Florence Lagarde
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | | | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| |
Collapse
|