• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643668)   Today's Articles (348)   Subscriber (50596)
For: Suzuki K, Doi K. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Acad Radiol 2005;12:1333-41. [PMID: 16179210 DOI: 10.1016/j.acra.2005.06.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 06/16/2005] [Accepted: 06/16/2005] [Indexed: 11/27/2022]
Number Cited by Other Article(s)
1
Hasan Z, Key S, Habib AR, Wong E, Aweidah L, Kumar A, Sacks R, Singh N. Convolutional Neural Networks in ENT Radiology: Systematic Review of the Literature. Ann Otol Rhinol Laryngol 2023;132:417-430. [PMID: 35651308 DOI: 10.1177/00034894221095899] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
2
Homayoun H, Ebrahimpour-komleh H. Automated Segmentation of Abnormal Tissues in Medical Images. J Biomed Phys Eng 2021;11:415-424. [PMID: 34458189 PMCID: PMC8385212 DOI: 10.31661/jbpe.v0i0.958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/14/2018] [Indexed: 11/29/2022]
3
On the performance of lung nodule detection, segmentation and classification. Comput Med Imaging Graph 2021;89:101886. [PMID: 33706112 DOI: 10.1016/j.compmedimag.2021.101886] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 01/10/2023]
4
A Comparative Study of Modern Machine Learning Approaches for Focal Lesion Detection and Classification in Medical Images: BoVW, CNN and MTANN. INTELLIGENT SYSTEMS REFERENCE LIBRARY 2018. [DOI: 10.1007/978-3-319-68843-5_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
5
Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol 2017;10:257-273. [PMID: 28689314 DOI: 10.1007/s12194-017-0406-5] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
6
Khastavaneh H, Ebrahimpour-Komleh H. Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images. J Biomed Phys Eng 2017;7:155-162. [PMID: 28580337 PMCID: PMC5447252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/20/2015] [Indexed: 06/07/2023]
7
Le TN, Bao PT, Huynh HT. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network. BIOMED RESEARCH INTERNATIONAL 2016;2016:3219068. [PMID: 27597960 PMCID: PMC5002342 DOI: 10.1155/2016/3219068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 11/18/2022]
8
Pixel-based Machine Learning in Computer-Aided Diagnosis of Lung and Colon Cancer. INTELLIGENT SYSTEMS REFERENCE LIBRARY 2014. [DOI: 10.1007/978-3-642-40017-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
9
Suzuki K. Machine Learning in Computer-aided Diagnosis of the Thorax and Colon in CT: A Survey. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS 2013;E96-D:772-783. [PMID: 24174708 PMCID: PMC3810349 DOI: 10.1587/transinf.e96.d.772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
10
Computer-aided diagnosis systems for lung cancer: challenges and methodologies. Int J Biomed Imaging 2013;2013:942353. [PMID: 23431282 PMCID: PMC3570946 DOI: 10.1155/2013/942353] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/20/2012] [Indexed: 11/24/2022]  Open
11
Suzuki K. A review of computer-aided diagnosis in thoracic and colonic imaging. Quant Imaging Med Surg 2012;2:163-76. [PMID: 23256078 DOI: 10.3978/j.issn.2223-4292.2012.09.02] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/19/2012] [Indexed: 12/24/2022]
12
Tan M, Deklerck R, Jansen B, Bister M, Cornelis J. A novel computer-aided lung nodule detection system for CT images. Med Phys 2011;38:5630-45. [PMID: 21992380 DOI: 10.1118/1.3633941] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]  Open
13
Okumura E, Kawashita I, Ishida T. Computerized analysis of pneumoconiosis in digital chest radiography: effect of artificial neural network trained with power spectra. J Digit Imaging 2011;24:1126-32. [PMID: 21153856 PMCID: PMC3222544 DOI: 10.1007/s10278-010-9357-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]  Open
14
Suzuki K, Zhang J, Xu J. Massive-training artificial neural network coupled with Laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2010;29:1907-17. [PMID: 20570766 PMCID: PMC4283824 DOI: 10.1109/tmi.2010.2053213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
15
Suzuki K, Rockey DC, Dachman AH. CT colonography: advanced computer-aided detection scheme utilizing MTANNs for detection of "missed" polyps in a multicenter clinical trial. Med Phys 2010;37:12-21. [PMID: 20175461 DOI: 10.1118/1.3263615] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
16
Suzuki K. A supervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol 2009;54:S31-45. [PMID: 19687563 DOI: 10.1088/0031-9155/54/18/s03] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
17
Suzuki K, Yoshida H, Näppi J, Armato SG, Dachman AH. Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography. Med Phys 2008;35:694-703. [PMID: 18383691 DOI: 10.1118/1.2829870] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]  Open
18
Suzuki K, Yoshida H, Näppi J, Dachman AH. Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes. Med Phys 2006;33:3814-24. [PMID: 17089846 DOI: 10.1118/1.2349839] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]  Open
19
Suzuki K, Abe H, MacMahon H, Doi K. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE TRANSACTIONS ON MEDICAL IMAGING 2006;25:406-16. [PMID: 16608057 DOI: 10.1109/tmi.2006.871549] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA