1
|
Wayer DR, Nigogosyan Z, Xie V, Mian AY, Holder DL, Kim TA, Vo KD, Chatterjee AR, Goyal MS. Finding MeVO: Identifying Intracranial Medium-Vessel Occlusions at CT Angiography. Radiographics 2024; 44:e240010. [PMID: 39365727 DOI: 10.1148/rg.240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The development of methods to detect and treat intracranial large-vessel occlusions (LVOs) has revolutionized the management of acute ischemic stroke. CT angiography (CTA) of the head and neck is effective in depicting LVOs and widely used in the evaluation of patients who have had a stroke. Ongoing efforts are now focused on the potential to detect and treat intracranial medium-vessel occlusions (MeVOs), which by definition are smaller than LVOs and thus more difficult to detect with CTA. The authors review common and variant anatomies of medium-sized cerebral arteries and the appearance of a variety of MeVOs on CT angiograms. Possible pitfalls in MeVO detection include rare anatomic variants, calcified thrombi, and stump occlusions. Current recommendations for performing CTA and ancillary methods that might aid in MeVO detection are discussed. Understanding the relevant anatomy and the variety of appearances of MeVOs aids radiologists in identifying these occlusions, particularly in the setting of urgent stroke. ©RSNA, 2024 See the invited commentary by Ospel and Nguyen in this issue.
Collapse
Affiliation(s)
- Daniel R Wayer
- From the Mallinckrodt Institute of Radiology (D.R.W., Z.N., V.X., A.Y.M., T.A.K., K.D.V., A.R.C., M.S.G.) and Department of Neurology (D.L.H., M.S.G.), Washington University School of Medicine, 510 S. Kingshighway Blvd, Box 8131-50-5, St. Louis, MO 63110
| | - Zack Nigogosyan
- From the Mallinckrodt Institute of Radiology (D.R.W., Z.N., V.X., A.Y.M., T.A.K., K.D.V., A.R.C., M.S.G.) and Department of Neurology (D.L.H., M.S.G.), Washington University School of Medicine, 510 S. Kingshighway Blvd, Box 8131-50-5, St. Louis, MO 63110
| | - Victoria Xie
- From the Mallinckrodt Institute of Radiology (D.R.W., Z.N., V.X., A.Y.M., T.A.K., K.D.V., A.R.C., M.S.G.) and Department of Neurology (D.L.H., M.S.G.), Washington University School of Medicine, 510 S. Kingshighway Blvd, Box 8131-50-5, St. Louis, MO 63110
| | - Ali Y Mian
- From the Mallinckrodt Institute of Radiology (D.R.W., Z.N., V.X., A.Y.M., T.A.K., K.D.V., A.R.C., M.S.G.) and Department of Neurology (D.L.H., M.S.G.), Washington University School of Medicine, 510 S. Kingshighway Blvd, Box 8131-50-5, St. Louis, MO 63110
| | - Derek L Holder
- From the Mallinckrodt Institute of Radiology (D.R.W., Z.N., V.X., A.Y.M., T.A.K., K.D.V., A.R.C., M.S.G.) and Department of Neurology (D.L.H., M.S.G.), Washington University School of Medicine, 510 S. Kingshighway Blvd, Box 8131-50-5, St. Louis, MO 63110
| | - Thomas A Kim
- From the Mallinckrodt Institute of Radiology (D.R.W., Z.N., V.X., A.Y.M., T.A.K., K.D.V., A.R.C., M.S.G.) and Department of Neurology (D.L.H., M.S.G.), Washington University School of Medicine, 510 S. Kingshighway Blvd, Box 8131-50-5, St. Louis, MO 63110
| | - Katie D Vo
- From the Mallinckrodt Institute of Radiology (D.R.W., Z.N., V.X., A.Y.M., T.A.K., K.D.V., A.R.C., M.S.G.) and Department of Neurology (D.L.H., M.S.G.), Washington University School of Medicine, 510 S. Kingshighway Blvd, Box 8131-50-5, St. Louis, MO 63110
| | - Arindam Rano Chatterjee
- From the Mallinckrodt Institute of Radiology (D.R.W., Z.N., V.X., A.Y.M., T.A.K., K.D.V., A.R.C., M.S.G.) and Department of Neurology (D.L.H., M.S.G.), Washington University School of Medicine, 510 S. Kingshighway Blvd, Box 8131-50-5, St. Louis, MO 63110
| | - Manu S Goyal
- From the Mallinckrodt Institute of Radiology (D.R.W., Z.N., V.X., A.Y.M., T.A.K., K.D.V., A.R.C., M.S.G.) and Department of Neurology (D.L.H., M.S.G.), Washington University School of Medicine, 510 S. Kingshighway Blvd, Box 8131-50-5, St. Louis, MO 63110
| |
Collapse
|
2
|
Rippel K, Luitjens J, Habeeballah O, Scheurig-Muenkler C, Bette S, Braun F, Kroencke TJ, Schwarz F, Decker JA. Evaluation of ECG-Gated, High-Pitch Thoracoabdominal Angiographies With Dual-Source Photon-Counting Detector Computed Tomography. J Endovasc Ther 2024:15266028241230943. [PMID: 38380529 DOI: 10.1177/15266028241230943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
