1
|
Yang J, Xu H, Zhao Y, Sun P, Li Y, Chen T, Zhou Y. Bivariate tracking of NIR phototherapeutic probe that illuminates the deterioration process of NAFLD-HCC. Biosens Bioelectron 2025; 269:116967. [PMID: 39586756 DOI: 10.1016/j.bios.2024.116967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has evolved to become a major cause of hepatocellular carcinoma (HCC). Visualization of NAFLD-HCC deterioration process imaging is essential to understand the underlying pathophysiological processes. However, currently relevant probes with short emission wavelengths, univariate and the inability to achieve theranostics functionality have encountered obstacles in further evaluating the NAFLD-HCC process. Here, we present a carboxylesterase (CE)-activated NIR fluorescent probe (BODJ) which has lipid droplets (LDs)-targeting ability and emits at a wavelength of 858 nm with a fluorescence quantum yield of 19.06%. CE-activated BODJ was used as a visual tool to successfully visualize both NAFLD deterioration processes and HCC in situ based on changes in the average number of LDs and the associated fluorescence intensity fluctuations. Imaging results showed that changes associated with CE and LDs in the modelled cells varied during the transition from nonalcoholic fatty liver to nonalcoholic steatohepatitis and later progression to HCC, highlighting the close association between bivariate and disease. We also demonstrate that BODJ has photodynamic (PDT) and photothermal therapy (PTT) capabilities, allowing image-guided dual phototherapy to damage HCC in situ. This NIR probe, which takes advantage of bivariate to track the deterioration process that illuminates NAFLD-HCC and has dual phototherapy capabilities, provides new ideas for the design of probes related to the diagnosis and treatment of hepatic metabolic diseases.
Collapse
Affiliation(s)
- Jialu Yang
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Huimin Xu
- Department of General Medicine, Huaihe Hospital, Henan University, Kaifeng, 475000, China
| | - Yijun Zhao
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Pengju Sun
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yuanyuan Li
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ting Chen
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yanmei Zhou
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Lin B, Fan J, Li S, Han Y. A novel mitochondrial-targeted fluorescent probe for ratiometric imaging of nitric oxide in cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125636. [PMID: 39708399 DOI: 10.1016/j.saa.2024.125636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Nitric oxide (NO) is a key signaling molecule that regulates energy metabolism, apoptosis, and antioxidant balance within mitochondria. It is closely associated with the development of cardiovascular diseases, neurodegenerative diseases, and cancer. Therefore, developing fluorescent probes capable of accurately detecting NO levels in mitochondria is essential for understanding disease mechanisms and clinical diagnostics. In this study, we developed a novel fluorescent probe based on the isophorone fluorophore. This probe achieves high sensitivity and specific ratiometric detection of NO in mitochondria by regulating the intramolecular charge transfer (ICT) effect. The probe emits red fluorescence before reacting with NO, and the addition of NO triggers an amine-NO addition reaction that inhibits the ICT effect, resulting in a color change to yellow-green fluorescence. This ratiometric fluorescence response provides a new method for quantitatively detecting NO. Additionally, the probe has a significant Stokes shift and good ratiometric wavelength separation, enhancing detection accuracy. It localizes explicitly to mitochondria, directly reflecting changes in mitochondrial NO concentration. Experiments in HeLa cells and zebrafish models have demonstrated the potential application of the probe in diagnosing and studying NO-related diseases. This provides new strategies and tools for researching the biological functions of NO and the early diagnosis of related diseases.
