1
|
Hasanabadi S, Aghamiri SMR, Abin AA, Abdollahi H, Arabi H, Zaidi H. Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using 18F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis. Cancers (Basel) 2024; 16:3511. [PMID: 39456604 PMCID: PMC11505665 DOI: 10.3390/cancers16203511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Lymphoma, encompassing a wide spectrum of immune system malignancies, presents significant complexities in its early detection, management, and prognosis assessment since it can mimic post-infectious/inflammatory diseases. The heterogeneous nature of lymphoma makes it challenging to definitively pinpoint valuable biomarkers for predicting tumor biology and selecting the most effective treatment strategies. Although molecular imaging modalities, such as positron emission tomography/computed tomography (PET/CT), specifically 18F-FDG PET/CT, hold significant importance in the diagnosis of lymphoma, prognostication, and assessment of treatment response, they still face significant challenges. Over the past few years, radiomics and artificial intelligence (AI) have surfaced as valuable tools for detecting subtle features within medical images that may not be easily discerned by visual assessment. The rapid expansion of AI and its application in medicine/radiomics is opening up new opportunities in the nuclear medicine field. Radiomics and AI capabilities seem to hold promise across various clinical scenarios related to lymphoma. Nevertheless, the need for more extensive prospective trials is evident to substantiate their reliability and standardize their applications. This review aims to provide a comprehensive perspective on the current literature regarding the application of AI and radiomics applied/extracted on/from 18F-FDG PET/CT in the management of lymphoma patients.
Collapse
Affiliation(s)
- Setareh Hasanabadi
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Seyed Mahmud Reza Aghamiri
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Ahmad Ali Abin
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, 500 Odense, Denmark
- University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| |
Collapse
|
2
|
Chauvie S, Castellino A, Bergesio F, De Maggi A, Durmo R. Lymphoma: The Added Value of Radiomics, Volumes and Global Disease Assessment. PET Clin 2024; 19:561-568. [PMID: 38910057 DOI: 10.1016/j.cpet.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Lymphoma represents a condition that holds promise for cure with existing treatment modalities; nonetheless, the primary clinical obstacle lies in advancing therapeutic outcomes by pinpointing high-risk individuals who are unlikely to respond favorably to standard therapy. In this article, the authors will delineate the significant strides achieved in the lymphoma field, with a particular emphasis on the 3 prevalent subtypes: Hodgkin lymphoma, diffuse large B-cell lymphomas, and follicular lymphoma.
Collapse
Affiliation(s)
- Stéphane Chauvie
- Department of Medical Physics, 'Santa Croce e Carle Hospital, Cuneo, Italy.
| | | | - Fabrizio Bergesio
- Department of Medical Physics, 'Santa Croce e Carle Hospital, Cuneo, Italy
| | - Adriano De Maggi
- Department of Medical Physics, 'Santa Croce e Carle Hospital, Cuneo, Italy
| | - Rexhep Durmo
- Nuclear Medicine Division, Department of Radiology, Azienda USL IRCCS of Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
3
|
Zhuang Z, Lin J, Wan Z, Weng J, Yuan Z, Xie Y, Liu Z, Xie P, Mao S, Wang Z, Wang X, Huang M, Luo Y, Yu H. Radiogenomic profiling of global DNA methylation associated with molecular phenotypes and immune features in glioma. BMC Med 2024; 22:352. [PMID: 39218882 PMCID: PMC11367996 DOI: 10.1186/s12916-024-03573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The radiogenomic analysis has provided valuable imaging biomarkers with biological insights for gliomas. The radiogenomic markers for molecular profile such as DNA methylation remain to be uncovered to assist the molecular diagnosis and tumor treatment. METHODS We apply the machine learning approaches to identify the magnetic resonance imaging (MRI) features that are associated with molecular profiles in 146 patients with gliomas, and the fitting models for each molecular feature (MoRad) are developed and validated. To provide radiological annotations for the molecular profiles, we devise two novel approaches called radiomic oncology (RO) and radiomic set enrichment analysis (RSEA). RESULTS The generated MoRad models perform well for profiling each molecular feature with radiomic features, including mutational, methylation, transcriptional, and protein profiles. Among them, the MoRad models have a remarkable performance in quantitatively mapping global DNA methylation. With RO and RSEA approaches, we find that global DNA methylation could be reflected by the heterogeneity in volumetric and textural features of enhanced regions in T2-weighted MRI. Finally, we demonstrate the associations of global DNA methylation with clinicopathological, molecular, and immunological features, including histological grade, mutations of IDH and ATRX, MGMT methylation, multiple methylation-high subtypes, tumor-infiltrating lymphocytes, and long-term survival outcomes. CONCLUSIONS Global DNA methylation is highly associated with radiological profiles in glioma. Radiogenomic global methylation is an imaging-based quantitative molecular biomarker that is associated with specific consensus molecular subtypes and immune features.
Collapse
Affiliation(s)
- Zhuokai Zhuang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Jinxin Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Zixiao Wan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Jingrong Weng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Ze Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Yumo Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Zongchao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Institute, Beijing, 100142, China
| | - Peiyi Xie
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Siyue Mao
- Image and Minimally Invasive Intervention Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zongming Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Meijin Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Liu Y, Zhao L, Bao J, Hou J, Jing Z, Liu S, Li X, Cao Z, Yang B, Shen J, Zhang J, Ji L, Kang Z, Hu C, Wang L, Liu J. Non-invasively identifying candidates of active surveillance for prostate cancer using magnetic resonance imaging radiomics. Vis Comput Ind Biomed Art 2024; 7:16. [PMID: 38967824 PMCID: PMC11226574 DOI: 10.1186/s42492-024-00167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Active surveillance (AS) is the primary strategy for managing patients with low or favorable-intermediate risk prostate cancer (PCa). Identifying patients who may benefit from AS relies on unpleasant prostate biopsies, which entail the risk of bleeding and infection. In the current study, we aimed to develop a radiomics model based on prostate magnetic resonance images to identify AS candidates non-invasively. A total of 956 PCa patients with complete biopsy reports from six hospitals were included in the current multicenter retrospective study. The National Comprehensive Cancer Network (NCCN) guidelines were used as reference standards to determine the AS candidacy. To discriminate between AS and non-AS candidates, five radiomics models (i.e., eXtreme Gradient Boosting (XGBoost) AS classifier (XGB-AS), logistic regression (LR) AS classifier, random forest (RF) AS classifier, adaptive boosting (AdaBoost) AS classifier, and decision tree (DT) AS classifier) were developed and externally validated using a three-fold cross-center validation based on five classifiers: XGBoost, LR, RF, AdaBoost, and DT. Area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE) were calculated to evaluate the performance of these models. XGB-AS exhibited an average of AUC of 0.803, ACC of 0.693, SEN of 0.668, and SPE of 0.841, showing a better comprehensive performance than those of the other included radiomic models. Additionally, the XGB-AS model also presented a promising performance for identifying AS candidates from the intermediate-risk cases and the ambiguous cases with diagnostic discordance between the NCCN guidelines and the Prostate Imaging-Reporting and Data System assessment. These results suggest that the XGB-AS model has the potential to help identify patients who are suitable for AS and allow non-invasive monitoring of patients on AS, thereby reducing the number of annual biopsies and the associated risks of bleeding and infection.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Litao Zhao
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jie Bao
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Jian Hou
- Department of CT-MR Center, the People's Hospital of Jimo, Qingdao, 266200, Shandong Province, China
| | - Zhaozhao Jing
- Department of Radiology, Sinopharm Tongmei General Hospital, Datong, 037003, Shanxi Province, China
| | - Songlu Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xuanhao Li
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zibing Cao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Boyu Yang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Junkang Shen
- Department of Radiology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Ji Zhang
- Department of Radiology, the People's Hospital of Taizhou, Taizhou, 225399, Jiangsu Province, China
| | - Libiao Ji
- Department of Radiology, Changshu No. 1 People's Hospital, Changshu, 215501, Jiangsu Province, China
| | - Zhen Kang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Chunhong Hu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China.
| | - Liang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Jiangang Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China.