PURPOSE The aim of this study was to evaluate the radiation dose, image quality, and the potential of virtual monoenergetic imaging (VMI) reconstructions of high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta on a dual-source photon-counting detector-CT (PCD-CT) in comparison with an energy-integrating detector-CT (EID-CT), with a special focus on low-contrast attenuation. METHODS Consecutive patients being referred for an electrocardiogram (ECG)-gated, high-pitch CTA of the thoracoabdominal aorta prior to transcatheter aortic valve replacement (TAVR), and examined on the PCD-CT, were included in this prospective single-center study. For comparison, a retrospective patient group with ECG-gated, high-pitch CTA examinations of the thoracoabdominal aorta on EID-CT with a comparable scan protocol was matched for gender, body mass index, height, and age. Virtual monoenergetic imaging reconstructions from 40 to 120 keV were performed. Enhancement and noise were measured in 7 vascular segments and the surrounding air as mean and standard deviation of CT values. The radiation dose was noted and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Finally, a subgroup analysis was performed, comparing VMI reconstructions from 40 keV to 70 keV in patients with at least a 50% decrease in contrast attenuation between the ascending aorta and femoral arteries. RESULTS Fifty patients (mean age 77.0±14.5 years; 31 women) were included. The radiation dose was significantly lower on the PCD-CT (4.2±1.4 vs. 7.2±2.2 mGy; p<0.001). With increasing keV, vascular noise, SNR, and CNR decreased. Intravascular attenuation was significantly higher on VMI at levels from 40 to 65, compared with levels of 120 keV (p<0.01 and p<0.005, respectively). On the PCD-CT, SNR was significantly higher in keV levels 40 and 70 (all p<0.001), and CNR was higher at keV levels 40 and 45 (each p<0.001), compared with scans on the EID-CT. At VMI ≤60 keV, image noise was also significantly higher than that in the control group. The subgroup analysis showed a drastically improved diagnostic performance of the low-keV images in patients with low-contrast attenuation. CONCLUSION The ECG-gated CTA of the thoracoabdominal aorta in high-pitch mode on PCD-CT have significantly lower radiation dose and higher objective image quality than EID-CT. In addition, low-keV VMI can salvage suboptimal contrast studies, further reducing radiation dose by eliminating the need for repeat scans. CLINICAL IMPACT ECG-gated CT-angiographies of the thoracoabdominal aorta can be acquired with a lower radtiation dose and a better image quality by using a dual-source photon-countinge detector CT. Furthermore, the inherent spectral data offers the possiblity to improve undiagnostic images and thus saves the patient from further radiation and contrast application.
Collapse
Affiliation(s)
- K Rippel
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - J Luitjens
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - O Habeeballah
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - C Scheurig-Muenkler
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Stefanie Bette
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Franziska Braun
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - T J Kroencke
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, Augsburg, Germany
| | - F Schwarz
- DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
| | - J A Decker
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| |
Collapse
|
3
|
Shim J, Kim K, Lee Y. Effect of iodine concentration reduction by comparison of virtual monoenergetic image quality with dual-energy computed tomography. Appl Radiat Isot 2023; 200:110967. [PMID: 37527620 DOI: 10.1016/j.apradiso.2023.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
This study aimed to evaluate the image quality of virtual monoenergetic images (VMIs) with tube voltage modulation in pediatric abdominal computed tomography (CT) examination and to determine the effect of decreasing contrast agent concentration. Using a 1-year old pediatric phantom, five contrast agent concentration diluent tubes of 100%, 80%, 60%, 40%, and 20% of the same concentration as the average Hounsfield unit (HU) in the descending aorta were inserted, and the mixed image and VMIs (40, 60, and 80 keV) acquired using dual-energy CT were compared with single-energy CT (SECT) images. For quantitative evaluation, the HU and coefficient of variation (COV) of each image were compared and analyzed. The analysis revealed that the HU of the 40 keV VMIs, acquired with a tube voltage of 70 kV and 100% contrast agent concentration, was 61% higher than that of the SECT image. The results showed that SECT had the lowest COV among all contrast agent concentration and tube voltage combinations, while the 40 keV image acquired at 70 kV had the second-lowest COV value. The HU of the 40 keV image acquired at 70 kV at a contrast agent concentration of 100% was 9% higher than that of SECT at 80% concentration. This study confirms that 40 keV VMIs are more useful than SECT images for vascular diagnosis with contrast in pediatric abdominal CT examinations and that a 20% reduction in contrast agent concentration can reduce the risk of contrast agent concentration-induced nephrotoxicity in pediatric patients by increasing the subjective acceptability of image quality for diagnosis.
