1
|
Pan YJ, Jiang XL, Shan Y, Xu PJ, Dong ZH, Lin J. Detection of inflammation in abdominal aortic aneurysm with reduced field-of-view and low-b-value diffusion-weighted imaging. Magn Reson Imaging 2024; 117:110295. [PMID: 39647518 DOI: 10.1016/j.mri.2024.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVES To evaluate the performance of diffusion-weighted imaging (DWI) with an optimal b-value and field-of-view in identifying wall inflammation in abdominal aortic aneurysm (AAA) by comparing it to delayed enhancement T1-weighted imaging (DEI). METHODS Twenty-five males with AAA were prospectively enrolled and underwent fat-suppressed T1-weighted dark-blood imaging (T1WI), full field-of-view (f-FOV) and reduced field-of-view (r-FOV) DWI (b values = 0, 100, 400 and 800 s/mm2), and DEI. Corresponding images on f-FOV, r-FOV DWI and DEI at the same level were evaluated qualitatively and quantitatively using the paired t-test and Wilcoxon signed-rank test. The agreement in detecting wall inflammation between DWI and DEI sequences was analyzed using weighted kappa statistics. RESULTS For both r-FOV and f-FOV DWI, the scores of delineation of aneurysm wall and lesion conspicuity, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were highest on DWI₁₀₀ (Ps < 0.05). The scores of delineation of aneurysm wall, geometric distortion, lesion conspicuity, and SNR, CNR were significantly higher on r-FOV DWI than those on f-FOV DWI (Ps < 0.05). r-FOV DWI₁₀₀ showed comparable performance to DEI in detecting wall inflammation (κ = 0.715), with superior blood suppression and higher SNR and CNR (Ps < 0.05). CONCLUSIONS DWI with r-FOV and low b-value could be a promising alternative to DEI in identifying wall inflammation in AAA.
Collapse
Affiliation(s)
- Yi-Jun Pan
- Department of Radiology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai 200032, China; Shanghai Institute of Medical Imaging, No.180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Xiao-Lang Jiang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yan Shan
- Department of Radiology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai 200032, China; Shanghai Institute of Medical Imaging, No.180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Peng-Ju Xu
- Department of Radiology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai 200032, China; Shanghai Institute of Medical Imaging, No.180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zhi-Hui Dong
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Jiang Lin
- Department of Radiology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai 200032, China; Shanghai Institute of Medical Imaging, No.180 Fenglin Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
2
|
Wang Z, Dai Z, Zhou X, Dai J, Ge Y, Hu S. Synthetic double inversion recovery imaging for rectal cancer T staging evaluation: imaging quality and added value to T2-weighted imaging. Insights Imaging 2024; 15:256. [PMID: 39446274 PMCID: PMC11502625 DOI: 10.1186/s13244-024-01796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/06/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE To assess the image quality of synthetic double inversion recovery (SyDIR) imaging and enhance the value of T2-weighted imaging (T2WI) in evaluating T stage for rectal cancer patients. METHODS A total of 112 pathologically confirmed rectal cancer patients were retrospectively selected after undergoing MRI, including synthetic MRI. The image quality of T2WI and SyDIR imaging was compared based on signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), overall picture quality, presence of motion artifacts, lesion edge sharpness, and conspicuity. The concordance between MRI and pathological staging results, using T2WI alone and the combination of T2WI and SyDIR for junior and senior radiologists, was assessed using the Kappa test. The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic efficacy of extramural infiltration in rectal cancer patients. RESULTS No significant differences in imaging quality were observed between conventional T2WI and SyDIR (p = 0.07-0.53). The combination of T2WI and SyDIR notably improved the staging concordance between MRI and pathology for both junior (kappa value from 0.547 to 0.780) and senior radiologists (kappa value from 0.738 to 0.834). In addition, the integration of T2WI and SyDIR increased the AUC for diagnosing extramural infiltration for both junior (from 0.842 to 0.918) and senior radiologists (from 0.917 to 0.938). CONCLUSION The combination of T2WI and SyDIR increased the consistency of T staging between MRI and pathology, as well as the diagnostic performance of extramural infiltration, which would benefit treatment selection. CRITICAL RELEVANCE STATEMENT SyDIR sequence provides additional diagnostic value for T2WI in the T staging of rectal cancer, improving the agreement of T staging between MRI and pathology, as well as the diagnostic performance of extramural infiltration. KEY POINTS Synthetic double inversion recovery (SyDIR) and T2WI have comparable image quality. SyDIR provides rectal cancer anatomical features for extramural infiltration detections. The combination of T2WI and SyDIR improves the accuracy of T staging in rectal cancer.