Collapse
Affiliation(s)
- Bin Lin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaxin Fan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuting Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Zhu D, Ren A, Xue L. A mitochondria-targeted colorimetric and NIR ratiometric fluorescent probe for biothiols with large Stokes shift based on thiol-chromene click reaction. Org Biomol Chem 2024; 22:9113-9120. [PMID: 39449620 DOI: 10.1039/d4ob01324g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In this study, a carbazole-based mitochondria-targeted colorimetric and NIR ratiometric fluorescent probe 1 for biothiols based on the thiol-chromene click reaction was subtly designed and synthesized. Upon interaction with biothiols (Cys, Hcy and GSH), the absorption of 1 shifted from 496 nm to 388 nm, while its fluorescence spectrum shifted from 650 nm to 530 nm. These transformations were accompanied by a visible color change from pink to colorless under visible light and from red to green when observed under a 365 nm UV lamp, which can be attributed to the click reaction of biothiols with the α,β-unsaturated ketone of the chromene moiety, subsequent pyran ring-opening and phenol formation as well as 1,6-elimination of a p-hydroxybenzyl moiety yielding 2. These advancements in 1 have allowed us to ratiometrically detect biothiols with high sensitivity (LODs of 97 nM, 94 nM and 93 nM for Cys, GSH and Hcy, respectively), a large Stokes shift (154 nm) and excellent selectivity. In addition, 1 can target mitochondria and image the fluctuation of intracellular biothiols through fluorescence ratiometry. Furthermore, the novel design strategy of modifying chromene to the N atom of quinoline was proposed for the first time.
Collapse
Affiliation(s)
- Dongjian Zhu
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, PR China.
| | - Aishan Ren
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, PR China.
| | - Lin Xue
- MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
4
|
Ren A, Qiao L, Li K, Zhu D, Zhang Y. Mitochondria-Targeted NIR Ratiometric and Colorimetric Fluorescent Probe for Biothiols Based on a Thiol-Chromene Click Reaction. Anal Chem 2024; 96:17773-17780. [PMID: 39446131 DOI: 10.1021/acs.analchem.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this work, a mitochondria-targeted NIR ratiometric and colorimetric fluorescent probe 1 was tactfully designed and synthesized by a novel design strategy of modifying chromene to pyridine for the first time. 1 exhibited a maximum absorption peak at 508 nm and a maximum fluorescence emission peak at 650 nm. Under the stimulus of biothiols (cysteine (Cys), homocysteine (Hcy), and glutathione (GSH)), the maximum absorption and fluorescence emission peaks of 1 blue-shifted to 448 and 541 nm, respectively, along with color changes from red to yellow under visible light and from red to green under a 365 nm ultraviolet (UV) lamp, which can be ascribed to the click reaction of biothiols with the α,β-unsaturated ketone of the chromene moiety with pyran ring-opening, phenol formation, and 1,6-elimination of the p-hydroxybenzyl moiety. 1 detected biothiols (Cys, GSH, and Hcy) with high sensitivity (LODs of 29, 23, and 16 nM for Cys, GSH, and Hcy, respectively), excellent selectivity, and fast response. Moreover, 1 can target mitochondria and image the fluctuation of intracellular biothiols by dual-emission channels.
Collapse
Affiliation(s)
- Aishan Ren
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University Nanning 530006, Guangxi, China
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, Guangxi, China
| | - Lige Qiao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University Nanning 530006, Guangxi, China
| | - Kechun Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University Nanning 530006, Guangxi, China
| | - Dongjian Zhu
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, Guangxi, China
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University Nanning 530006, Guangxi, China
| |
Collapse
|
5
|
Ren A, Qiao L, Li K, Zhu D, Zhang Y. Thiol-chromene click reaction-triggered mitochondria-targeted ratiometric fluorescent probe for intracellular biothiol imaging. Anal Bioanal Chem 2024; 416:6223-6235. [PMID: 39212698 DOI: 10.1007/s00216-024-05506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Chromene as the efficient biothiol recognition site was widely used to develop fluorescent probes based on thiol-chromene click reaction. However, chromene-based fluorescent probes with the both properties of ratiometric measurement and mitochondria-targeted function have not been reported and remain challenging. In this paper, we skillfully designed and synthesized the first mitochondria-targeted ratiometric fluorescent probe (Probe 1) for biothiols based on chromene. Upon addition of biothiols (Cys, Hcy, and GSH), the absorption and fluorescence spectra of Probe 1 changed from 490 to 426 nm and from 567 to 498 nm respectively, accompanied by color changes from orange to pale yellow under natural light and from orange to blue under a 365-nm UV lamp, which can be attributed to the click reaction of biothiols with α,β-unsaturated ketone of chromene moiety, subsequent pyran ring-opening, and phenol formation as well as 1,6-elimination of p-hydroxybenzyl moiety. Probe 1 not only exhibited high sensitivity (LODs of 149 nM, 133 nM, and 116 nM for Cys, GSH, and Hcy respectively), rapid response, and excellent selectivity for biothiols (Cys, Hcy, and GSH), but also could target in mitochondria and ratiometrically image the fluctuation of intracellular biothiols. Moreover, the novel design strategy of modifying chromene to the N atom of pyridine was proposed for the first time.
