1
|
Park J, Cho YS, Seo DW, Choi JY. An update on the sample preparation and analytical methods for synthetic food colorants in food products. Food Chem 2024; 459:140333. [PMID: 38996638 DOI: 10.1016/j.foodchem.2024.140333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Colorants, especially synthetic colorants, play a crucial role in enhancing the aesthetic qualities of food owing to their cost-effectiveness and stability against environmental factors. Ensuring the safe and regulated use of colorants is essential for maintaining consumer trust in food safety. Various preparation and analytical technologies, which are continuously undergoing improvement, are currently used to quantify of synthetic colorants in food products. This paper reviews recent developments in analytical techniques for synthetic food colorants, detection and compares the operational principles, advantages, and disadvantages of each technology. Additionally, it also explores advancements in these technologies, discussing several invaluable tools of analysis, such as high-performance liquid chromatography, liquid chromatography-tandem mass spectrometry, electrochemical sensors, digital image analysis, near-infrared spectroscopy, and surface-enhanced Raman spectroscopy. This comprehensive overview aims to provide valuable insights into current progress and research in the field of food colorant analysis.
Collapse
Affiliation(s)
- Juhee Park
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Yong Sun Cho
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Dong Won Seo
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Ji Yeon Choi
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
2
|
Kumar KMA, Kokulnathan T, Wang TJ, Weng CY, Chang YH. Synergistic SERS enhancement of NiCo-LDHs microurchins and silver nanoparticles for ultra-sensitive and reusable detection of thiabendazole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175301. [PMID: 39111428 DOI: 10.1016/j.scitotenv.2024.175301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Two-dimensional layered semiconductor materials as a distinctive class of materials are comprehensively explored for widespread applications due to narrow bandgap, controllable morphology, and tunable metal cation composition. Herein, we constructed a sensing platform of surface enhanced Raman spectroscopy (SERS) by combination of nickel‑cobalt layered double hydroxide (NiCo-LDH) microurchins and plasmonic silver nanoparticles (Ag NPs) for fungicide detection of thiabendazole (TBZ). The NiCo-LDHs/Ag-NPs microcomposites consist of NiCo-LDHs microurchins having a large number of nanoneedles deposited with photoreduced Ag NPs. The SERS platform with NiCo-LDHs/Ag-NPs shows an excellent SERS performance for TBZ detection, including an ultra-low detection limit of 1.49 × 10-11 M, a sublime enhancement factor of 1.71 × 109, high uniformity, good reproducibility, and long-term storage stability. The ultrahigh SERS activity of NiCo-LDH/Ag-NPs can be attributed to strong electromagnetic enhancement in the nanoscale gaps between Ag NPs, massive charge transfer through large-area NiCo-LDH/Ag-NPs interfaces, and the synergistic action of electromagnetic and charge transfer mechanisms. Besides, the unique morphology of NiCo-LDHs/Ag-NPs microcomposite provides a broad surface area for adsorption of TBZ molecules for further Raman signal enhancement. The practicability of the proposed SERS platform is confirmed by detecting TBZ in the real samples of apple juice and river water. The exceptional self-cleaning capability of the NiCo-LDHs/Ag-NPs microcomposite with an retention rate of 81.97 % even after the fifth degradation cycle underscores its impressive sustainable reusability and cost-effectiveness. The findings in this work lay the foundation for the development of high-performance SERS platforms to ensure food safety and environmental protection.
Collapse
Affiliation(s)
- Kalingarayanpalayam Matheswaran Arun Kumar
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; Institute of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Cheng-Yao Weng
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yu-Hsu Chang
- Institute of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
3
|
Barveen NR, Chinnapaiyan S, Huang CH, Lin YY, Xu JL, Cheng YW. Facile coupling of plasmonic Au-NPs on ZnS NFs as a robust SERS substrate for toluidine blue detection and degradation. Anal Chim Acta 2024; 1328:343177. [PMID: 39266196 DOI: 10.1016/j.aca.2024.343177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The robustness and sensitivity of the surface-enhanced Raman spectroscopy (SERS) technique heavily relies on the development of SERS active materials. A hybrid of semiconductor and plasmonic metals is highly effective as a SERS substrate, which enables the trace level detection of various organic pollutants. RESULTS This approach demonstrates the photodeposition of plasmonic gold nanoparticles (Au-NPs) on the surface of semiconductor-zinc sulfide nanoflowers (ZnS NFs), grown via the hydrothermal route. The synergistic contribution of the charge-transfer phenomenon and localized surface plasmon resonance of the Au-NPs/ZnS NFs makes it an ideal SERS substrate for the detection of organic pollutants, toluidine blue (TB). The proposed material has a high SERS enhancement factor (109), low limit of detection (10-11 M), good reproducibility, selectivity and strong anti-interference ability. Furthermore, the practicability of the Au-NPs/ZnS NFs is explored in real-time water samples, which are obtained with the satisfactory recovery rates. Additionally, the UVC light illumination on the Au-NPs/ZnS NFs has efficiently degraded TB within a time period of 150 min. SIGNIFICANCE AND NOVELTY These finding demonstrate the significance of the proposed Au-NPs/ZnS NFs for SERS based detection and degradation of organic pollutants in real-time samples, highlighting their potential in monitoring and treating water pollutants in wastewater.