Collapse
Affiliation(s)
- Zi Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Zhuozhi Dai
- Department of Radiology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Xinyi Zhou
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jiankun Dai
- GE Healthcare, MR Research China, Beijing, China
| | - Yuxi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
- Institute of Translational Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
Shi J, Lin J, Zhou X, Yin N, Wu L, Yu M, Xu M. Comparison of Reduced and Full Field of View in Diffusion-Weighted MRI on Image Quality: A Meta-Analysis. J Magn Reson Imaging 2024. [PMID: 38896049 DOI: 10.1002/jmri.29487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Reduced field of view (rFOV) diffusion-weighted imaging (DWI) in MRI shows potential for enhanced image quality compared with traditional full field of view (fFOV) DWI. Evaluating rFOV DWI's impact on image quality is important for clinical adoption. OBJECTIVE To assess the efficacy of rFOV DWI in improving image quality, focusing on artifact reduction, signal-to-noise ratio (SNR) improvement, and lesion detectability. STUDY TYPE Meta-analysis. POPULATION Systematic literature search was conducted in PubMed, Embase, the Cochrane Library, and Web of Science ending in January 2024. Thirteen studies with 765 participants focusing on DWI quality using rFOV was analyzed. FIELD STRENGTH/SEQUENCE SS-EPI, Rtr-SS-EPI, 2D-SS-EPI at 3.0 T. ASSESSMENT Two investigators performed the data extraction. QUADAS-2 assessed bias. The image quality assessment of rFOV and fFOV DWI were compared. STATISTICAL TESTS Standardized mean difference (SMD) was utilized to evaluate and standardize MRI image quality. Heterogeneity was assessed using the I2 statistic and publication bias was evaluated with Egger's test. RESULTS The QUADAS-2 analysis revealed that most studies exhibited a low risk of bias and minimal concerns regarding applicability. Statistical analysis indicated that rFOV DWI yielded higher subjective image quality scores (SMD = 0.535, 95% CI: 0.339, 0.731, I2 = 45.7%) compared with fFOV DWI and was more effective in reducing artifacts (SMD = 0.44, 95% CI: 0.209, 0.672, I2 = 42.3%) than fFOV DWI. However, a decrease in SNR was noted with rFOV DWI (SMD = -0.670, 95% CI: -1.187 to -0.152, I2 = 87.9%). Additionally, rFOV DWI demonstrated enhancements in lesion visibility (SMD = 0.432, 95% CI: -1.187, -0.152, I2 = 53.1%) and anatomical details (SMD = 0.598, 95% CI: 0.121, 1.075, I2 = 90.8%). DATA CONCLUSION rFOV DWI enhances MRI image quality by reducing artifacts and improving lesion visibility with a SNR trade-off. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Lin
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinbin Zhou
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ningbo Yin
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liyi Wu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Mei Yu
- The Xiaoshan Hospital Affiliated of Wenzhou Medical University, Xiaoshan First People's Hospital, Hangzhou, China
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Zhang X, Xu X, Wang Y, Zhang J, Hu M, Zhang J, Zhang L, Wang S, Li Y, Zhao X, Chen Y. Reduced field-of-view DWI based on deep learning reconstruction improving diagnostic accuracy of VI-RADS for evaluating muscle invasion. Insights Imaging 2024; 15:139. [PMID: 38853219 PMCID: PMC11162985 DOI: 10.1186/s13244-024-01686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVES To investigate whether reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with deep learning reconstruction (DLR) can improve the accuracy of evaluating muscle invasion using VI-RADS. METHODS Eighty-six bladder cancer participants who were evaluated by conventional full field-of-view (fFOV) DWI, standard rFOV (rFOVSTA) DWI, and fast rFOV with DLR (rFOVDLR) DWI were included in this prospective study. Tumors were categorized according to the vesical imaging reporting and data system (VI-RADS). Qualitative image quality scoring, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and ADC value were evaluated. Friedman test with post hoc test revealed the difference across the three DWIs. Receiver operating characteristic analysis was performed to calculate the areas under the curve (AUCs). RESULTS The AUC of the rFOVSTA DWI and rFOVDLR DWI were higher than that of fFOV DWI. rFOVDLR DWI reduced the acquisition time