Collapse
Affiliation(s)
- Aishan Ren
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, Guangxi, People's Republic of China
| | - Lige Qiao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, Guangxi, People's Republic of China
| | - Kechun Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, Guangxi, People's Republic of China
| | - Dongjian Zhu
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, Guangxi, People's Republic of China.
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, Guangxi, People's Republic of China.
| |
Collapse
|
6
|
Gao C, Chen DD, Zhang L, Ma ML, Liu HW, Cui HR. A Mitochondria-Targeting Fluorescent Probe for the Dual Sensing of Hypochlorite and Viscosity without Signal Crosstalk in Living Cells and Zebrafish. Molecules 2024; 29:3059. [PMID: 38999010 PMCID: PMC11243143 DOI: 10.3390/molecules29133059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Hypochlorite (ClO-) and viscosity both affect the physiological state of mitochondria, and their abnormal levels are closely related to many common diseases. Therefore, it is vitally important to develop mitochondria-targeting fluorescent probes for the dual sensing of ClO- and viscosity. Herein, we have explored a new fluorescent probe, XTAP-Bn, which responds sensitively to ClO- and viscosity with off-on fluorescence changes at 558 and 765 nm, respectively. Because the emission wavelength gap is more than 200 nm, XTAP-Bn can effectively eliminate the signal crosstalk during the simultaneous detection of ClO- and viscosity. In addition, XTAP-Bn has several advantages, including high selectivity, rapid response, good water solubility, low cytotoxicity, and excellent mitochondrial-targeting ability. More importantly, probe XTAP-Bn is successfully employed to monitor the dynamic change in ClO- and viscosity levels in the mitochondria of living cells and zebrafish. This study not only provides a reliable tool for identifying mitochondrial dysfunction but also offers a potential approach for the early diagnosis of mitochondrial-related diseases.
Collapse
Affiliation(s)
- Chao Gao
- Synergy Innovation Centre of Biological Peptide Antidiabetics of Hubei Province, College of Life Science, Wuchang University of Technology, Wuhan 430223, China
| | - Dan-Dan Chen
- Synergy Innovation Centre of Biological Peptide Antidiabetics of Hubei Province, College of Life Science, Wuchang University of Technology, Wuhan 430223, China
| | - Lin Zhang
- Synergy Innovation Centre of Biological Peptide Antidiabetics of Hubei Province, College of Life Science, Wuchang University of Technology, Wuhan 430223, China
| | - Ming-Lan Ma
- Synergy Innovation Centre of Biological Peptide Antidiabetics of Hubei Province, College of Life Science, Wuchang University of Technology, Wuhan 430223, China
| | - Hu-Wei Liu
- Synergy Innovation Centre of Biological Peptide Antidiabetics of Hubei Province, College of Life Science, Wuchang University of Technology, Wuhan 430223, China
| | - Hai-Rong Cui
- Synergy Innovation Centre of Biological Peptide Antidiabetics of Hubei Province, College of Life Science, Wuchang University of Technology, Wuhan 430223, China
| |
Collapse
|
7
|
Zhang Y, Jiang Q, Wang K, Fang Y, Zhang P, Wei L, Li D, Shu W, Xiao H. Dissecting lysosomal viscosity fluctuations in live cells and liver tissues with an ingenious NIR fluorescent probe. Talanta 2024; 272:125825. [PMID: 38417371 DOI: 10.1016/j.talanta.2024.125825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Viscosity is a pivotal component in the cell microenvironment, while lysosomal viscosity fluctuation is associated with various human diseases, such as tumors and liver diseases. Herein, a near-infrared fluorescent probe (BIMM) based on merocyanine dyes was designed and synthesized for detecting lysosomal viscosity in live cells and liver tissue. The increase in viscosity restricts the free rotation of single bonds, leading to enhanced fluorescence intensity. BIMM exhibits high sensitivity and good selectivity, and is applicable to a wide pH range. BIMM has near-infrared emission, and the fluorescent intensity shows an excellent linear relationship with viscosity. Furthermore, BIMM possessing excellent lysosomes-targeting ability, and can monitor viscosity changes in live cells stimulated by dexamethasone, lipopolysaccharide (LPS), and nigericin, and differentiate between cancer cells and normal cells. Noticeably, BIMM can accurately analyze viscosity changes in various liver disease models with HepG2 cells, and is successfully utilized to visualize variations in viscosity on APAP-induced liver injury. All the results demonstrated that BIMM is a powerful wash-free tool to monitor the viscosity fluctuations in living systems.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Yuqi Fang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Peng Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Liangchen Wei
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Dongpeng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China.
