1
|
Ding K, Liu M, Wei X, Huang R, Chen J, Lu S, Wang D, Lu W. Comparison of MR-PWI quantitative and semi-quantitative parameters for the evaluation of liver fibrosis. BMC Med Imaging 2021; 21:8. [PMID: 33407215 PMCID: PMC7789507 DOI: 10.1186/s12880-020-00539-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background To evaluate different stages of liver fibrosis in cynomolgus monkeys by comparing magnetic resonance-perfusion weighted imaging (MR-PWI) quantitative and semi-quantitative parameters, and confirm the best detection indicators for diagnosis of liver fibrosis. Methods A liver fibrosis model of different stages (S0–S4) was established in cynomolgus monkeys. The changes in MR-PWI quantitative and semi-quantitative parameters with the progression of liver fibrosis were investigated. Results MR-PWI quantitative parameters gradually decreased with the progression of liver fibrosis. Hepatic arterial perfusion index (HPI) was found to increase with the progression of liver fibrosis and significant differences of HPI between each group were observed. There was a highly positive correlation between HPI and the stages of liver fibrosis. Receiver operating characteristic (ROC) curve analysis showed that HPI had the highest efficacy of the MR-PWI quantitative parameters for the diagnosis of liver fibrosis. The MR-PW semi-quantitative parameters gradually reduced with the progression of liver fibrosis, and the differences were statistically significant between stages S3–S4 and S0–S2. Time to peak (TPP) gradually extended and showed a positive correlation with the stages of liver fibrosis. TTP had the highest efficacy of the semi-quantitative parameters for diagnosis of liver fibrosis. Conclusions Both the MR-PWI quantitative and semi-quantitative parameters of the liver fibrosis model in cynomolgus monkeys varied at different stages of liver fibrosis, and HPI and TTP were the best detection indices for quantitative and semi-quantitative evaluation of liver fibrosis, respectively.
Collapse
Affiliation(s)
- Ke Ding
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China.
| | - Manrong Liu
- Department of Ultrasound, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, China
| | - Xue Wei
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China
| | - Ruisui Huang
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China
| | - Jiong Chen
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China
| | - Shanjin Lu
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China
| | - Dacheng Wang
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China
| | - Wei Lu
- Department of Pathology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, China
| |
Collapse
|
2
|
van de Weijer T, Schrauwen-Hinderling VB. Application of Magnetic Resonance Spectroscopy in metabolic research. Biochim Biophys Acta Mol Basis Dis 2019; 1865:741-748. [DOI: 10.1016/j.bbadis.2018.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023]
|
3
|
Lee O, Lee SJ, Yu SM. Determination of an Optimized Weighting Factor of Liver Parenchyma for Six-point Interference Dixon Fat Percentage Imaging Accuracy in Nonalcoholic Fatty Liver Disease Rat Model. Acad Radiol 2018; 25:1595-1602. [PMID: 29803754 DOI: 10.1016/j.acra.2018.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 01/14/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to determine the optimal weighting factor (WF) for precise quantification using six-point interference Dixon fat percentage imaging by analyzing changes in WFs of fatty acid metabolites (FMs) in high-fat-induced fatty liver disease rat model. MATERIALS AND METHODS Individual FM-related WFs were calculated based on concentration ratios of integrated areas of seven peak FMs with four phantom series. Ten 8-week-old male Sprague-Dawley rats were used for baseline quantification of fat in liver magnetic resonance imaging or magnetic resonance spectroscopy data. These seven lipid metabolites were then quantitatively analyzed. Spearman test was used for correlation analysis of different lipid proton concentrations. The most accurate WF for six-point interference Dixon fat percentage imaging was then determined. RESULTS The seven lipid resonance WF values obtained from magnetic resonance spectroscopy data for three different oils (oleic, linoleic, and soybean) were different from each other. In lipid phantoms, except for the phantom containing oleic acid, changes in FP values were significantly different when WFs were changed in six-point interference Dixon fat percentage image. The seven lipid resonance WF values for the nonalcoholic fatty liver animal model were different from human subcutaneous adipose tissue lipid WF values. CONCLUSIONS WF affected the calculation of six-point interference Dixon-based fat percentage imaging value in phantom experiment. If WF of liver parenchyma FM which is specific to each liver disease is applied, the accuracy of six-point interference Dixon fat percentage imaging can be further increased.