from 5:02 min to 3:25 min, and showed higher scores in overall image quality with higher CNR and SNR, compared to rFOVSTA DWI (p < 0.05). The mean ADC of all cases of rFOVSTA DWI and rFOVDLR DWI was significantly lower than that of fFOV DWI (all p < 0.05). There was no difference in mean ADC value and the AUC for evaluating muscle invasion between rFOVSTA DWI and rFOVDLR DWI (p > 0.05). CONCLUSIONS rFOV DWI with DLR can improve the diagnostic accuracy of fFOV DWI for evaluating muscle invasion. Applying DLR to rFOV DWI reduced the acquisition time and improved overall image quality while maintaining ADC value and diagnostic accuracy. CRITICAL RELEVANCE STATEMENT The diagnostic performance and image quality of full field-of-view DWI, reduced field-of-view (rFOV) DWI with and without DLR were compared. DLR would benefit the wide clinical application of rFOV DWI by reducing the acquisition time and improving the image quality. KEY POINTS Deep learning reconstruction (DLR) can reduce scan time and improve image quality. Reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with DLR showed better diagnostic performances than full field-of-view DWI. There was no difference of diagnostic accuracy between rFOV DWI with DLR and standard rFOV DWI.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaojuan Xu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yichen Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mancang Hu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jin Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lianyu Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sicong Wang
- GE Healthcare, MR Research China, Daxing district, Tongji south road No1, Beijing, 100176, China
| | - Yi Li
- School of Statistics and Mathematics, Nanjing Audit University, Nanjing, 211815, China
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yan Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Bian W, Wang L, Li J, Cui S, Wu W, Fan R, Niu J. Comparison of reduced field-of-view DWI and conventional DWI techniques for the assessment of lumbar bone marrow infiltration in patients with acute leukemia. Front Oncol 2024; 13:1321080. [PMID: 38260859 PMCID: PMC10800863 DOI: 10.3389/fonc.2023.1321080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives To compare the imaging quality, apparent diffusion coefficient (ADC), and the value of assessing bone marrow infiltration between reduced field-of-view diffusion-weighted imaging (r-FOV DWI) and conventional DWI in the lumbar spine of acute leukemia (AL). Methods Patients with newly diagnosed AL were recruited and underwent both r-FOV DWI and conventional DWI in the lumbar spine. Two radiologists evaluated image quality scores using 5-Likert-type scales qualitatively and measured signal-to-noise ratio (SNR), contrast-to-noise (CNR), signal intensity ratio (SIR), and ADC quantitatively. Patients were divided into hypo- and normocellular group, moderately hypercellular group, and severely hypercellular group according to bone marrow cellularity (BMC) obtained from bone marrow biopsies. The image quality parameters and ADC value between the two sequences were compared. One-way analysis of variance followed by LSD post hoc test was used for the comparisons of the ADC values among the three groups. The performance of ADC obtained with r-FOV DWI (ADCr) and conventional DWI(ADCc) in evaluating BMC and their correlations with BMC and white blood cells (WBC) were analyzed and compared. Results 71 AL patients (hypo- and normocellular: n=20; moderately hypercellular: n=19; severely hypercellular: n=32) were evaluated. The image quality scores, CNR, SIR, and ADC value of r-FOV DWI were significantly higher than those of conventional DWI (all p<0.05), and the SNR of r-FOV DWI was significantly lower (p<0.001). ADCr showed statistical differences in all pairwise comparisons among the three groups (all p<0.05), while ADCc showed significant difference only between hypo- and normocellular group and severely hypercellular group (p=0.014). The performance of ADCr in evaluating BMC (Z=2.380, p=0.017) and its correlations with BMC (Z=-2.008, p = 0.045) and WBC (Z=-2.022, p = 0.043) were significantly higher than those of ADCc. Conclusion Compared with conventional DWI, r-FOV DWI provides superior image quality of the lumbar spine in AL patients, thus yielding better performance in assessing bone marrow infiltration.
