1
|
Zhang J, Liu J, Qiao L, Zhang Q, Hu J, Zhang CY. Recent Advance in Single-Molecule Fluorescent Biosensors for Tumor Biomarker Detection. BIOSENSORS 2024; 14:540. [PMID: 39589999 PMCID: PMC11591580 DOI: 10.3390/bios14110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
The construction of biosensors for specific, sensitive, and rapid detection of tumor biomarkers significantly contributes to biomedical research and early cancer diagnosis. However, conventional assays often involve large sample consumption and poor sensitivity, limiting their further application in real samples. In recent years, single-molecule biosensing has emerged as a robust tool for detecting and characterizing biomarkers due to its unique advantages including simplicity, low sample consumption, ultra-high sensitivity, and rapid assay time. This review summarizes the recent advances in the construction of single-molecule biosensors for the measurement of various tumor biomarkers, including DNAs, DNA modifications, RNAs, and enzymes. We give a comprehensive review about the working principles and practical applications of these single-molecule biosensors. Additionally, we discuss the challenges and limitations of current single-molecule biosensors, and highlight the future directions.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Jiawen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Lixue Qiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Chun-yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| |
Collapse
|
2
|
Ge C, Chen Z, Sun H, Sun P, Zhao J, Wu Y, Xu J, Zhou M, Luan M. Visually evaluating drug efficacy in living cells using COF-based fluorescent nanoprobe via CHA amplified detection of miRNA and simultaneous apoptosis imaging. Anal Chim Acta 2024; 1302:342502. [PMID: 38580409 DOI: 10.1016/j.aca.2024.342502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUNDS Cancer is a highly fatal disease which is close relative of miRNA aberrant expression and apoptosis disorders. Elucidation of the therapeutic efficacy through investigating the changes in miRNA and apoptosis holds immense importance in advancing the development of miRNA-based precision therapy. However, it remains a challenge as how to visually evaluate the efficacy during protocol optimization of miRNA-based anticancer drugs at the cellular level. Therefore, exploring effective and noninvasive methods for real-time monitoring of therapeutic efficacy in living cells is of great significance. RESULTS Herein, we reported a novel fluorescent nanoprobe COF-H1/H2-Peptide for visually evaluating drug efficacy in living cells through amplified imaging of low-abundant miRNA-221 with catalytic hairpin assembly (CHA) circle amplification, as well as simultaneous caspase-3 imaging. With strong stability and good biocompatibility, this newly fabricated amplified nanoprobe showed high sensitivity and specificity for the detection of miRNA-221 and caspase-3, and the limit of detection (LOD) of miRNA-221 was as low as 2.79 pM. The fluorescent imaging results showed that this amplified nanoprobe could not only detect caspase-3 in living cells, but also effectively detect low levels of miRNA-221 with increasing anticancer drug concentration and treatment time. The smart nanoprobe had effective performance for optimizing miRNA-based drug treatment schedules by dual-color fluorescence imaging. SIGNIFICANCE This nanoprobe combined CHA amplified detection of intracellular miRNA-221 and synchronous apoptosis imaging, with excellent sensitivity for the detection of cellular low-level miRNA, enabling the realization of real-time assessment of the efficacy of miRNA-based therapy in living cells. This work presents a promising approach for revealing the regulatory mechanisms between miRNAs and apoptosis in cancer occurrence, development, and treatment.
Collapse
Affiliation(s)
- Chuandong Ge
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Zhe Chen
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Heming Sun
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Ping Sun
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Jiayin Zhao
- Textile Industrial Products Testing Center of Nanjing Customs District, Wuxi, 214101, PR China
| | - Yanjuan Wu
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Jing Xu
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Mingyang Zhou
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| | - Mingming Luan
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| |
Collapse
|