- Beijing Engineering Research Center of Cardiovascular Wisdom Diagnosis and Treatment, Beijing, 100191, China.
| |
Collapse
|
5
|
Wang X, Zhao L, Wang S, Zhao X, Chen L, Sun X, Liu Y, Liu J, Sun S. Utility of contrast-enhanced MRI radiomics features combined with clinical indicators for predicting induction chemotherapy response in primary central nervous system lymphoma. J Neurooncol 2024; 166:451-460. [PMID: 38308802 DOI: 10.1007/s11060-023-04554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 02/05/2024]
Abstract
PURPOSE To assess the utility of combining contrast-enhanced magnetic resonance imaging (CE-MRI) radiomics features with clinical variables in predicting the response to induction chemotherapy (IC) for primary central nervous system lymphoma (PCNSL). METHODS A total of 131 patients with PCNSL (101 in the training set and 30 in the testing set) who had undergone contrast-enhanced MRI scans were retrospectively analyzed. Pyradiomics was utilized to extract radiomics features, and the clinical variables of the patients were gathered. Radiomics prediction models were developed using different combinations of feature selection methods and machine learning models, and the best combination was ultimately chosen. We screened clinical variables associated with treatment outcomes and developed clinical prediction models. The predictive performance of radiomics model, clinical model, and combined model, which integrates the best radiomics model and clinical characteristics, was independently assessed and compared using Receiver Operating Characteristic (ROC) curves. RESULTS In total, we extracted 1598 features. The best radiomics model we selected as the best utilized T-test and Recursive Feature Elimination (RFE) for feature selection and logistic regression for model building. Serum Interleukin 2 Receptor (IL-2R) and Eastern Cooperative Oncology Group (ECOG) Score were utilized to develop a clinical predictive model for assessing the response to induction chemotherapy. The results of the testing set revealed that the combined prediction model (radiomics and IL-2R) achieved the highest area under the ROC curve at 0.868 (0.683, 0.967), followed by the radiomics model at 0.857 (0.681, 0.957), and the clinical prediction model (IL-2R and ECOG) at 0.618 (0.413, 0.797). The combined model was significantly more accurate than the clinical model, with an AUC of 0.868 compared to 0.618 (P < 0.05). While the radiomics model had slightly better predictive power than the clinical model, this difference was not statistically significant (AUC, 0.857 vs. 0.618, P > 0.05). CONCLUSIONS Our prediction model, which combines radiomics signatures from CE-MRI with serum IL-2R, can effectively stratify patients with PCNSL before high-dose methotrexate (HD-MTX) -based chemotherapy.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing, China
| | - Litao Zhao
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Sihui Wang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuening Zhao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lingxu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuefei Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangang Liu
- School of Engineering Medicine, Beihang University, Beijing, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China.
- Beijing Engineering Research Center of Cardiovascular Wisdom Diagnosis and Treatment, Beijing, China.
| | - Shengjun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing, China.
| |
Collapse
|
6
|
Driessen J, Zwezerijnen GJC, Schöder H, Kersten MJ, Moskowitz AJ, Moskowitz CH, Eertink JJ, Heymans MW, Boellaard R, Zijlstra JM. Prognostic model using 18F-FDG PET radiomics predicts progression-free survival in relapsed/refractory Hodgkin lymphoma. Blood Adv 2023; 7:6732-6743. [PMID: 37722357 PMCID: PMC10651466 DOI: 10.1182/bloodadvances.2023010404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/22/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023] Open
Abstract
Investigating prognostic factors in patients with relapsed or primary refractory classical Hodgkin lymphoma (R/R cHL) is essential to optimize risk-adapted treatment strategies. We built a prognostic model using baseline quantitative 18F-fluorodeoxyglucose positron emission tomography (PET) radiomics features and clinical characteristics to predict the progression-free survival (PFS) among patients with R/R cHL treated with salvage chemotherapy followed by autologous stem cell transplantation. Metabolic tumor volume and several novel radiomics dissemination features, representing interlesional differences in distance, volume, and standard uptake value, were extracted from the baseline PET. Machine learning using backward selection and logistic regression were applied to develop and train the model on a total of 113 patients from 2 clinical trials. The model was validated on an independent external cohort of 69 patients. In addition, we validated 4 different PET segmentation methods to calculate radiomics features. We identified a subset of patients at high risk for progression with significant inferior 3-year PFS outcomes of 38.1% vs 88.4% for patients in the low-risk group in the training cohort (P < .001) and 38.5% vs 75.0% in the validation cohort (P = .015), respectively. The overall survival was also significantly better in the low-risk group (P = .022 and P < .001). We provide a formula to calculate a risk score for individual patients based on the model. In conclusion, we developed a prognostic model for PFS combining radiomics and clinical features in a large cohort of patients with R/R cHL. This model calculates a PET-based risk profile and can be applied to develop risk-stratified treatment strategies for patients with R/R cHL. These trials were registered at www.clinicaltrials.gov as #NCT02280993, #NCT00255723, and #NCT01508312.
Collapse
Affiliation(s)
- Julia Driessen
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Division of Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- LYMMCARE, Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - Gerben J. C. Zwezerijnen
- Division of Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- LYMMCARE, Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - Alison J. Moskowitz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Craig H. Moskowitz
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Jakoba J. Eertink
- Division of Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn W. Heymans
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Division of Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
| | - Josée M. Zijlstra
- Division of Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Travaglio Morales D, Huerga Cabrerizo C, Losantos García I, Coronado Poggio M, Cordero García JM, Llobet EL, Monachello Araujo D, Rizkallal Monzón S, Domínguez Gadea L. Prognostic 18F-FDG Radiomic Features in Advanced High-Grade Serous Ovarian Cancer. Diagnostics (Basel) 2023; 13:3394. [PMID: 37998530 PMCID: PMC10670627 DOI: 10.3390/diagnostics13223394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive disease with different clinical outcomes and poor prognosis. This could be due to tumor heterogeneity. The 18F-FDG PET radiomic parameters permit addressing tumor heterogeneity. Nevertheless, this has been not well studied in ovarian cancer. The aim of our work was to assess the prognostic value of pretreatment 18F-FDG PET radiomic features in patients with HGSOC. A review of 36 patients diagnosed with advanced HGSOC between 2016 and 2020 in our center was performed. Radiomic features were obtained from pretreatment 18F-FDGPET. Disease-free survival (DFS) and overall survival (OS) were calculated. Optimal cutoff values with receiver operating characteristic curve/median values were used. A correlation between radiomic features and DFS/OS was made. The mean DFS was 19.6 months and OS was 37.1 months. Total Lesion Glycolysis (TLG), GLSZM_ Zone Size Non-Uniformity (GLSZM_ZSNU), and GLRLM_Run Length Non-Uniformity (GLRLM_RLNU) were significantly associated with DFS. The survival-curves analysis showed a significant difference of DSF in patients with GLRLM_RLNU > 7388.3 versus patients with lower values (19.7 months vs. 31.7 months, p = 0.035), maintaining signification in the multivariate analysis (p = 0.048). Moreover, Intensity-based Kurtosis was associated with OS (p = 0.027). Pretreatment 18F-FDG PET radiomic features GLRLM_RLNU, GLSZM_ZSNU, and Kurtosis may have prognostic value in patients with advanced HGSOC.