Collapse
Affiliation(s)
- Jina Shim
- Department of Diagnostic Radiology, Severance Hospital, Seoul, Republic of Korea
| | - Kyuseok Kim
- Department of Radiological Science, Gachon University, Incheon, Republic of Korea.
| | - Youngjin Lee
- Department of Radiological Science, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
4
|
Kawashima H, Ichikawa K, Ueta H, Takata T, Mitsui W, Nagata H. Virtual monochromatic images of dual-energy CT as an alternative to single-energy CT: performance comparison using a detectability index for different acquisition techniques. Eur Radiol 2023; 33:5752-5760. [PMID: 36892640 DOI: 10.1007/s00330-023-09491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVES To investigate the performance of virtual monochromatic (VM) images with the same dose and iodine contrast as those for single-energy (SE) images using five dual-energy (DE) scanners with DE techniques: two generations of fast kV switching (FKS), two generations of dual source (DS), and one split filter (SF). METHODS A water-bath phantom with a diameter of 300 mm, which contains one rod-shaped phantom made of a material equivalent to soft-tissue and two rod-shaped phantoms made of diluted iodine (2 and 12 mg/mL), was scanned using both SE (120, 100, and 80 kV) and DE techniques with the same CT dose index in each scanner. The VM energy at which the CT number of the iodine rod is closest to that of each SE tube voltage was determined as the equivalent energy (Eeq). A detectability index (d') was calculated from the noise power spectrum, the task transfer functions, and a task function corresponding to each rod. The percentage of the d' value of the VM image to that of the corresponding SE image was calculated for performance comparison. RESULTS The average percentages of d' of FKS1, FKS2, DS1, DS2, and SF were 84.6%, 96.2%, 94.3%, 107%, and 104% for 120 kV-Eeq; 75.9%, 91.2%, 88.2%, 99.2%, and 82.6% for 100 kV-Eeq; 71.6%, 88.9%, 82.6%, 85.2%, and 62.3% for 80 kV-Eeq, respectively. CONCLUSION The performance of VM images was on the whole inferior to that of SE images especially at low equivalent energy levels, depending on the DE techniques and their generations. KEY POINTS • This study evaluated the performance of VM images with the same dose and iodine contrast as those for SE images using five DE scanners. • The performance of VM images varied with the DE techniques and their generations and was mostly inferior at low equivalent energy levels. • The results highlight the importance of distribution of available dose over the two energy levels and spectral separation for the performance improvement of VM images.
Collapse
Affiliation(s)
- Hiroki Kawashima
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan.
| | - Katsuhiro Ichikawa
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan
| | - Hiroshi Ueta
- Radiology Division, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Tadanori Takata
- Radiology Division, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Wataru Mitsui
- Radiology Division, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Hiroji Nagata
- Section of Radiological Technology, Department of Medical Technology, Kanazawa Medical University Hospital, Daigaku 1-1, Uchinada, Kahoku, 920-0293, Japan
| |
Collapse
|
5
|
Reduced Iodinated Contrast Media Administration in Coronary CT Angiography on a Clinical Photon-Counting Detector CT System: A Phantom Study Using a Dynamic Circulation Model. Invest Radiol 2023; 58:148-155. [PMID: 36165932 DOI: 10.1097/rli.0000000000000911] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE The aim of this study was to evaluate strategies to reduce contrast media volumes for coronary computed tomography (CT) angiography on a clinical first-generation dual-source photon-counting detector (PCD)-CT system using a dynamic circulation phantom. MATERIALS AND METHODS Coronary CT angiograph is an established method for the assessment of coronary artery disease that relies on the administration of iodinated contrast media. Reduction of contrast media volumes while maintaining diagnostic image quality is desirable. In this study, a dynamic phantom containing a 3-dimensional-printed model of the thoracic aorta and coronary arteries was evaluated using a clinical contrast injection protocol with stepwise reduced contrast agent concentrations (100%, 75%, 50%, 40%, 30%, and 20% contrast media content of the same 50 mL bolus, resulting in iodine delivery rates of 1.5, 1.1, 0.7, 0.6, 0.4 and 0.3 gl/s) on a first-generation, dual-source PCD-CT. Polychromatic images (T3D) and virtual monoenergetic images were reconstructed in the range of 40 to 70 keV in 5-keV steps. Attenuation and noise were measured in the coronary arteries and background material and the contrast-to-noise ratio (CNR) were calculated. Attenuation of 350 HU and a CNR of the reference protocol at 70 keV were regarded as sufficient for simulation of diagnostic purposes. Vessel sharpness and noise power spectra were analyzed for the aforementioned reconstructions. RESULTS The standard clinical contrast protocol (bolus with 100% contrast) yielded diagnostic coronary artery attenuation for all tested reconstructions (>398 HU). A 50% reduction in contrast media concentration demonstrated sufficient attenuation of the coronary arteries at 40 to 55 keV (>366 HU). Virtual monoenergetic image reconstructions of 40 to 45 and 40 keV allowed satisfactory attenuation of the coronary arteries for contrast concentrations of 40% and 30% of the original protocol. A reduction of contrast agent concentration to 20% of the initial concentration provided insufficient attenuation in the target vessels for all reconstructions. The highest CNR was found for virtual monoenergetic reconstructions at 40 keV for all contrast media injection protocols, yielding a sufficient CNR at a 50% reduction of contrast agent concentration. CONCLUSIONS Using virtual monoenergetic image reconstructions at 40 keV on a dual-source PCD-CT system, contrast media concentration could be reduced by 50% to obtain diagnostic attenuation and objective image quality for coronary CT angiography in a dynamic vessel phantom. These initial feasibility study results have to be validated in clinical studies.
Collapse
|
6
|
Rippel K, Decker JA, Wudy R, Trzaska T, Haerting M, Kroencke TJ, Schwarz F, Scheurig-Muenkler C. Evaluation of run-off computed tomography angiography on a first-generation photon-counting detector CT scanner - Comparison with low-kVp energy-integrating CT. Eur J Radiol 2023; 158:110645. [PMID: 36525704 DOI: 10.1016/j.ejrad.2022.110645] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess the overall imaging performance (radiation dose and image quality) of a photon-counting detector CT (PCD-CT) in comparison with a state-of-the-art energy-integrating detector CT (EID-CT) in run-off CTAs. METHODS Consecutive patients who underwent run-off CTA on a PCD-CT were included (PCD-CT cohort). A retrospective cohort of patients who had undergone run-off CTA on an EID-CT was matched for gender, body mass index, height, and age (EID-CT cohort). Virtual monoenergetic imaging (VMI) reconstructions for various keV settings (40-120 keV) were generated. CT values and noise were semiautomatically measured for 13 vascular segments of the abdomen, pelvis, and lower extremities. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated for each segment. Subjective image quality was evaluated by two radiologists along the dimensions 'vessel attenuation', 'vessel sharpness', and 'overall image quality' using 5-point Likert scales. RESULTS Forty patients (age 70.9 ± 9.8 years; 14 women) were included in the PCD-CT cohort and matched with a corresponding number of EID-CT patients. Overall, there was an inverse correlation of signal and noise but also of SNR and CNR with keV levels used for VMI reconstructions. SNR and CNR in the 40 - 60 keV range exceeded EID-CT levels significantly. Subjective image quality was substantially higher at lower keV levels and showed no significant difference to EID-CT. CONCLUSION Low keV VMI reconstructions of run-off CTA scans on a PCD-CT result in substantially higher SNR and CNR than 80 kVp and 100 kVp EID-CT acquisitions with equal subjective image quality.
Collapse
Affiliation(s)
- K Rippel
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - J A Decker
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - R Wudy
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - T Trzaska
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - M Haerting
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - T J Kroencke
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Universitätsstr. 2, 86159 Augsburg, Germany.
| | - F Schwarz
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Medical Faculty, Ludwig Maximilian University Munich, Bavariaring 19, 80336 Munich, Germany.
| | - C Scheurig-Muenkler
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| |
Collapse
|
7
|
Euler A, Higashigaito K, Mergen V, Sartoretti T, Zanini B, Schmidt B, Flohr TG, Ulzheimer S, Eberhard M, Alkadhi H. High-Pitch Photon-Counting Detector Computed Tomography Angiography of the Aorta: Intraindividual Comparison to Energy-Integrating Detector Computed Tomography at Equal Radiation Dose. Invest Radiol 2022; 57:115-121. [PMID: 34352805 DOI: 10.1097/rli.0000000000000816] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aims of this study were to determine the objective and subjective image quality of high-pitch computed tomography (CT) angiography of the aorta in clinical dual-source photon-counting detector CT (PCD-CT) and to compare the image quality to conventional dual-source energy-integrating detector CT (EID-CT) in the same patients at equal radiation dose. MATERIALS AND METHODS Patients with prior CT angiography of the thoracoabdominal aorta acquired on third-generation dual-source EID-CT in the high-pitch mode and with automatic tube voltage selection (ATVS, reference tube voltage 100 kV) were included. Follow-up imaging was performed on a first-generation, clinical dual-source PCD-CT scanner in the high-pitch and multienergy (QuantumPlus) mode at 120 kV using the same contrast media protocol as with EID-CT. Radiation doses between scans were matched by adapting the tube current of PCD-CT. Polychromatic images for both EID-CT and PCD-CT (called T3D) and virtual monoenergetic images at 40, 45, 50, and 55 keV for PCD-CT were reconstructed. Computed tomography attenuation was measured in the aorta; noise was defined as the standard deviation of attenuation; contrast-to-noise ratio (CNR) was calculated. Subjective image quality (noise, vessel attenuation, vessel sharpness, and overall quality) was rated by 2 blinded, independent radiologists. RESULTS Forty patients were included (mean age, 63 years; 8 women; mean body mass index [BMI], 26 kg/m2). There was no significant difference in BMI, effective diameter, or radiation dose between scans (all P's > 0.05). The ATVS in EID-CT selected 70, 80, 90, 100, 110, and 120 kV in 2, 14, 14, 7, 2, and 1 patients, respectively. Mean CNR was 17 ± 8 for EID-CT and 22 ± 7, 20 ± 6, 18 ± 5, 16 ± 5, and 12 ± 4 for PCD-CT at 40, 45, 50, 55 keV, and T3D, respectively. Contrast-to-noise ratio was significantly higher for 40 and 45 keV of PCD-CT as compared with EID-CT (both P's < 0.05). The linear regression model (adjusted R2, 0.38; P < 0.001) revealed that PCD-CT reconstruction (P < 0.001), BMI group (P = 0.007), and kV of the EID-CT scan (P = 0.01) were significantly associated with CNR difference, with an increase by 34% with PCD-CT for overweight as compared with normal weight patients. Subjective image quality reading revealed slight differences between readers for subjective vessel attenuation and sharpness, whereas subjective noise was rated significantly higher for 40 and 45 keV (P < 0.001) and overall quality similar (P > 0.05) between scans. CONCLUSIONS High-pitch PCD-CT angiography of the aorta with VMI at 40 and 45 keV resulted in significantly increased CNR compared with EID-CT with ATVS at matched radiation dose. The CNR gain of PCD-CT increased in overweight patients. Taking into account the subjective analysis, VMI at 45 to 50 keV is proposed as the best trade-off between objective and subjective image quality.
Collapse
Affiliation(s)
- André Euler
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Kai Higashigaito
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Victor Mergen
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | - Bettina Zanini
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | - Matthias Eberhard
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- From the Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Thiravit S, Brunnquell C, Cai LM, Flemon M, Mileto A. Use of dual-energy CT for renal mass assessment. Eur Radiol 2020; 31:3721-3733. [PMID: 33210200 DOI: 10.1007/s00330-020-07426-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/11/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Although dual-energy CT (DECT) may prove useful in a variety of abdominal imaging tasks, renal mass evaluation represents the area where this technology can be most impactful in abdominal imaging compared to routinely performed contrast-enhanced-only single-energy CT exams. DECT post-processing techniques, such as creation of virtual unenhanced and iodine density images, can help in the characterization of incidentally discovered renal masses that would otherwise remain indeterminate based on post-contrast imaging only. The purpose of this article is to review the use of DECT for renal mass assessment, including its benefits and existing limitations. KEY POINTS: • If DECT is selected as the scanning mode for most common abdominal protocols, many incidentally found renal masses can be fully triaged within the same exam. • Virtual unenhanced and iodine density DECT images can provide additional information when renal masses are discovered in the post-contrast-only setting. • For renal mass evaluation, virtual unenhanced and iodine density DECT images should be interpreted side-by-side to troubleshoot pitfalls that can potentially lead to erroneous interpretation.
Collapse
Affiliation(s)
- Shanigarn Thiravit
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA.,Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Christina Brunnquell
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Larry M Cai
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Mena Flemon
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Achille Mileto
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA.
| |
Collapse
|