Collapse
Affiliation(s)
- Onseok Lee
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, Asan City, Chungnam, Republic of Korea
| | - Suk-Jun Lee
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju City 28503, Republic of Korea.
| | - Seung-Man Yu
- Department of Radiological Science, College of Health Science, Gimcheon University, Gimcheon City 39528, Republic of Korea.
| |
Collapse
|
4
|
Improved quantitative fatty acid values with correction of T2 relaxation time in terminal methyl group: In vivo proton magnetic resonance spectroscopy at ultra high field in hepatic steatosis. Chem Phys Lipids 2018; 212:35-43. [PMID: 29337015 DOI: 10.1016/j.chemphyslip.2018.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/30/2022]
Abstract
Proton magnetic resonance spectroscopy (MRS) with optimized relaxation time is an effective method to quantify hepatic fatty acid values and characterize steatosis. The aim of this study is to quantify the difference in hepatic lipid content with metabolic changes during the progression of steatosis by using localized MRS sequence with T2 relaxation time determination. Fatty liver disease was induced in C57BL/6N mice through a high-fat diet (HFD) of pellets containing 60% fat, 20% protein, and 20% carbohydrates. We used stimulated echo acquisition mode (repetition time: 3500 ms; mixing time: 10 ms; echo time: 20 ms) sequence. Using enhanced and mono exponential curve-fitting methods, the lipid relaxation time in mice was estimated at a fixed repetition time of 5000 ms and echo time ranging from 20 to 70 ms. The calculated lipid contents with incorrect and correct relaxation times were as follows: total saturated fatty acid (4.00 ± 2.90 vs 6.74 ± 2.25, p < 0.05 at week 0; 15.23 ± 9.94 vs 25.53 ± 10.49, p < 0.05 at week 4); total unsaturated fatty acid (0.40 ± 0.49 vs 0.56 ± 0.47, p < 0.05 at week 4; 0.33 ± 0.26 vs 0.60 ± 0.21, p < 0.01 at week 7); total unsaturated bond (0.48 ± 0.52 vs 1.05 ± 0.58, p < 0.05 at week 10). Furthermore, we determined that the correct relaxation times of triglycerides between 0 and 10 weeks were significantly altered in the resonances (∼2.03 ppm: 31.07 ± 1.00 vs 27.62 ± 1.20, p < 0.01; ∼2.25 ppm: 29.10 ± 1.52 vs 26.39 ± 1.08, p < 0.05; ∼2.78 ppm: 37.67 ± 2.92 vs 29.37 ± 2.64, p < 0.001). The work presented focused on the significance of the J-coupling effect. The selection of an appropriate relaxation time considering the J-coupling effect provides an effective method for quantifying lipid contents and characterizing hepatic steatosis.