Collapse
Affiliation(s)
- Daniela Travaglio Morales
- Nuclear Medicine Department, La Paz University Hospital, 28046 Madrid, Spain
- Nuclear Medicine Department, Halle University Hospital, 06120 Halle, Germany
| | - Carlos Huerga Cabrerizo
- Department of Medical Physics and Radiation Protection, La Paz University Hospital, 28046 Madrid, Spain
| | | | | | | | - Elena López Llobet
- Nuclear Medicine Department, La Paz University Hospital, 28046 Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Zhou Y, Zhang B, Han J, Dai N, Jia T, Huang H, Deng S, Sang S. Development of a radiomic-clinical nomogram for prediction of survival in patients with diffuse large B-cell lymphoma treated with chimeric antigen receptor T cells. J Cancer Res Clin Oncol 2023; 149:11549-11560. [PMID: 37395846 DOI: 10.1007/s00432-023-05038-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND In our current work, an 18F-FDG PET/CT radiomics-based model was developed to assess the progression-free survival (PFS) and overall survival (OS) of patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) who received chimeric antigen receptor (CAR)-T cell therapy. METHODS A total of 61 DLBCL cases receiving 18F-FDG PET/CT before CAR-T cell infusion were included in the current analysis, and these patients were randomly assigned to a training cohort (n = 42) and a validation cohort (n = 19). Radiomic features from PET and CT images were obtained using LIFEx software, and radiomics signatures (R-signatures) were then constructed by choosing the optimal parameters according to their PFS and OS. Subsequently, the radiomics model and clinical model were constructed and validated. RESULTS The radiomics model that integrated R-signatures and clinical risk factors showed superior prognostic performance compared with the clinical models in terms of both PFS (C-index: 0.710 vs. 0.716; AUC: 0.776 vs. 0.712) and OS (C-index: 0.780 vs. 0.762; AUC: 0.828 vs. 0.728). For validation, the C-index of the two approaches was 0.640 vs. 0.619 and 0.676 vs. 0.699 for predicting PFS and OS, respectively. Moreover, the AUC was 0.886 vs. 0.635 and 0.778 vs. 0.705, respectively. The calibration curves indicated good agreement, and the decision curve analysis suggested that the net benefit of radiomics models was higher than that of clinical models. CONCLUSIONS PET/CT-derived R-signature could be a potential prognostic biomarker for R/R DLBCL patients undergoing CAR-T cell therapy. Moreover, the risk stratification could be further enhanced when the PET/CT-derived R-signature was combined with clinical factors.
Collapse
Affiliation(s)
- Yeye Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jiangqin Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Na Dai
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Tongtong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Haiwen Huang
- Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
9
|
Samimi R, Shiri I, Ahmadyar Y, van den Hoff J, Kamali-Asl A, Rezaee A, Yousefirizi F, Geramifar P, Rahmim A. Radiomics predictive modeling from dual-time-point FDG PET K i parametric maps: application to chemotherapy response in lymphoma. EJNMMI Res 2023; 13:70. [PMID: 37493872 PMCID: PMC10371962 DOI: 10.1186/s13550-023-01022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND To investigate the use of dynamic radiomics features derived from dual-time-point (DTP-feature) [18F]FDG PET metabolic uptake rate Ki parametric maps to develop a predictive model for response to chemotherapy in lymphoma patients. METHODS We analyzed 126 lesions from 45 lymphoma patients (responding n = 75 and non-responding n = 51) treated with chemotherapy from two different centers. Static and DTP radiomics features were extracted from baseline static PET images and DTP Ki parametric maps. Spearman's rank correlations were calculated between static and DTP features to identify features with potential additional information. We first employed univariate analysis to determine correlations between individual features, and subsequently utilized multivariate analysis to derive predictive models utilizing DTP and static radiomics features before and after ComBat harmonization. For multivariate modeling, we utilized both the minimum redundancy maximum relevance feature selection technique and the XGBoost classifier. To evaluate our model, we partitioned the patient datasets into training/validation and testing sets using an 80/20% split. Different metrics for classification including area under the curve (AUC), sensitivity (SEN), specificity (SPE), and accuracy (ACC) were reported in test sets. RESULTS Via Spearman's rank correlations, there was negligible to moderate correlation between 32 out of 65 DTP features and some static features (ρ < 0.7); all the other 33 features showed high correlations (ρ ≥ 0.7). In univariate modeling, no significant difference between AUC of DTP and static features was observed. GLRLM_RLNU from static features demonstrated a strong correlation (AUC = 0.75, p value = 0.0001, q value = 0.0007) with therapy response. The most predictive DTP features were GLCM_Energy, GLCM_Entropy, and Uniformity, each with AUC = 0.73, p value = 0.0001, and q value < 0.0005. In multivariate analysis, the mean ranges of AUCs increased following harmonization. Use of harmonization plus combining DTP and static features was shown to provide significantly improved predictions (AUC = 0.97 ± 0.02, accuracy = 0.89 ± 0.05, sensitivity = 0.92 ± 0.09, and specificity = 0.88 ± 0.05). All models depicted significant performance in terms of AUC, ACC, SEN, and SPE (p < 0.05, Mann-Whitney test). CONCLUSIONS Our results demonstrate significant value in harmonization of radiomics features as well as combining DTP and static radiomics models for predicting response to chemotherapy in lymphoma patients.
Collapse
Affiliation(s)
- Rezvan Samimi
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Yashar Ahmadyar
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | - Jörg van den Hoff
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Alireza Kamali-Asl
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran.
| | | | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Long ZC, Ding XC, Zhang XB, Sun PP, Hao FR, Li ZR, Hu M. The Efficacy of Pretreatment 18F-FDG PET-CT-Based Deep Learning Network Structure to Predict Survival in Nasopharyngeal Carcinoma. Clin Med Insights Oncol 2023; 17:11795549231171793. [PMID: 37251551 PMCID: PMC10214083 DOI: 10.1177/11795549231171793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Background Previous studies have shown that the 5-year survival rates of patients with nasopharyngeal carcinoma (NPC) were still not ideal despite great improvement in NPC treatments. To achieve individualized treatment of NPC, we have been looking for novel models to predict the prognosis of patients with NPC. The objective of this study was to use a novel deep learning network structural model to predict the prognosis of patients with NPC and to compare it with the traditional PET-CT model combining metabolic parameters and clinical factors. Methods A total of 173 patients were admitted to 2 institutions between July 2014 and April 2020 for the retrospective study; each received a PET-CT scan before treatment. The least absolute shrinkage and selection operator (LASSO) was employed to select some features, including SUVpeak-P, T3, age, stage II, MTV-P, N1, stage III and pathological type, which were associated with overall survival (OS) of patients. We constructed 2 survival prediction models: an improved optimized adaptive multimodal task (a 3D Coordinate Attention Convolutional Autoencoder and an uncertainty-based jointly Optimizing Cox Model, CACA-UOCM for short) and a clinical model. The predictive power of these models was assessed using the Harrell Consistency Index (C index). Overall survival of patients with NPC was compared by Kaplan-Meier and Log-rank tests. Results The results showed that CACA-UOCM model could estimate OS (C index, 0.779 for training, 0.774 for validation, and 0.819 for testing) and divide patients into low and high mortality risk groups, which were significantly associated with OS (P < .001). However, the C-index of the model based only on clinical variables was only 0.42. Conclusions The deep learning network model based on 18F-FDG PET/CT can serve as a reliable and powerful predictive tool for NPC and provide therapeutic strategies for individual treatment.
