1
|
Song Q, Bai C, Dong Y, Chen M, Wang S, Hu J, Qiao X, Chen J, Li S, Liu X, Wang X, Qiao R, Qu C, Miao H. Highly selective Zn 2+ near-infrared fluorescent probe and its application in biological imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124828. [PMID: 39029204 DOI: 10.1016/j.saa.2024.124828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Zn2+ plays a vital role in regulating various life processes, such as gene expression, cell signaling, and brain function. In this study, a near-infrared fluorescent probe AXS was synthesized to detect Zn2+ with good fluorescence specificity, high selectivity, and high sensitivity; the detection limit of Zn2+ was 6.924 × 10-11 M. The mechanism of Zn2+ recognition by the AXS probe was investigated by 1H nuclear magnetic resonance titrations, UV-visible spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and high-resolution mass spectrometry. Test paper experiments showed that the AXS probe could detect Zn2+ in real samples. In addition, quantitative and qualitative detection of Zn2+ in common foodstuffs was achieved. For portable Zn2+ detection, a smartphone detection platform was also developed based on the AXS probe. Importantly, the AXS probe showed good bioimaging capabilities in Caenorhabditis elegans and mice.
Collapse
Affiliation(s)
- Qixiang Song
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Cuibing Bai
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| | - Yajie Dong
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Mengyu Chen
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Shizhen Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Jingde Hu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, PR China
| | - Xu Qiao
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, PR China
| | - Ju Chen
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Suyuan Li
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xinyi Liu
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xinyu Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| | - Changqing Qu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, PR China
| | - Hui Miao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| |
Collapse
|
2
|
Yao J, Meng Q, Xu Q, Fu H, Xu H, Feng Q, Cao X, Zhou Y, Huang H, Bai C, Qiao R. A novel BN aromatic module modified near-infrared fluorescent probe for monitoring carbon monoxide-releasing molecule CORM-3 in living cells and animals. Talanta 2024; 280:126734. [PMID: 39173248 DOI: 10.1016/j.talanta.2024.126734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/15/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Carbon monoxide (CO), a significant gas transmitter, plays a vital role in the intricate functioning of living systems and is intimately linked to a variety of physiological and pathological processes. To comprehensively investigate CO within biological system, researchers have widely adopted CORM-3, a compound capable of releasing CO, which serves as a surrogate for CO. It aids in elucidating the physiological and pathological effects of CO within living organisms and can be employed as a therapeutic drug molecule. Therefore, the pivotal role of CORM-3 necessitates the development of effective probes that can facilitate the visualization and tracking of CORM-3 in living systems. However, creating fluorescent probes for real-time imaging of CORM-3 in living species has proven to be a persisting challenge that arises from factors such as background interference, light scattering and photoactivation. Herein, the BNDN fluorescent probe, a brand-new near-infrared is proposed. Remarkably, the BNDN probe offers several noteworthy advantages, including a substantial Stokes shift (201 nm), heightened sensitivity, exceptional selectivity, and an exceedingly low CORM-3 detection limit (0.7 ppb). Furthermore, the underlying sensing mechanism has been meticulously examined, revealing a process that revives the fluorophore by reducing the complex Cu2+ to Cu+. This distinctive NIR fluorescence "turn-on" character, coupled with its larger Stokes shift, holds great promise for achieving high resolution imaging. Most impressively, this innovative probe has demonstrated its efficacy in detecting exogenous CORM-3 in living animal. It is important to underscore that these endeavors mark a rare instance of a near-infrared probes successfully detecting exogenous CORM-3 in vivo. These exceptional outcomes highlighted the potential of BNDN as a highly promising new tool for in vivo detection of CORM-3. Considering the impressive imaging capabilities demonstrated by BNDN presented in this study, we anticipate that this tool may offer a compelling avenue for shedding light on the roles of CO in future research endeavors.
Collapse
Affiliation(s)
- Junxiong Yao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China; School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China
| | - Qian Meng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China
| | - Qixing Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Huimin Fu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Han Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Qiang Feng
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Xiaohua Cao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Ying Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China.
| | - Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China.
| | - Cuibing Bai
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China.