Collapse
|
5
|
Pershina AG, Ivanov VV, Efimova LV, Shevelev OB, Vtorushin SV, Perevozchikova TV, Sazonov AE, Ogorodova LM. Magnetic resonance imaging and spectroscopy for differential assessment of liver abnormalities induced by Opisthorchis felineus in an animal model. PLoS Negl Trop Dis 2017; 11:e0005778. [PMID: 28708894 PMCID: PMC5529022 DOI: 10.1371/journal.pntd.0005778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/26/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND European liver fluke Opisthorchis felineus, causing opisthorchiasis disease, is widespread in Russia, Ukraine, Kazakhstan and sporadically detected in the EU countries. O. felineus infection leads to hepatobiliary pathological changes, cholangitis, fibrosis and, in severe cases, malignant transformation of bile ducts. Due to absence of specific symptoms, the infection is frequently neglected for a long period. The association of opisthorchiasis with almost incurable bile duct cancer and rising international migration of people that increases the risk of the parasitic etiology of liver fibrosis in non-endemic regions determine high demand for development of approaches to opisthorchiasis detection. METHODOLOGY/PRINCIPAL FINDINGS In vivo magnetic resonance imaging and spectroscopy (MRI and MRS) were applied for differential assessment of hepatic abnormalities induced by O. felineus in an experimental animal model. Correlations of the MR-findings with the histological data as well as the data of the biochemical analysis of liver tissue were found. MRI provides valuable information about the severity of liver impairments induced by opisthorchiasis. An MR image of O. felineus infected liver has a characteristic pattern that differs from that of closely related liver fluke infections. 1H and 31P MRS in combination with biochemical analysis data showed that O. felineus infection disturbed hepatic metabolism of the host, which was accompanied by cholesterol accumulation in the liver. CONCLUSIONS A non-invasive approach based on the magnetic resonance technique is very advantageous and may be successfully used not only for diagnosing and evaluating liver damage induced by O. felineus, but also for investigating metabolic changes arising in the infected organ. Since damages induced by the liver fluke take place in different liver lobes, MRI has the potential to overcome liver biopsy sampling variability that limits predictive validity of biopsy analysis for staging liver fluke-induced fibrosis.
Collapse
Affiliation(s)
- Alexandra G. Pershina
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
- Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, Tomsk, Russia
- * E-mail:
| | - Vladimir V. Ivanov
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Lina V. Efimova
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Oleg B. Shevelev
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Sergey V. Vtorushin
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | | | - Alexey E. Sazonov
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | | |
Collapse
|
6
|
Coum A, Noury F, Bannier E, Begriche K, Fromenty B, Gandon Y, Saint-Jalmes H, Gambarota G. The effect of water suppression on the hepatic lipid quantification, as assessed by the LCModel, in a preclinical and clinical scenario. MAGMA (NEW YORK, N.Y.) 2015; 29:29-37. [PMID: 26590825 DOI: 10.1007/s10334-015-0508-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate the effect of water suppression on the hepatic lipid quantification, using the LCModel. MATERIALS AND METHODS MR spectra with and without water suppression were acquired in the liver of mice at 4.7 T and patients at 3 T, and processed with the LCModel. The Cramér-Rao Lower Bound (CRLB) values of the seven lipid resonances were determined to assess the impact of water suppression on hepatic lipid quantification. A paired t test was used for comparison between the CRLBs obtained with and without water suppression. RESULTS For the preclinical data, in the high (low) fat fraction subset an overall impairment in hepatic lipid quantification, i.e. an increase of CRLBs (no significant change of CRLBs) was observed in spectra acquired with water suppression. For the clinical data, there were no substantial changes in the CRLB with water suppression. Because (1) the water suppression does not overall improve the quantification of the lipid resonances and (2) the MR spectrum without water suppression is always acquired for fat fraction calculation, the optimal data-acquisition strategy for liver MRS is to acquire only the MR spectrum without water suppression. CONCLUSION For quantification of hepatic lipid resonances, it is advantageous to perform MR spectroscopy without water suppression in a clinical and preclinical scenario (at moderate fields).