Collapse
Affiliation(s)
- Zi-Chan Long
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xing-Chen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xian-Bin Zhang
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Peng-Peng Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fu-Rong Hao
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | | | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
11
|
Triumbari EKA, Gatta R, Maiolo E, De Summa M, Boldrini L, Mayerhoefer ME, Hohaus S, Nardo L, Morland D, Annunziata S. Baseline 18F-FDG PET/CT Radiomics in Classical Hodgkin's Lymphoma: The Predictive Role of the Largest and the Hottest Lesions. Diagnostics (Basel) 2023; 13:1391. [PMID: 37189492 PMCID: PMC10137254 DOI: 10.3390/diagnostics13081391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
This study investigated the predictive role of baseline 18F-FDG PET/CT (bPET/CT) radiomics from two distinct target lesions in patients with classical Hodgkin's lymphoma (cHL). cHL patients examined with bPET/CT and interim PET/CT between 2010 and 2019 were retrospectively included. Two bPET/CT target lesions were selected for radiomic feature extraction: Lesion_A, with the largest axial diameter, and Lesion_B, with the highest SUVmax. Deauville score at interim PET/CT (DS) and 24-month progression-free-survival (PFS) were recorded. Mann-Whitney test identified the most promising image features (p < 0.05) from both lesions with regards to DS and PFS; all possible radiomic bivariate models were then built through a logistic regression analysis and trained/tested with a cross-fold validation test. The best bivariate models were selected based on their mean area under curve (mAUC). A total of 227 cHL patients were included. The best models for DS prediction had 0.78 ± 0.05 maximum mAUC, with a predominant contribution of Lesion_A features to the combinations. The best models for 24-month PFS prediction reached 0.74 ± 0.12 mAUC and mainly depended on Lesion_B features. bFDG-PET/CT radiomic features from the largest and hottest lesions in patients with cHL may provide relevant information in terms of early response-to-treatment and prognosis, thus representing an earlier and stronger decision-making support for therapeutic strategies. External validations of the proposed model are planned.
Collapse
Affiliation(s)
- Elizabeth Katherine Anna Triumbari
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Department of Radiology, UC Davis, Sacramento, CA 95817, USA;
| | - Roberto Gatta
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Radiomics, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Elena Maiolo
- Ematologia, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Marco De Summa
- Medipass S.p.a. Integrative Service PET/CT–Radiofarmacy TracerGLab, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Luca Boldrini
- Radiomics, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Marius E. Mayerhoefer
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria;
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stefan Hohaus
- Ematologia, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
- Hematology Section, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Lorenzo Nardo
- Department of Radiology, UC Davis, Sacramento, CA 95817, USA;
| | - David Morland
- Unità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
- Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- CReSTIC EA 3804 et Laboratoire de Biophysique, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| |
Collapse
|
12
|
Liu X, Hu X, Yu X, Li P, Gu C, Liu G, Wu Y, Li D, Wang P, Cai J. Frontiers and hotspots of 18F-FDG PET/CT radiomics: A bibliometric analysis of the published literature. Front Oncol 2022; 12:965773. [PMID: 36176388 PMCID: PMC9513237 DOI: 10.3389/fonc.2022.965773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To illustrate the knowledge hotspots and cutting-edge research trends of 18F-FDG PET/CT radiomics, the knowledge structure of was systematically explored and the visualization map was analyzed. Methods Studies related to 18F-FDG PET/CT radiomics from 2013 to 2021 were identified and selected from the Web of Science Core Collection (WoSCC) using retrieval formula based on an interview. Bibliometric methods are mainly performed by CiteSpace 5.8.R3, which we use to build knowledge structures including publications, collaborative and co-cited studies, burst analysis, and so on. The performance and relevance of countries, institutions, authors, and journals were measured by knowledge maps. The research foci were analyzed through research of keywords, as well as literature co-citation analysis. Predicting trends of 18F-FDG PET/CT radiomics in this field utilizes a citation burst detection method. Results Through a systematic literature search, 457 articles, which were mainly published in the United States (120 articles) and China (83 articles), were finally included in this study for analysis. Memorial Sloan-Kettering Cancer Center and Southern Medical University are the most productive institutions, both with a frequency of 17. 18F-FDG PET/CT radiomics–related literature was frequently published with high citation in European Journal of Nuclear Medicine and Molecular Imaging (IF9.236, 2020), Frontiers in Oncology (IF6.244, 2020), and Cancers (IF6.639, 2020). Further cluster profile of keywords and literature revealed that the research hotspots were primarily concentrated in the fields of image, textural feature, and positron emission tomography, and the hot research disease is a malignant tumor. Document co-citation analysis suggested that many scholars have a co-citation relationship in studies related to imaging biomarkers, texture analysis, and immunotherapy simultaneously. Burst detection suggests that adenocarcinoma studies are frontiers in 18F-FDG PET/CT radiomics, and the landmark literature put emphasis on the reproducibility of 18F-FDG PET/CT radiomics features. Conclusion First, this bibliometric study provides a new perspective on 18F-FDG PET/CT radiomics research, especially for clinicians and researchers providing scientific quantitative analysis to measure the performance and correlation of countries, institutions, authors, and journals. Above all, there will be a continuing growth in the number of publications and citations in the field of 18F-FDG PET/CT. Second, the international research frontiers lie in applying 18F-FDG PET/CT radiomics to oncology research. Furthermore, new insights for researchers in future studies will be adenocarcinoma-related analyses. Moreover, our findings also offer suggestions for scholars to give attention to maintaining the reproducibility of 18F-FDG PET/CT radiomics features.
Collapse
Affiliation(s)
- Xinghai Liu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Xianwen Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao Yu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Pujiao Li
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Cheng Gu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Guosheng Liu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Yan Wu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dandan Li
- Department of Obstetrics, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| |
Collapse
|
13
|
Zhu L, Huang R, Li M, Fan Q, Zhao X, Wu X, Dong F. Machine Learning-Based Ultrasound Radiomics for Evaluating the Function of Transplanted Kidneys. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1441-1452. [PMID: 35599077 DOI: 10.1016/j.ultrasmedbio.2022.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 06/15/2023]
Abstract
The aim of the study described here was to investigate the value of different machine learning models based on the clinical and radiomic features of 2-D ultrasound images to evaluate post-transplant renal function (pTRF). We included 233 patients who underwent ultrasound examination after renal transplantation and divided them into the normal pTRF group (group 1) and the abnormal pTRF group (group 2) based on their estimated glomerular filtration rates. The patients with abnormal pTRF were further subdivided into the non-severe renal function impairment group (group 2A) and the severe impairment group (group 2B). The radiomic features were extracted from the 2-D ultrasound images of each case. The clinical and ultrasound image features as well as radiomic features from the training set were selected, and then five machine learning algorithms were used to construct models for evaluating pTRF. Receiver operating characteristic curves were used to evaluate the discriminatory ability of each model. A total of 19 radiomic features and one clinical feature (age) were retained for discriminating group 1 from group 2. The area under the receiver operating characteristic curve (AUC) values of the models ranged from 0.788 to 0.839 in the test set, and no significant differences were found between the models (all p values >0.05). A total of 17 radiomic features and 1 ultrasound image feature (thickness) were retained for discriminating group 2A from group 2B. The AUC values of the models ranged from 0.689 to 0.772, and no significant differences were found between the models (all p values >0.05). Machine learning models based on clinical and ultrasound image features, as well as radiomics features, from 2-D ultrasound images can be used to evaluate pTRF.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Ultrasound, First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Renjun Huang
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Ming Li
- Department of Nephrology, First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Qingmin Fan
- Department of Ultrasound, First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Xiaojun Zhao
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Xiaofeng Wu
- Department of Ultrasound, First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Fenglin Dong
- Department of Ultrasound, First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China.