| |
Collapse
|
8
|
Ma L, Zan Q, Zhang B, Zhang W, Jia C, Fan L. A multi-functional fluorescent probe for visualization of H 2S and viscosity/polarity and its application in cancer imaging. Anal Bioanal Chem 2024; 416:1375-1387. [PMID: 38270633 DOI: 10.1007/s00216-024-05130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
As an important endogenous gasotransmitter, hydrogen sulfide (H2S) plays a critical role in various physiological functions and has been regarded as a biomarker of cancer due to its overexpression in cancer cells. In addition, the early stages of cancer are often accompanied by abnormalities in the intracellular microenvironments, and distinguishing between cancer cell/tissues and normal cell/tissues is of great significance to the accuracy of cancer diagnosis. However, deep insights into the simultaneous detection of H2S and viscosity/polarity variations in cancer cells/tissues are rarely reported. In this work, we designed and synthesized a mitochondria-targeting fluorescent probe PDQHS, which exhibits high selectivity for H2S with an emission peak around 632 nm and excellent response (17-fold) to viscosity/polarity beyond 706 nm. Meanwhile, PDQHS shows good biocompatibility and can specifically accumulate into mitochondria. Using PDQHS, the visual distinguishing of cancer cells from normal cells was achieved via dual-channel detection of H2S and viscosity/polarity. More importantly, PDQHS has been successfully applied to visualize endogenous and exogenous H2S in living cells and tumor tissue. Obviously, compared to the detection of a single biomarker, monitoring multiple biomarkers simultaneously through dual-channel response is conducive to amplifying the detection signal, providing a more sensitive and reliable imaging tool in the tumor region, which is beneficial for cancer prediction.
Collapse
Affiliation(s)
- Ling Ma
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, People's Republic of China.
| | - Qi Zan
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Baozhu Zhang
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, People's Republic of China
| | - Wenjia Zhang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Chunmiao Jia
- Pathology Department, Shanxi Coal Center Hospital, Taiyuan, 030006, People's Republic of China.
| | - Li Fan
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
9
|
Zhang T, Chi H, Guo J, Lu X, Li G. Construction of a Cu 2+-Responsive NIR Fluorescent Probe and the Preliminary Evaluation of its Multifunctional Application. J Fluoresc 2024:10.1007/s10895-024-03610-2. [PMID: 38386248 DOI: 10.1007/s10895-024-03610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Cu2+ was deemed as toxic and the most common heavy metal pollution in the water and food. Meanwhile, endogenous Cu2+ was deeply involved in plenty of physiological and pathological processes of human. Cu2+ imbalance was related to multiple diseases. Here we developed a Cu2+-responsive NIR probe HX, which not only demonstrated obvious color change when subjected to Cu2+, but also showed linear-dependent NIR fluorescence emission to Cu2+ concentration for Cu2+ detection and quantification both in vitro and in vivo. When HX was applied to imaging Cu2+ in the cell or living animals, intracellular Cu2+ fluctuation and Cu2+ accumulation in the liver could be visualized to indicate the copper level in the cell or organs with low background signals. Meanwhile, by applying HX to monitor Cu2+ uptake in the tumor, copper transporter function could be evaluated to screen the patient who are sensitivity to platinum drug.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Oral, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Huirong Chi
- Department of Oral, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Jingjie Guo
- Department of Oral, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Xinmiao Lu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, China.
| | - Guolin Li
- Department of Oral, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai, 200233, China.
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, P. R. China.
| |
Collapse
|