Collapse
Affiliation(s)
- Amandine Coum
- LTSI, Laboratoire du Traitement du Signal et de l'Image, Université de Rennes 1, 35043, Rennes Cedex, France. .,INSERM, UMR 1099, Université de Rennes 1, 35000, Rennes, France.
| | - Fanny Noury
- LTSI, Laboratoire du Traitement du Signal et de l'Image, Université de Rennes 1, 35043, Rennes Cedex, France.,INSERM, UMR 1099, Université de Rennes 1, 35000, Rennes, France
| | - Elise Bannier
- Département de Radiologie, CHU de Rennes, 35000, Rennes, France
| | | | | | - Yves Gandon
- Département de Radiologie, CHU de Rennes, 35000, Rennes, France
| | - Hervé Saint-Jalmes
- LTSI, Laboratoire du Traitement du Signal et de l'Image, Université de Rennes 1, 35043, Rennes Cedex, France.,INSERM, UMR 1099, Université de Rennes 1, 35000, Rennes, France.,CRLCC, Centre Eugène Marquis, 35000, Rennes, France
| | - Giulio Gambarota
- LTSI, Laboratoire du Traitement du Signal et de l'Image, Université de Rennes 1, 35043, Rennes Cedex, France.,INSERM, UMR 1099, Université de Rennes 1, 35000, Rennes, France
| |
Collapse
|
7
|
Yu SM, Ki SH, Baek HM. Nonalcoholic Fatty Liver Disease: Correlation of the Liver Parenchyma Fatty Acid with Intravoxel Incoherent Motion MR Imaging-An Experimental Study in a Rat Model. PLoS One 2015; 10:e0139874. [PMID: 26460614 PMCID: PMC4603664 DOI: 10.1371/journal.pone.0139874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Purpose To prospectively evaluate the changes in fatty acid concentration after administrating a 60% high-fat diet to a non-alcoholic fatty liver disease rat model and to perform a correlation analysis between fatty acid with molecular diffusion (Dtrue), perfusion-related diffusion (Dfast), and perfusion fraction (Pfraction). Material and Methods This prospective study was approved by the appropriate ethics committee. Ten male Sprague-Dawley rats were fed a 60% high-fat diet until the study was finished. Point-resolved spectroscopy sequence 1H-MRS with TR = 1,500 msec, TE = 35 msec, NEX = 64, and 8×8×8 mm3 voxel was used to acquire magnetic resonance spectroscopy (MRS) data. Diffusion-weighted imaging was performed on a two-dimensional multi-b value spin echo planar image with the following parameters: repetition time msec/echo time msec, 4500 /63; field of view, 120×120 msec2; matrix, 128×128; section thickness, 3 mm; number of repetition, 8; and multiple b value, 0, 25, 50, 75, 100, 200, 500, 1000 sec/mm2. Baseline magnetic resonance imaging and magnetic resonance spectroscopy data (control) were acquired. 1H proton MRS and diffusion-weighted imaging were obtained every 2 weeks for 8 weeks. The individual contributions of the true molecular diffusion and the incoherent motions of water molecules in the capillary network to the apparent diffusion changes were estimated using a least-square nonlinear fitting in MatLab. A Wilcoxon signed-rank test with the Kruskal-Wallis test was used to compare each week’s fatty acid mean quantification. Spearman’s correlation coefficient was used to evaluate the correlation between each fatty acid (e.g., total lipid (TL), total saturated fatty acid (TSFA), total unsaturated fatty acid (TUSFA), total unsaturated bond (TUSB), and polyunsaturated bond (PUSB)) and intravoxel incoherent motion (IVIM) mapping images (e.g., Dtrue, Dfast, and Pfraction). Results The highest mean TL value was at week 8 (0.278 ± 0.10) after the administration of the 60% high-fat diet, followed by weeks 6, 4, 2, and 0. The concentration level (16.99±2.29) of TSFA at week 4 was the highest. No significant differences in the concentrations of TUSFA, TUSB, or PUSB were observed in different weeks. Conclusion After the administration of the 60% high-fat diet in nonalcoholic fatty liver disease model, TL and TSFA depositions had significant changes. The mean concentrations of TUSFA, TUSB, PUSB did not significantly change. Total unsaturated fatty acid and polyunsaturated bond showed positive correlations with Dtrue and Pfraction.