| |
Collapse
|
14
|
Wu Z, Bian T, Dong C, Duan S, Fei H, Hao D, Xu W. Spinal MRI-Based Radiomics Analysis to Predict Treatment Response in Multiple Myeloma. J Comput Assist Tomogr 2022; 46:447-454. [PMID: 35405690 DOI: 10.1097/rct.0000000000001298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study was to explore the clinical utility of spinal magnetic resonance imaging-based radiomics to predict treatment response (TR) in patients with multiple myeloma (MM). METHODS A total of 123 MM patients (85 in the training cohort and 38 in the test cohort) with complete response (CR) (n = 40) or non-CR (n = 83) were retrospectively enrolled in the study. Key feature selection and data dimension reduction were performed using the least absolute shrinkage and selection operator regression. A nomogram was built by combining radiomic signatures and independent clinical risk factors. The prediction performance of the nomogram was assessed using the area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis. Treatment response was assessed by determining the serum and urinary levels of M-proteins, serum-free light chain ratio, and the percentage of bone marrow plasma cells. RESULTS Thirteen features were selected to build a radiomic signature. The International Staging System (ISS) stage was selected as an independent clinical factor. The radiomic signature and nomogram showed better calibration and higher discriminatory capacity (AUC of 0.929 and 0.917 for the radiomics and nomogram in the training cohort, respectively, and 0.862 and 0.874 for the radiomics and nomogram in the test cohort, respectively) than the clinical model (AUC of 0.661 and 0.674 in the training and test cohort, respectively). Decision curve analysis confirmed the clinical utility of the radiomics model. CONCLUSIONS Nomograms incorporating a magnetic resonance imaging-based radiomic signature and ISS stage help predict the response to chemotherapy for MM and can be useful in clinical decision-making.
Collapse
Affiliation(s)
| | - Tiantian Bian
- Breast Disease Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong
| | | | | | - Hairong Fei
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | | | | |
Collapse
|
15
|
Zhou Y, Li J, Zhang X, Jia T, Zhang B, Dai N, Sang S, Deng S. Prognostic Value of Radiomic Features of 18F-FDG PET/CT in Patients With B-Cell Lymphoma Treated With CD19/CD22 Dual-Targeted Chimeric Antigen Receptor T Cells. Front Oncol 2022; 12:834288. [PMID: 35198451 PMCID: PMC8858981 DOI: 10.3389/fonc.2022.834288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
ObjectiveIn the present study, we aimed to evaluate the prognostic value of PET/CT-derived radiomic features for patients with B-cell lymphoma (BCL), who were treated with CD19/CD22 dual-targeted chimeric antigen receptor (CAR) T cells. Moreover, we explored the relationship between baseline radiomic features and the occurrence probability of cytokine release syndrome (CRS).MethodsA total of 24 BCL patients who received 18F-FDG PET/CT before CAR T-cell infusion were enrolled in the present study. Radiomic features from PET and CT images were extracted using LIFEx software, and the least absolute shrinkage and selection operator (LASSO) regression was used to select the most useful predictive features of progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic curves, Cox proportional hazards model, and Kaplan-Meier curves were conducted to assess the potential prognostic value.ResultsContrast extracted from neighbourhood grey-level different matrix (NGLDM) was an independent predictor of PFS (HR = 15.16, p = 0.023). MYC and BCL2 double-expressor (DE) was of prognostic significance for PFS (HR = 7.02, p = 0.047) and OS (HR = 10.37, p = 0.041). The combination of NGLDM_ContrastPET and DE yielded three risk groups with zero (n = 7), one (n = 11), or two (n = 6) factors (p < 0.0001 and p = 0.0004, for PFS and OS), respectively. The PFS was 85.7%, 63.6%, and 0%, respectively, and the OS was 100%, 90.9%, and 16.7%, respectively. Moreover, there was no significant association between PET/CT variables and CRS.ConclusionsIn conclusion, radiomic features extracted from baseline 18F-FDG PET/CT images in combination with genomic factors could predict the survival outcomes of BCL patients receiving CAR T-cell therapy.
Collapse
Affiliation(s)
- Yeye Zhou
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jihui Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoyi Zhang
- Department of Nuclear Medicine, Changshu No. 2 People’s Hospital, Changshu, China
| | - Tongtong Jia
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Dai
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shibiao Sang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Shengming Deng, ; Shibiao Sang,
| | - Shengming Deng
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- *Correspondence: Shengming Deng, ; Shibiao Sang,
| |
Collapse
|
16
|
Jiang H, Li A, Ji Z, Tian M, Zhang H. Role of Radiomics-Based Baseline PET/CT Imaging in Lymphoma: Diagnosis, Prognosis, and Response Assessment. Mol Imaging Biol 2022; 24:537-549. [PMID: 35031945 DOI: 10.1007/s11307-022-01703-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Radiomic analysis provides information on the underlying tumour heterogeneity in lymphoma, reflecting the real-time evolution of malignancy. 2-Deoxy-2-[18F] fluoro-D-glucose positron emission tomography ([18F] FDG PET/CT) imaging is recommended before, during, and at the end of treatment for almost all lymphoma patients. This methodology offers high specificity and sensitivity, which can aid in accurate staging and assist in prompt treatment. Pretreatment [18F] FDG PET/CT-based radiomics facilitates improved diagnostic ability, guides individual treatment regimens, and boosts outcome prognosis based on heterogeneity as well as the biological, pathological, and metabolic status of the lymphoma. This technique has attracted considerable attention given its numerous applications in medicine. In the current review, we will briefly describe the basic radiomics workflow and types of radiomic features. Details of current applications of baseline [18F] FDG PET/CT-based radiomics in lymphoma will be discussed, such as differential diagnosis from other primary malignancies, diagnosis of bone marrow involvement, and response and prognostic prediction. We will also describe how this technique provides a unique noninvasive platform to assess tumour heterogeneity. Newly emerging PET radiotracers and multimodality technology will improve diagnostic specificity and further clarify tumor biology and even genetic variations in lymphoma, potentially promoting the development of precision medicine.
Collapse
Affiliation(s)
- Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ang Li
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhongyou Ji
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 8 Hangzhou, Hangzhou, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 8 Hangzhou, Hangzhou, China. .,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Hasani N, Paravastu SS, Farhadi F, Yousefirizi F, Morris MA, Rahmim A, Roschewski M, Summers RM, Saboury B. Artificial Intelligence in Lymphoma PET Imaging:: A Scoping Review (Current Trends and Future Directions). PET Clin 2022; 17:145-174. [PMID: 34809864 PMCID: PMC8735853 DOI: 10.1016/j.cpet.2021.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malignant lymphomas are a family of heterogenous disorders caused by clonal proliferation of lymphocytes. 18F-FDG-PET has proven to provide essential information for accurate quantification of disease burden, treatment response evaluation, and prognostication. However, manual delineation of hypermetabolic lesions is often a time-consuming and impractical task. Applications of artificial intelligence (AI) may provide solutions to overcome this challenge. Beyond segmentation and detection of lesions, AI could enhance tumor characterization and heterogeneity quantification, as well as treatment response prediction and recurrence risk stratification. In this scoping review, we have systematically mapped and discussed the current applications of AI (such as detection, classification, segmentation as well as the prediction and prognostication) in lymphoma PET.
Collapse
Affiliation(s)
- Navid Hasani
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; University of Queensland Faculty of Medicine, Ochsner Clinical School, New Orleans, LA 70121, USA
| | - Sriram S Paravastu
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA
| | - Faraz Farhadi
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Michael A Morris
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland-Baltimore Country, Baltimore, MD, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, BC Cancer Research Institute, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Ronald M Summers
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA.
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland-Baltimore Country, Baltimore, MD, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Radiomic Features of 18F-FDG PET in Hodgkin Lymphoma Are Predictive of Outcomes. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6347404. [PMID: 34887712 PMCID: PMC8629643 DOI: 10.1155/2021/6347404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
Purpose In the present study, we aimed to investigate whether the radiomic features of baseline 18F-FDG PET can predict the prognosis of Hodgkin lymphoma (HL). Methods A total 65 HL patients (training cohort: n = 49; validation cohort: n = 16) were retrospectively enrolled in the present study. A total of 47 radiomic features were extracted from pretreatment PET images. The least absolute shrinkage and selection operator (LASSO) regression was used to select the most useful prognostic features in the training cohort. The distance between the two lesions that were the furthest apart (Dmax) was recorded. The receiver operating characteristic (ROC) curve, Kaplan–Meier method, and Cox proportional hazards model were used to assess the prognostic factors. Results Long-zone high gray-level emphasis extracted from a gray-level zone-length matrix (LZHGEGLZLM) (HR = 9.007; p=0.044) and Dmax (HR = 3.641; p=0.048) were independently correlated with 2-year progression-free survival (PFS). A prognostic stratification model was established based on both risk predictors, which could distinguish three risk categories for PFS (p=0.0002). The 2-year PFS was 100.0%, 64.7%, and 33.3%, respectively. Conclusions LZHGEGLZLM and Dmax were independent prognostic factors for survival outcomes. Besides, we proposed a prognostic stratification model that could further improve the risk stratification of HL patients.
Collapse
|
19
|
de Jesus FM, Yin Y, Mantzorou-Kyriaki E, Kahle XU, de Haas RJ, Yakar D, Glaudemans AWJM, Noordzij W, Kwee TC, Nijland M. Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [ 18F]FDG PET/CT features. Eur J Nucl Med Mol Imaging 2021; 49:1535-1543. [PMID: 34850248 DOI: 10.1007/s00259-021-05626-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND One of the challenges in the management of patients with follicular lymphoma (FL) is the identification of individuals with histological transformation, most commonly into diffuse large B-cell lymphoma (DLBCL). [18F]FDG-PET/CT is used for staging of patients with lymphoma, but visual interpretation cannot reliably discern FL from DLBCL. This study evaluated whether radiomic features extracted from clinical baseline [18F]FDG PET/CT and analyzed by machine learning algorithms may help discriminate FL from DLBCL. MATERIALS AND METHODS Patients were selected based on confirmed histopathological diagnosis of primary FL (n=44) or DLBCL (n=76) and available [18F]FDG PET/CT with EARL reconstruction parameters within 6 months of diagnosis. Radiomic features were extracted from the volume of interest on co-registered [18F]FDG PET and CT images. Analysis of selected radiomic features was performed with machine learning classifiers based on logistic regression and tree-based ensemble classifiers (AdaBoosting, Gradient Boosting, and XG Boosting). The performance of radiomic features was compared with a SUVmax-based logistic regression model. RESULTS From the segmented lesions, 121 FL and 227 DLBCL lesions were included for radiomic feature extraction. In total, 79 radiomic features were extracted from the SUVmap, 51 from CT, and 6 shape features. Machine learning classifier Gradient Boosting achieved the best discrimination performance using 136 radiomic features (AUC of 0.86 and accuracy of 80%). SUVmax-based logistic regression model achieved an AUC of 0.79 and an accuracy of 70%. Gradient Boosting classifier had a significantly greater AUC and accuracy compared to the SUVmax-based logistic regression (p≤0.01). CONCLUSION Machine learning analysis of radiomic features may be of diagnostic value for discriminating FL from DLBCL tumor lesions, beyond that of the SUVmax alone.
Collapse
Affiliation(s)
| | - Y Yin
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | | | - X U Kahle
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | - R J de Haas
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | - D Yakar
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | | | - W Noordzij
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | - T C Kwee
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | - M Nijland
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
Fournier L, Costaridou L, Bidaut L, Michoux N, Lecouvet FE, de Geus-Oei LF, Boellaard R, Oprea-Lager DE, Obuchowski NA, Caroli A, Kunz WG, Oei EH, O'Connor JPB, Mayerhoefer ME, Franca M, Alberich-Bayarri A, Deroose CM, Loewe C, Manniesing R, Caramella C, Lopci E, Lassau N, Persson A, Achten R, Rosendahl K, Clement O, Kotter E, Golay X, Smits M, Dewey M, Sullivan DC, van der Lugt A, deSouza NM, European Society Of Radiology. Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur Radiol 2021; 31:6001-6012. [PMID: 33492473 PMCID: PMC8270834 DOI: 10.1007/s00330-020-07598-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. KEY POINTS: • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.
Collapse
Affiliation(s)
- Laure Fournier
- PARCC, INSERM, Radiology Department, AP-HP, Hopital europeen Georges Pompidou, Université de Paris, F-75015, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
| | - Lena Costaridou
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- School of Medicine, University of Patras, University Campus, Rio, 26 500, Patras, Greece
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, LN6 7TS, UK
| | - Nicolas Michoux
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), B-1200, Brussels, Belgium
| | - Frederic E Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), B-1200, Brussels, Belgium
| | - Lioe-Fee de Geus-Oei
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - Ronald Boellaard
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers (VU University), Amsterdam, The Netherlands
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
| | - Daniela E Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers (VU University), Amsterdam, The Netherlands
| | - Nancy A Obuchowski
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Caroli
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Wolfgang G Kunz
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Edwin H Oei
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - James P B O'Connor
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Marius E Mayerhoefer
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Manuela Franca
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, Centro Hospitalar Universitário do Porto, Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
| | - Angel Alberich-Bayarri
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers in Medicine (QUIBIM), Valencia, Spain
| | - Christophe M Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christian Loewe
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Cardiovascular and Interventional Radiology, Dept. for Bioimaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rashindra Manniesing
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Caroline Caramella
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Radiology Department, Hôpital Marie Lannelongue, Institut d'Oncologie Thoracique, Université Paris-Saclay, Le Plessis-Robinson, France
| | - Egesta Lopci
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, Humanitas Clinical and Research Hospital - IRCCS, Rozzano, MI, Italy
| | - Nathalie Lassau
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Imaging Department, Gustave Roussy Cancer Campus Grand, Paris, UMR 1281, INSERM, CNRS, CEA, Universite Paris-Saclay, Saint-Aubin, France
| | - Anders Persson
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, and Department of Health, Medicine and Caring Sciences, Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Rik Achten
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology and Medical Imaging, Ghent University Hospital, Gent, Belgium
| | - Karen Rosendahl
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Olivier Clement
- PARCC, INSERM, Radiology Department, AP-HP, Hopital europeen Georges Pompidou, Université de Paris, F-75015, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
| | - Elmar Kotter
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Xavier Golay
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Queen Square Institute of Neurology, University College London, London, UK
| | - Marion Smits
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marc Dewey
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel C Sullivan
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Dept. of Radiology, Duke University, 311 Research Dr, Durham, NC, 27710, USA
| | - Aad van der Lugt
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Nandita M deSouza
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria.
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium.
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA.
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK.
| | | |
Collapse
|
21
|
|
22
|
Xing H, Hao Z, Zhu W, Sun D, Ding J, Zhang H, Liu Y, Huo L. Preoperative prediction of pathological grade in pancreatic ductal adenocarcinoma based on 18F-FDG PET/CT radiomics. EJNMMI Res 2021; 11:19. [PMID: 33630176 PMCID: PMC7907291 DOI: 10.1186/s13550-021-00760-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose To develop and validate a machine learning model based on radiomic features derived from 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) images to preoperatively predict the pathological grade in patients with pancreatic ductal adenocarcinoma (PDAC). Methods A total of 149 patients (83 men, 66 women, mean age 61 years old) with pathologically proven PDAC and a preoperative 18F-FDG PET/CT scan between May 2009 and January 2016 were included in this retrospective study. The cohort of patients was divided into two separate groups for the training (99 patients) and validation (50 patients) in chronological order. Radiomics features were extracted from PET/CT images using Pyradiomics implemented in Python, and the XGBoost algorithm was used to build a prediction model. Conventional PET parameters, including standardized uptake value, metabolic tumor volume, and total lesion glycolysis, were also measured. The quality of the proposed model was appraised by means of receiver operating characteristics (ROC) and areas under the ROC curve (AUC). Results The prediction model based on a twelve-feature-combined radiomics signature could stratify PDAC patients into grade 1 and grade 2/3 groups with AUC of 0.994 in the training set and 0.921 in the validation set. Conclusion The model developed is capable of predicting pathological differentiation grade of PDAC based on preoperative 18F-FDG PET/CT radiomics features.
Collapse
Affiliation(s)
- Haiqun Xing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Dongcheng District, Chinese Academy of Medical Science, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Zhixin Hao
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Dongcheng District, Chinese Academy of Medical Science, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Wenjia Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Dongcheng District, Chinese Academy of Medical Science, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Dehui Sun
- Sinounion Healthcare Inc., Building 3-B, Zhongguancun Dong Sheng International Pioneer Park, Beijing, 100192, China
| | - Jie Ding
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Dongcheng District, Chinese Academy of Medical Science, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Hui Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yu Liu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Dongcheng District, Chinese Academy of Medical Science, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Dongcheng District, Chinese Academy of Medical Science, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China.
| |
Collapse
|
23
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
24
|
Prognostic value of 18F-FDG PET/CT in T-Lymphoblastic lymphoma before and after hematopoietic stem cell transplantation. Clin Transl Oncol 2021; 23:1571-1576. [PMID: 33449269 DOI: 10.1007/s12094-021-02551-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE We aimed to evaluate the prognostic value of 18F-FDG PET/CT in patients with relapsed or refractory T-Lymphoblastic lymphoma (T-LBL) undergoing hematopoietic stem cell transplantation (HSCT). METHODS PET/CT was performed in 21 consecutive relapsed or refractory T-LBL patients scheduled for HSCT. All PET/CT images were assessed using the Deauville criteria, and patients were divided into negative (Deauville ≤ 3) and positive (Deauville > 3) groups for comparison. The predictive value of sex, age, Ann Arbor stage, presence of B symptoms, lactate dehydrogenase level, presence of extranodal disease, and PET/CT results before and after HSCT were evaluated. RESULTS Kaplan-Meier analysis showed that only PET/CT after HSCT (post-PET) was correlated with progression-free survival (PFS) (P = 0.030). The Cox regression model also showed that the post-PET-positive group had a higher hazard ratio (HR) than the negative group (HR = 3.884 and P = 0.049). However, none of the evaluated factors were predictive of overall survival (OS). CONCLUSIONS Pre-PET cannot predict the PFS and OS of patients with T-LBL undergoing HSCT, which means that 18F-FDG PET/CT cannot be used for identifying patients who can benefit from HSCT. Post-PET is not predictive for OS in patients with T-LBL undergoing HSCT. However, post-PET showed strong correlations with PFS, which means that it may be useful for guiding subsequent clinical treatment decisions.
Collapse
|
25
|
Prognostic Value of Baseline Radiomic Features of 18F-FDG PET in Patients with Diffuse Large B-Cell Lymphoma. Diagnostics (Basel) 2020; 11:diagnostics11010036. [PMID: 33379166 PMCID: PMC7824203 DOI: 10.3390/diagnostics11010036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigates whether baseline 18F-FDG PET radiomic features can predict survival outcomes in patients with diffuse large B-cell lymphoma (DLBCL). We retrospectively enrolled 83 patients diagnosed with DLBCL who underwent 18F-FDG PET scans before treatment. The patients were divided into the training cohort (n = 58) and the validation cohort (n = 25). Eighty radiomic features were extracted from the PET images for each patient. Least absolute shrinkage and selection operator regression were used to reduce the dimensionality within radiomic features. Cox proportional hazards model was used to determine the prognostic factors for progression-free survival (PFS) and overall survival (OS). A prognostic stratification model was built in the training cohort and validated in the validation cohort using Kaplan-Meier survival analysis. In the training cohort, run length non-uniformity (RLN), extracted from a gray level run length matrix (GLRLM), was independently associated with PFS (hazard ratio (HR) = 15.7, p = 0.007) and OS (HR = 8.64, p = 0.040). The International Prognostic Index was an independent prognostic factor for OS (HR = 2.63, p = 0.049). A prognostic stratification model was devised based on both risk factors, which allowed identification of three risk groups for PFS and OS in the training (p < 0.001 and p < 0.001) and validation (p < 0.001 and p = 0.020) cohorts. Our results indicate that the baseline 18F-FDG PET radiomic feature, RLNGLRLM, is an independent prognostic factor for survival outcomes. Furthermore, we propose a prognostic stratification model that may enable tailored therapeutic strategies for patients with DLBCL.
Collapse
|
26
|
Differentiating gastric cancer and gastric lymphoma using texture analysis (TA) of positron emission tomography (PET). Chin Med J (Engl) 2020; 134:439-447. [PMID: 33230019 PMCID: PMC7909296 DOI: 10.1097/cm9.0000000000001206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Texture analysis (TA) can quantify intra-tumor heterogeneity using standard medical images. The present study aimed to assess the application of positron emission tomography (PET) TA in the differential diagnosis of gastric cancer and gastric lymphoma. Methods: The pre-treatment PET images of 79 patients (45 gastric cancer, 34 gastric lymphoma) between January 2013 and February 2018 were retrospectively reviewed. Standard uptake values (SUVs), first-order texture features, and second-order texture features of the grey-level co-occurrence matrix (GLCM) were analyzed. The differences in features among different groups were analyzed by the two-way Mann-Whitney test, and receiver operating characteristic (ROC) analysis was used to estimate the diagnostic efficacy. Results: InertiaGLCM was significantly lower in gastric cancer than that in gastric lymphoma (4975.61 vs. 11,425.30, z = −3.238, P = 0.001), and it was found to be the most discriminating texture feature in differentiating gastric lymphoma and gastric cancer. The area under the curve (AUC) of inertiaGLCM was higher than the AUCs of SUVmax and SUVmean (0.714 vs. 0.649 and 0.666, respectively). SUVmax and SUVmean were significantly lower in low-grade gastric lymphoma than those in high grade gastric lymphoma (3.30 vs. 11.80, 2.40 vs. 7.50, z = −2.792 and −3.007, P = 0.005 and 0.003, respectively). SUVs and first-order grey-level intensity features were not significantly different between low-grade gastric lymphoma and gastric cancer. EntropyGLCM12 was significantly lower in low-grade gastric lymphoma than that in gastric cancer (6.95 vs. 9.14, z = −2.542, P = 0.011) and had an AUC of 0.770 in the ROC analysis of differentiating low-grade gastric lymphoma and gastric cancer. Conclusions: InertiaGLCM and entropyGLCM were the most discriminating features in differentiating gastric lymphoma from gastric cancer and low-grade gastric lymphoma from gastric cancer, respectively. PET TA can improve the differential diagnosis of gastric neoplasms, especially in tumors with similar degrees of fluorodeoxyglucose uptake.