Collapse
Affiliation(s)
- Nazar Riswana Barveen
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Sathishkumar Chinnapaiyan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Yen-Yu Lin
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Jia-Lun Xu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Yu-Wei Cheng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; R&D Center of Biochemical Engineering Technology, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| |
Collapse
|
4
|
Bitra VS, Verma S, Rao BT. TinyML-Raman: A novel IoT based field-deployable spectra analysis for accurate identification of pharmaceuticals and trace dye-pesticide mixtures from facile SERS method. Anal Chim Acta 2024; 1322:343063. [PMID: 39182990 DOI: 10.1016/j.aca.2024.343063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Upcoming inexpensive, compact Internet of Things (IoT) microcontrollers i.e., tiny-machine learning (TinyML) takes the ML driven Raman spectroscopy one step ahead for realization of more affordable and highly compact field deployable instruments. Further, lack of large spectral datasets and need for numerous specialized SERS substrates impede the development of various ML-based surface enhanced Raman spectroscopy (SERS) applications. The aim is to introduce TinyML analysis on wide range of spectra classes using customized dataset obtained with low-cost SERS. In this regard, it is vital to establish an optimum ML model and efficient data handling methodology for low memory TinyML units. RESULTS We introduce a novel TinyML methodology for accurate classification of large spectra classes with smartphone assistance for data communication and results visualization. To generate large customized spectral dataset, we present a facile, micro-drop SERS using Au colloids and reusable grooved Al substrates. The results demonstrated that memory efficient 8-bit data quantization based convolutional neural network is effective for accurate identification of 22 different spectra classes of trace dye-pesticide mixtures and pharmaceuticals. In this novel quantized data analysis on significantly varied intensity and complex variation spectra classes i.e., many individual, binary-mixtures and some with varied compositions, data normalization is shown to be powerful for improving ML classification accuracy from about 55 % to >99.5 %. Its robustness is demonstrated using inter-instrument driven data variations such as spectral shifts, high noise, and abscissa-flip, with five-fold cross validation of model performance. In addition, on-site quantification of analyte through spectral intensity is also demonstrated. SIGNIFICANCE This study opens up a new approach of ML analysis towards realization of next generation field deployable analytical instruments maintaining data privacy. It presents a detailed procedure of quantized spectral data analysis and its implementation in TinyML, attractive for various users and instrument manufacturers. The presented innovative computer-free ML analysis can be employed in all types of spectrometers, meeting the common goal of Raman spectroscopy i.e., accurate identification of complex spectra classes.
Collapse
Affiliation(s)
- Venkat Suprabath Bitra
- International Institute of Information Technology Bangalore, Electronic City, Bengaluru, Karnataka, 560100, India.
| | - Shweta Verma
- Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh, 452013, India
| | - B Tirumala Rao
- Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh, 452013, India.
| |
Collapse
|
5
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
6
|
Wang S, Gao J, Wang Y, Lu H, Yang S, Zheng L, Li Y, He G. Solar-powered detection of organic dyes using nitrogen-doped N-TiO 2/Ag 2O nanorod arrays. Mikrochim Acta 2024; 191:353. [PMID: 38809482 DOI: 10.1007/s00604-024-06429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Organic pollutant detection has caused widespread concern regarding due to their potential environmental and human health risks. In this work, a nitrogen-doped titanium dioxide/silver oxide (N-TiO2/Ag2O) composite has been designed as a sensitive photoelectrochemical (PEC) monitoring platform of organic dyes. Sensitive determination relies on the outstanding PEC performance of N-TiO2/Ag2O. The improved PEC performance stems from the effective separation of photocarriers and the extended light response range provided by the narrowing bandgap and a p-n junction with N-TiO2/Ag2O. The N-TiO2/Ag2O electrode exhibits a photocurrent density of up to 2.2 mA/cm2, demonstrating three times increase compared with the photocurrent density observed with the pure TiO2 film. The linear detection range for rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) is 0.2 ng/mL to 10 μg/mL with an ultrasensitive detection limit of 0.2 ng/mL without bias voltage. Due to the outstanding photocurrent density and sensitive response to organic pollutants, the N-TiO2/Ag2O PEC sensor provided a promising analytical method to detect environmental organic dyes.
Collapse
Affiliation(s)
- Shixuan Wang
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, People's Republic of China
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232001, People's Republic of China
| | - Juan Gao
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, People's Republic of China.
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232001, People's Republic of China.
| | - Yanfen Wang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, People's Republic of China
| | - Haowen Lu
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, People's Republic of China
| | - Sen Yang
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, People's Republic of China
| | - Lingcheng Zheng
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, People's Republic of China
| | - Yang Li
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, People's Republic of China
| | - Gang He
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P.R. China
| |
Collapse
|
7
|
Zhao H, Liu Z, Fu S, Jiang T, Wu K. Synergistic enhancement mediated sensitive SERS-based immunoassay of PSA using versatile PDMS@AgNPs@ZIF-67 biomimetic substrates. Colloids Surf B Biointerfaces 2024; 239:113963. [PMID: 38759294 DOI: 10.1016/j.colsurfb.2024.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Among various biomimetic polymer materials, polydimethylsiloxane (PDMS) stands out as an ideal matrix for surface-enhanced Raman scattering (SERS) due to its unique intrinsic Raman signal and tenacity. In order to realize the precise detection of prostate-specific antigen (PSA), we proposed a sandwich-type SERS-active immunostructure composed of PDMS@silver nanoparticles (Ag NPs)@ZIF-67 biomimetic film as the immunosubstrate and gold nanorods (Au NRs) as immunoprobes. Due to the synergistic effect of electromagnetic enhancement facilitated by biomimetic surfaces and chemical enhancement achieved by ZIF-67, this structure enabled an ultrasensitive and selective detection of PSA across a broad range from 10-3 to 10-9 mg/mL. The achieved limit of detection was as low as 3.0 × 10-10 mg/mL. Particularly, the intrinsic Raman signal of PDMS matrix at 2905 cm-1 was employed as a potential internal standard (IS) in the detection, achieving a high coefficient of determination (R2) value of 0.996. This multifunctional SERS substrate-mediated immunoassay holds vast potential for early diagnosis of prostate cancer, offering promising prospects for clinical applications.
Collapse
Affiliation(s)
- Hengwei Zhao
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Zhihan Liu
- Department of Urology, Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, PR China
| | - Shijiao Fu
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Tao Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| | - Kerong Wu
- Department of Urology, Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, PR China.
| |
Collapse
|
8
|
Wei X, Wen X, Zheng H, Zhang Y, Jia Q. Facile synthesis of Fe 3+ immobilized magnetic polydopamine-polyethyleneimine composites for phosphopeptide enrichment. J Chromatogr A 2024; 1719:464752. [PMID: 38382211 DOI: 10.1016/j.chroma.2024.464752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
As one of the most common post-translational modification of proteins, protein phosphorylation plays a vital role in many physiological processes. The enrichment of phosphopeptides is highly important before the mass spectrometry detection since phosphopeptides are susceptible to interferences from high-abundance non-phosphopeptides. In this study, we designed a novel magnetic composite (Fe3O4@PDA-PEI-Fe3+) for phosphopeptide enrichment with a facile protocol. The developed Fe3O4@PDA-PEI-Fe3+ is a marvelous material with multiple functional groups, and can effectively enrich phosphopeptides through the synergistic effect of three mechanisms, i.e., immobilized metal ion affinity chromatography raised form Fe3+, electrostatic interaction between amine and phosphate groups, and hydrogen bond between the hydrogen atoms of amine groups and oxygen atoms of phosphate groups. Combined with mass spectrometry, the material shows excellent enrichment performance, high sensitivity (0.4 fmol), good selectivity (β-casein:BSA= 1:500, w:w), and stable reusability (at least 5 cycles). In addition, the material was successfully applied to enrich phosphopeptides from skim milk and human saliva samples, implying that it is an ideal adsorbent for the phosphopeptide enrichment in complex biological samples and provides valuable insights into the field of phosphopeptide analysis.
Collapse
Affiliation(s)
- Xinzhuang Wei
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xue Wen
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Department of Pharmacy, Tianjin Hospital, No. 406 Jiefang South Road, Hexi District, Tianjin 300211, China
| | - Haijiao Zheng
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yang Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|