Collapse
Affiliation(s)
- Seung-Man Yu
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiological Science, Gimcheon University, Gimcheon, Gyeongsangbuk-do, Korea
| | - Sung Hwan Ki
- Department of Toxicology, College of pharmacy, Chosun University, Gwangju, Korea
| | - Hyeon-Man Baek
- Korea Basic Science Institute, Yeongudanji-Ro, Ochang-eup, Cheongwon-gun, Chungbuk, Korea
| |
Collapse
|
8
|
Song KH, Baek HM, Lee DW, Choe BY. In vivo proton magnetic resonance spectroscopy of liver metabolites in non-alcoholic fatty liver disease in rats: T2 relaxation times in methylene protons. Chem Phys Lipids 2015. [DOI: 10.1016/j.chemphyslip.2015.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Wang D, Li Y. 1H Magnetic Resonance Spectroscopy Predicts Hepatocellular Carcinoma in a Subset of Patients With Liver Cirrhosis: A Randomized Trial. Medicine (Baltimore) 2015; 94:e1066. [PMID: 26166077 PMCID: PMC4504652 DOI: 10.1097/md.0000000000001066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The goal of this study was to investigate the utility of H magnetic resonance spectroscopy (H-MRS) to quantify the differences in liver metabolites. Magnetic resonance spectroscopy was used as a means of predicting the probability of developing hepatocellular carcinoma (HCC) in patients with liver cirrhosis secondary to chronic hepatitis B.This study included 20 healthy volunteers, 20 patients with liver cirrhosis secondary to chronic hepatitis B (cirrhosis group), and 20 patients with small HCC secondary to cirrhosis liver parenchyma (HCC group). All patients underwent routine MRI and H-MRS scanning. LCModel software was used to quantify Cho (Choline), Lip (lipid), and Cho/Lip in the 3 groups, and a one-way ANOVA was used to compare the differences in these metabolites between groups.Choline levels were significantly different between the control and HCC group and between the cirrhosis group and the HCC group (all P < 0.001). There was also a significant difference in Lip levels between the control and cirrhosis group and the control and HCC groups (all P < 0.001). There were also differences in Cho/Lip between the control and cirrhosis groups, the control and HCC groups, and the cirrhosis and HCC groups (all P < 0.001).H-MRS followed by the analysis with LCModel can be used to measure changes in hepatic metabolite levels in patients with liver cirrhosis secondary to chronic hepatitis B and HCC. Thus, H-MRS may be helpful in monitoring HCC and liver cirrhosis development.
Collapse
Affiliation(s)
- Dan Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | |
Collapse
|
10
|
Zhou IY, Gao DS, Chow AM, Fan S, Cheung MM, Ling C, Liu X, Cao P, Guo H, Man K, Wu EX. Effect of diffusion time on liver DWI: An experimental study of normal and fibrotic livers. Magn Reson Med 2013; 72:1389-96. [DOI: 10.1002/mrm.25035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Iris Y. Zhou
- Laboratory of Biomedical Imaging and Signal Processing; The University of Hong Kong; Pokfulam Hong Kong SAR China
- Department of Electrical and Electronic Engineering; The University of Hong Kong; Pokfulam Hong Kong SAR China
| | - Darwin S. Gao
- Laboratory of Biomedical Imaging and Signal Processing; The University of Hong Kong; Pokfulam Hong Kong SAR China
- Department of Electrical and Electronic Engineering; The University of Hong Kong; Pokfulam Hong Kong SAR China
| | - April M. Chow
- Laboratory of Biomedical Imaging and Signal Processing; The University of Hong Kong; Pokfulam Hong Kong SAR China
- Department of Electrical and Electronic Engineering; The University of Hong Kong; Pokfulam Hong Kong SAR China
| | - Shujuan Fan