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China.
| |
Collapse
|
3
|
Qin Y, Chen H, Luo Y, Zhang J, Zhou K, Leng Y, Zheng J, Chen Z. Platinum single atom on CsPbBr 3 nanocrystals as electrocatalyst boosts electrochemical sensing of ascorbic acid. Talanta 2024; 277:126396. [PMID: 38897004 DOI: 10.1016/j.talanta.2024.126396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Monitoring ascorbic acid (AA) levels in human body can provide valuable clues for disease diagnosis. Anchoring noble metal single atoms on perovskite substrate is a promising strategy to design electrocatalysts with outstanding electrocatalytic performance. Herein, we design an electrochemical method for detecting AA by utilizing Pt single atoms-doped CsPbBr3 nanocrystals (Pt SA/CsPbBr3 NCs) fixed on a glassy carbon electrode as an electrochemical catalyst. The uncharged 3,5,3',5'-tetramethylbenzidine (TMB) undergoes oxidation to form the positively charged oxidized TMB (oxTMB) owing to the exceptional electrochemical catalytic performance of Pt SA/CsPbBr3 NCs. Subsequently, the target AA reduces oxTMB to TMB, which is then electrocatalytically oxidized to oxTMB, producing significant oxidation current. In this way, such characteristic provides a sensitive electrochemical strategy for AA detection, achieving a concentration range of 50-fold with the detection limit of 0.0369 μM. The developed electrochemical method also successfully generates accurate detection response of AA in complex sample media (urine). Overall, this approach is expected to offer a novel way for early disease diagnosis.
Collapse
Affiliation(s)
- Yuanlong Qin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hanzhang Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yu Luo
- Beijing Sunwise Information Technology Ltd. Beijing, 100086, China
| | - Jiayue Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Kejia Zhou
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yumin Leng
- School of Mathematics and Physics, Anqing Normal University, Anqing, 246133, China.
| | - Jia Zheng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
4
|
Lin R, Zhang H, Huang Y. A new two-dimensional, spiropyran-based polymer fluorescent nanoprobe with quantitative-fluorescent and photochromic properties for multi-substance detection. NANOTECHNOLOGY 2024; 35:335702. [PMID: 38776878 DOI: 10.1088/1361-6528/ad4ee6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
One challenge of the structural design of a fluorescent probe is how to improve the detection performance on trace target analytes in complex samples. Herein a new polymer fluorescent nanoprobe (2DSP-C28) has been synthesized, by adopting a two-dimensional (2D), spiropyran (SP)-based nanosheet structure with hydrophobic long-chain alkanes (C28). Unlike a traditional SP-based small molecule probe, the 2DSP-C28probe can exhibit quantitative-fluorescent and photochromic properties. Under the detection of metal-ions, the nanoprobe in dimethyl sulfoxide aqueous solution is selectively fluorescent-quenched-responsive for Fe-ions (∼100μM), with a characteristic stoichiometric ratio of <10, a high sensitivity (limit of detection: ∼0.2μM). When the nanoprobe is incorporated into electrospun polyethylene oxide, it can be used for gas detection, and display a color-change with acid-base gas and identify the HF gas. It is expected that this new polymer fluorescent nanoprobe can be promisingly applied for rapidly environmental monitoring on the ion or gas pollution.
Collapse
Affiliation(s)
- Riyan Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, People's Republic of China
| | - Hefeng Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, People's Republic of China
| | - Yifu Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, People's Republic of China
| |
Collapse
|
5
|
Tian L, Cao M, Cheng H, Wang Y, He C, Shi X, Li T, Li Z. Plasmon-Stimulated Colorimetry Biosensor Array for the Identification of Multiple Metabolites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6849-6858. [PMID: 38293917 DOI: 10.1021/acsami.3c16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Rationally designing highly catalytic and stable nanozymes for metabolite monitoring is of great importance because of their huge potential in early disease diagnosis. Herein, a novel nanozyme based on hierarchically structured CuS/ZnS with a highly efficient peroxidase (POD)-mimic capability was developed and synthesized for multiple metabolite determination and recognition via the plasmon-stimulated biosensor array strategy. The designed nanozyme can simultaneously harvest plasmon triggered hot electron-hole pairs and generate photothermal properties, leading to a sharply boosted POD-mimic capability under 808 nm laser irradiation. Interestingly, because of the interaction diversity of the metabolite with POD-like nanomaterials, the unique inhibitory effect of metabolites on the POD-mimic activity could be the signal response as the differentiation. Thus, utilizing TMB as a typical chromogenic substrate in the addition of H2O2, the designed colorimetric biosensor array can produce diverse fingerprints for the three vital metabolisms (cysteine (Cys), ascorbic acid (AA), and glutathione (GSH)), which can be precisely identified by principal component analysis (PCA). Notably, a distinct fingerprint of a single metabolite with different levels and metabolite mixtures is also achieved with a detection limit of 1 μM. Most importantly, cell lysis could be effectively discriminated by the biosensor assay, implying its great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Ming Cao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Haorong Cheng
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Yanfei Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Changchun He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Xinxin Shi
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Tongxiang Li
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| |
Collapse
|