Collapse
|
27
|
Sun Y, Qiao X, Jiang C, Liu S, Zhou Z. Texture Analysis Improves the Value of Pretreatment 18F-FDG PET/CT in Predicting Interim Response of Primary Gastrointestinal Diffuse Large B-Cell Lymphoma. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:2981585. [PMID: 32922221 PMCID: PMC7463417 DOI: 10.1155/2020/2981585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/27/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022]
Abstract
Objectives To explore the application of pretreatment 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) texture analysis (TA) in predicting the interim response of primary gastrointestinal diffuse large B-cell lymphoma (PGIL-DLBCL). Methods Pretreatment 18F-FDG PET/CT images of 30 PGIL-DLBCL patients were studied retrospectively. The interim response was evaluated after 3-4 cycles of chemotherapy. The complete response (CR) rates in patients with different clinicopathological characteristics were compared by Fisher's exact test. The differences in the maximum standard uptake value (SUVmax), metabolic tumor volume (MTV), and texture features between the CR and non-CR groups were compared by the Mann-Whitney U test. Feature selection was performed according to the results of the Mann-Whitney U test and feature categories. The predictive efficacies of the SUVmax, MTV, and the selected texture features were assessed by receiver operating characteristic (ROC) analysis. A prediction probability was generated by binary logistic regression analysis. Results The SUVmax, MTV, some first-order texture features, volume, and entropy were significantly higher in the non-CR group. The energy was significantly lower in the non-CR group. The SUVmax, volume, and entropy were excellent predictors of the interim response, and the areas under the curves (AUCs) were 0.850, 0.805, and 0.800, respectively. The CR rate was significantly lower in patients with intestinal involvement. The prediction probability generated from the combination of the SUVmax, entropy, volume, and intestinal involvement had a higher AUC (0.915) than all single parameters. Conclusions TA has potential in improving the value of pretreatment PET/CT in predicting the interim response of PGIL-DLBCL. However, prospective studies with large sample sizes and validation analyses are needed to confirm the current results.
Collapse
Affiliation(s)
- Yiwen Sun
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Xiangmei Qiao
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Chong Jiang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Zhengyang Zhou
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
28
|
Current status and quality of radiomics studies in lymphoma: a systematic review. Eur Radiol 2020; 30:6228-6240. [PMID: 32472274 DOI: 10.1007/s00330-020-06927-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To perform a systematic review regarding the developments in the field of radiomics in lymphoma. To evaluate the quality of included articles by the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), the phases classification criteria for image mining studies, and the radiomics quality scoring (RQS) tool. METHODS We searched for eligible articles in the MEDLINE/PubMed and EMBASE databases using the terms "radiomics", "texture" and "lymphoma". The included studies were divided into two categories: diagnosis-, therapy response- and outcome-related studies. The diagnosis-related studies were evaluated using the QUADAS-2; all studies were evaluated using the phases classification criteria for image mining studies and the RQS tool by two reviewers. RESULTS Forty-five studies were included; thirteen papers (28.9%) focused on the differential diagnosis of primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM). Thirty-two (71.1%) studies were classified as discovery science according to the phase classification criteria for image mining studies. The mean RQS score of all studies was 14.2% (ranging from 0.0 to 40.3%), and 23 studies (51.1%) were given a score of < 10%. CONCLUSION The radiomics features could serve as diagnostic and prognostic indicators in lymphoma. However, the current conclusions should be interpreted with caution due to the suboptimal quality of the studies. In order to introduce radiomics into lymphoma clinical settings, the lesion segmentation and selection, the influence of the pathological pattern and the extraction of multiple modalities and multiple time points features need to be further studied. KEY POINTS • The radiomics approach may provide useful information for diagnosis, prediction of the therapy response, and outcome of lymphoma. • The quality of published radiomics studies in lymphoma has been suboptimal to date. • More studies are needed to examine lesion selection and segmentation, the influence of pathological patterns, and the extraction of multiple modalities and multiple time point features.
Collapse
|
29
|
Weber M, Kessler L, Schaarschmidt B, Fendler WP, Lahner H, Antoch G, Umutlu L, Herrmann K, Rischpler C. Treatment-related changes in neuroendocrine tumors as assessed by textural features derived from 68Ga-DOTATOC PET/MRI with simultaneous acquisition of apparent diffusion coefficient. BMC Cancer 2020; 20:326. [PMID: 32299391 PMCID: PMC7161278 DOI: 10.1186/s12885-020-06836-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
Background Neuroendocrine tumors (NETs) frequently overexpress somatostatin receptors (SSTRs), which is the molecular basis for 68Ga-DOTATOC positron-emission tomography (PET) and radiopeptide therapy (PRRT). However, SSTR expression fluctuates and can be subject to treatment-related changes. The aim of this retrospective study was to assess, which changes in PET and apparent diffusion coefficient (ADC) occur for different treatments and if pre-therapeutic 68Ga-DOTATOC-PET/MRI was able to predict treatment response to PRRT. Methods Patients with histopathologically confirmed NET, at least one liver metastasis > 1 cm and at least two 68Ga-DOTATOC-PET/MRI including ADC maps were eligible. 68Ga-DOTATOC-PET/MRI of up to 5 liver lesions per patients was subsequently analyzed. Extracted features comprise conventional PET parameters, such as maximum and mean standardized uptake value (SUVmax and SUVmean) and ADC values. Furthermore, textural features (TFs) from both modalities were extracted. In patients with multiple 68Ga-DOTATOC-PET/MRI a pair of 2 scans each was analyzed separately and the parameter changes between both scans calculated. The same image analysis was performed in patients with 68Ga-DOTATOC-PET/MRI before PRRT. Differences in PET and ADC maps parameters between PRRT-responders and non-responders were compared using Mann-Whitney test to test differences among groups for statistical significance. Results 29 pairs of 68Ga-DOTATOC-PET/MRI scans of 18 patients were eligible for the assessment of treatment-related changes. In 12 cases patients were treated with somatostatin analogues between scans, in 9 cases with PRRT and in 2 cases each patients received local treatment, chemotherapy and sunitinib. Treatment responders showed a statistically significant decrease in lesion volume and a borderline significant decrease in entropy on ADC maps when compared to non-responders. Patients treated with standalone SSA showed a borderline significant decrease in mean and maximum ADC, compared to patients treated with PRRT. No parameters were able to predict treatment response to PRRT on pre-therapeutic 68Ga-DOTATOC-PET/MRI. Conclusions Patients responding to current treatment showed a statistically significant decrease in lesion volume on ADC maps and a borderline significant decrease in entropy. No statistically significant changes in PET parameters were observed. No PET or ADC maps parameters predicted treatment response to PRRT. However, the sample size of this preliminary study is small and further research needed.
Collapse
Affiliation(s)
- Manuel Weber
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benedikt Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wolfgang Peter Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald Lahner
- Department of Endocrinology and Metabolism, Division of Laboratory Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|