- Laboratory of Biomedical Imaging and Signal Processing; The University of Hong Kong; Pokfulam Hong Kong SAR China
- Department of Electrical and Electronic Engineering; The University of Hong Kong; Pokfulam Hong Kong SAR China
| | - Matthew M. Cheung
- Laboratory of Biomedical Imaging and Signal Processing; The University of Hong Kong; Pokfulam Hong Kong SAR China
- Department of Electrical and Electronic Engineering; The University of Hong Kong; Pokfulam Hong Kong SAR China
| | - Changchun Ling
- Department of Surgery; The University of Hong Kong; Pokfulam Hong Kong SAR China
| | - Xiaobing Liu
- Department of Surgery; The University of Hong Kong; Pokfulam Hong Kong SAR China
| | - Peng Cao
- Laboratory of Biomedical Imaging and Signal Processing; The University of Hong Kong; Pokfulam Hong Kong SAR China
- Department of Electrical and Electronic Engineering; The University of Hong Kong; Pokfulam Hong Kong SAR China
| | - Hua Guo
- Center for Biomedical Imaging Research; Department of Biomedical Engineering; School of Medicine; Tsinghua University; Beijing China
| | - Kwan Man
- Department of Surgery; The University of Hong Kong; Pokfulam Hong Kong SAR China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing; The University of Hong Kong; Pokfulam Hong Kong SAR China
- Department of Electrical and Electronic Engineering; The University of Hong Kong; Pokfulam Hong Kong SAR China
| |
Collapse
|
11
|
Molecular MRI of liver fibrosis by a peptide-targeted contrast agent in an experimental mouse model. Invest Radiol 2013. [PMID: 23192162 DOI: 10.1097/rli.0b013e3182749c0b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Cyclic decapeptide CGLIIQKNEC (CLT1) has been demonstrated to target fibronectin-fibrin complexes in the extracellular matrix of different tumors and tissue lesions. Although liver fibrosis is characterized by an increased amount of extracellular matrix consisting of fibril-forming collagens and matrix glycoconjugates such as fibronectin, we aimed to investigate the feasibility of detecting and characterizing liver fibrosis using CLT1 peptide-targeted nanoglobular contrast agent (Gd-P) with dynamic contrast-enhanced magnetic resonance imaging in an experimental mouse model of liver fibrosis at 7 T. MATERIALS AND METHODS Gd-P, control peptide KAREC conjugated nanoglobular contrast agent (Gd-CP), and control nontargeting nanoglobular contrast agent (Gd-C) were synthesized. Male adult C57BL/6N mice (22-25 g; N = 54) were prepared and were divided into fibrosis (n = 36) and normal (n = 18) groups. Liver fibrosis was induced in the fibrosis group through subcutaneous injection of 1:3 mixture of carbon tetrachloride (CCl(4)) in olive oil at a dose of 4 μL/g of body weight twice a week for 8 weeks. Dynamic contrast-enhanced MRI was performed in all animals. Dynamic contrast-enhanced magnetic resonance imaging was analyzed to yield postinjection ΔR(1)(t) maps for quantitative measurements. Histological analysis was also performed. RESULTS Differential enhancements were observed and characterized between the normal and fibrotic livers using Gd-P at 0.03 mmol/kg, when compared with nontargeted controls (Gd-CP and Gd-C). For Gd-P injection, both the peak and steady-state ΔR(1) of the normal livers were significantly lower than those after 4 and 8 weeks of CCl(4) dosing. Liver fibrogenesis with increased amount of fibronectin in the extracellular space in insulted livers were confirmed by histological observations. CONCLUSIONS These results indicated that dynamic contrast-enhanced magnetic resonance imaging with CLT1 peptide-targeted nanoglobular contrast agent can detect and stage liver fibrosis by probing the accumulation of fibronectin in fibrotic livers.
