1
|
Liu Q, Zhu J, Wang H, Luan Y, Zhang Z. Porphyrin-based covalent organic framework as oxidase mimic for highly sensitive colorimetric detection of pesticides. Mikrochim Acta 2024; 191:296. [PMID: 38702534 DOI: 10.1007/s00604-024-06371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
A covalent organic framework-based strategy was designed for label-free colorimetric detection of pesticides. Covalent organic framework-based nanoenzyme with excellent oxidase-like catalytic activity was synthesized. Unlike other artificial enzymes, porphyrin-based covalent organic framework (p-COF) as the oxidase mimic showed highly catalytic chromogenic activity and good affinity toward TMB without the presence of H2O2, which can be used as substitute for peroxidase mimics and H2O2 system in the colorimetric reaction. Based on the fact that the pesticide-aptamer complex can inhibit the oxidase activity of p-COF and reduced the absorbance at 650 nm in UV-Vis spectrum, a label-free and facile colorimetric detection of pesticides was designed and fabricated. Under the optimized conditions, the COF-based colorimetric probe for pesticide detection displayed high sensitivity and selectivity. Taking fipronil for example the limit of detection was 2.7 ng/mL and the linear range was 5 -500,000 ng/mL. The strategy was successfully applied to the detection of pesticides with good recovery , which was in accordance with that of HPLC-MS/MS. The COF-based colorimetric detection was free of complicated modification H2O2, which guaranteed the accuracy and reliability of measurements. The COF-based sensing strategy is a potential candidate for the sensitive detection of pesticides of interests.
Collapse
Affiliation(s)
- Qingju Liu
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 10097, China
| | - Junyi Zhu
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 10097, China
| | - Hui Wang
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 10097, China
| | - Yunxia Luan
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 10097, China.
| | - Zhikun Zhang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
2
|
Wahyuni WT, Putra BR, Rahman HA, Ivandini TA, Irkham, Khalil M, Rahmawati I. Effect of Aspect Ratio of a Gold-Nanorod-Modified Screen-Printed Carbon Electrode for Carbaryl Detection in Three Different Samples of Vegetables. ACS OMEGA 2024; 9:1497-1515. [PMID: 38239286 PMCID: PMC10796111 DOI: 10.1021/acsomega.3c07831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024]
Abstract
In this study, three different sizes of gold nanorods (AuNRs) were synthesized using the seed-growth method by adding various volumes of AgNO3 as 400, 600, and 800 μL into the growth solution of gold nanoparticles. Three different sizes of AuNRs were then characterized using UV-vis spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) patterns, and atomic force microscopy (AFM) to investigate the surface morphology, topography, and aspect ratios of each synthesized AuNR. The aspect ratios from the histogram of size distributions of three AuNRs as 2.21, 2.53, and 2.85 can be calculated corresponding to the addition of AgNO3 volumes of 400, 600, and 800 μL. Moreover, each AuNR in three different aspect ratios was drop-cast onto the surface of a commercial screen-printed carbon electrode (SPCE) to obtain three different SPCE-modified AuNRs (SPCE-A400, SPCE-A600, and SPCE-A800, respectively). All SPCE-modified AuNRs were then evaluated for their electrochemical behavior using cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques and the highest electrochemical performance was shown as the order of magnitude of SPCE-A400 > SPCE-A600/SPCE-A800. The reason for the highest electrocatalytic activity of SPCE-A400 might be due to the smallest particle size and uniform distribution of AuNRs ∼ 2.2, which enhanced the charge transfer, thus providing the highest electroactive surface area (0.6685 cm2) compared to other electrodes. These results also confirm that the sensing mechanism for all SPCE-modified AuNRs is controlled by diffusion phenomena. In addition, the optimum pH was obtained as 4 for carbaryl detection for all SPCE-modified AuNRs with the highest current shown by SPCE-A400. Furthermore, SPCE-A400 has the highest fundamental parameters (surface coverage, catalytic rate constant, electron transfer rate constant, and adsorption capacity) for carbaryl detection, which were investigated using cyclic voltammetry and chronoamperometric techniques. The electroanalytical performances of all SPCE-modified AuNRs for carbaryl detection were also investigated with SPCE-A400 displaying the best performance among other electrodes in terms of its linearity (0.2-100 μM), limit of detection (LOD) ∼ 0.07 μM, and limit of quantification (LOQ) ∼ 0.2 μM. All SPCE-modified AuNRs were also subsequently evaluated for their stability, reproducibility, and selectivity in the presence of interfering species such as NaNO2, NH4NO3, Zn(CH3CO2)2, FeSO4, diazinon, and glucose and show reliable results as depicted from %RSD values less than 3%. At last, all SPCE-modified AuNRs have been employed for carbaryl detection using a standard addition technique in three different samples of vegetables (cabbage, cucumber, and Chinese cabbage) with its results (%recovery ≈ 100%) within the acceptable analytical range. In conclusion, this work demonstrates the great potential of a disposable device based on an AuNR-modified SPCE for rapid detection and high sensitivity in monitoring the concentration of carbaryl as a residual pesticide in vegetable samples.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Analytical
Chemistry Division, Department of Chemistry, Faculty of Mathematics
and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
- Tropical
Biopharmaca Research Center, Institute of Research and Community Empowerment, IPB University, Bogor 16680, Indonesia
| | - Budi Riza Putra
- Research
Center for Metallurgy, National Research
and Innovation Agency (BRIN), PUSPIPTEK Gd. 470, South
Tangerang, Banten 15315, Indonesia
| | - Hemas Arif Rahman
- Analytical
Chemistry Division, Department of Chemistry, Faculty of Mathematics
and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Tribidasari A. Ivandini
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
| | - Irkham
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Padjajaran, Bandung 45363, Indonesia
| | - Munawar Khalil
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
| | - Isnaini Rahmawati
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
| |
Collapse
|