Collapse
|
12
|
Ramamonjisoa N, Ratiney H, Mutel E, Guillou H, Mithieux G, Pilleul F, Rajas F, Beuf O, Cavassila S. In vivo hepatic lipid quantification using MRS at 7 Tesla in a mouse model of glycogen storage disease type 1a. J Lipid Res 2013; 54:2010-22. [PMID: 23596325 DOI: 10.1194/jlr.d033399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The assessment of liver lipid content and composition is needed in preclinical research to investigate steatosis and steatosis-related disorders. The purpose of this study was to quantify in vivo hepatic fatty acid content and composition using a method based on short echo time proton magnetic resonance spectroscopy (MRS) at 7 Tesla. A mouse model of glycogen storage disease type 1a with inducible liver-specific deletion of the glucose-6-phosphatase gene (L-G6pc(-/-)) mice and control mice were fed a standard diet or a high-fat/high-sucrose (HF/HS) diet for 9 months. In control mice, hepatic lipid content was found significantly higher with the HF/HS diet than with the standard diet. As expected, hepatic lipid content was already elevated in L-G6pc(-/-) mice fed a standard diet compared with control mice. L-G6pc(-/-) mice rapidly developed steatosis which was not modified by the HF/HS diet. On the standard diet, estimated amplitudes from olefinic protons were found significantly higher in L-G6pc(-/-) mice compared with that in control mice. L-G6pc(-/-) mice showed no noticeable polyunsaturation from diallylic protons. Total unsaturated fatty acid indexes measured by gas chromatography were in agreement with MRS measurements. These results showed the great potential of high magnetic field MRS to follow the diet impact and lipid alterations in mouse liver.
Collapse
Affiliation(s)
- Nirilanto Ramamonjisoa
- Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee Y, Jee HJ, Noh H, Kang GH, Park J, Cho J, Cho JH, Ahn S, Lee C, Kim OH, Oh BC, Kim H. In vivo (1)H-MRS hepatic lipid profiling in nonalcoholic fatty liver disease: an animal study at 9.4 T. Magn Reson Med 2012; 70:620-9. [PMID: 23023916 DOI: 10.1002/mrm.24510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/15/2022]
Abstract
The applicability of the in vivo proton magnetic resonance spectroscopy hepatic lipid profiling (MR-HLP) technique in nonalcoholic fatty liver disease was investigated. Using magnetic resonance spectroscopy, the relative fractions of diunsaturated (fdi), monounsaturated (fmono), and saturated (fsat) fatty acids as well as total hepatic lipid content were estimated in the livers of 8 control and 23 CCl4-treated rats at 9.4 T. The mean steatosis, necrosis, inflammation, and fibrosis scores of the treated group were all significantly higher than those of the control group (P < 0.01). There was a strong correlation between the histopathologic parameters and the MR-HLP parameters (r = 0.775, P < 0.01) where both steatosis and fibrosis are positively correlated with fmono and negatively correlated with fdi. Both necrosis and inflammation, however, were not correlated with any of the MR-HLP parameters. Hepatic lipid composition appears to be changed in association with the severity of steatosis and fibrosis in nonalcoholic fatty liver disease, and these changes can be depicted in vivo by using the MR-HLP method at 9.4 T. Thus, while it may not likely be that MR-HLP helps differentiate between steatohepatitis in its early stages and simple steatosis, these findings altogether are in support of potential applicability of in vivo MR-HLP at high field in nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yunjung Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chow AM, Gao DS, Fan SJ, Qiao Z, Lee FY, Yang J, Man K, Wu EX. Liver fibrosis: An intravoxel incoherent motion (IVIM) study. J Magn Reson Imaging 2012; 36:159-67. [DOI: 10.1002/jmri.23607] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 01/10/2012] [Indexed: 12/16/2022] Open
|
15
|
Chow AM, Gao DS, Fan SJ, Qiao Z, Lee FY, Yang J, Man K, Wu EX. Measurement of liver T1 and T2 relaxation times in an experimental mouse model of liver fibrosis. J Magn Reson Imaging 2012; 36:152-8. [DOI: 10.1002/jmri.23606] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 01/10/2012] [Indexed: 12/14/2022] Open
|