Collapse
Affiliation(s)
- Wenjin Bian
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Luyao Wang
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianting Li
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sha Cui
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenqi Wu
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rong Fan
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinliang Niu
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Tanabe M, Hideura K, Higashi M, Ihara K, Inoue A, Narikiyo K, Benkert T, Imai H, Yamane M, Yamaguchi T, Shimokawa M, Ito K. Impact on the image quality of modified reduced field-of-view diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinoma using spatially tailored two-dimensional radiofrequency pulses with a tilted excitation plane: A comparison with conventional field-of-view imaging. Eur J Radiol 2023; 168:111138. [PMID: 37832196 DOI: 10.1016/j.ejrad.2023.111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE Modified reduced FOV diffusion-weighted imaging (DWI) using spatially-tailored 2D RF pulses with tilted excitation plane (tilted r-DWI) has been developed. The purpose of this study was to evaluate the impact on image quality and quantitative apparent diffusion coefficient (ADC) values of tilted r-DWI for pancreatic ductal adenocarcinomas (PDAC) in comparison to conventional full-FOV DWI (f-DWI). METHODS This retrospective study included 21 patients (mean 70.7, range 50-85 years old) with pathologically confirmed PDAC. All MR images were obtained using 3 T systems. Two radiologists evaluated presence of blurring or ghost artifacts, susceptibility artifacts, and aliasing artifacts; anatomic visualization of the pancreas; interslice signal homogeneity; overall image quality; and conspicuity of the PDAC. For quantitative analysis, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), signal-intensity ratio (SIR) and ADC values were measured using regions of interest. RESULTS All image quality scores except aliasing artifacts in tilted r-DWI were significantly higher than those in f-DWI (p < 0.01). The CNR and SIR of PDAC were significantly higher in tilted r-DWI than in f-DWI (6.7 ± 4.4 vs. 4.7 ± 3.9, 2.02 ± 0.72 vs. 1.72 ± 0.60, p < 0.01). Conversely, the SNR of PDAC in tilted r-DWI was significantly lower than that in f-DWI (56.0 ± 33.1 vs. 113.6 ± 67.3, p < 0.01). No significant difference was observed between mean ADC values of the PDAC calculated from tilted r-DWI (tilted r-ADC) and those from f-DWI (f-ADC) (1225 ± 250 vs. 1294 ± 302, p = 0.11). CONCLUSION The r-DWI using 2D RF techniques with a tilted excitation plane was shown to significantly improve the image quality and CNR and reduce image artifacts compared to f-DWI techniques in MRI evaluations of PDAC without significantly affecting ADC values.
Collapse
Affiliation(s)
- Masahiro Tanabe
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Keiko Hideura
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mayumi Higashi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Kenichiro Ihara
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Atsuo Inoue
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koji Narikiyo
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Hiroshi Imai
- MR Research & Collaboration, Siemens Healthcare K.K., Tokyo, Japan
| | - Masatoshi Yamane
- Department of Radiological Technology, Yamaguchi University Hospital, Japan
| | - Takahiro Yamaguchi
- Department of Radiological Technology, Yamaguchi University Hospital, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Japan
| | - Katsuyoshi Ito
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
7
|
Jiang Z, Sun W, Xu D, Yu H, Mei H, Song X, Xu H. Stability and repeatability of diffusion-weighted imaging (DWI) of normal pancreas on 5.0 Tesla magnetic resonance imaging (MRI). Sci Rep 2023; 13:11954. [PMID: 37488151 PMCID: PMC10366139 DOI: 10.1038/s41598-023-38360-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
To explore the stability and repeatability of diffusion-weighted imaging (DWI) of normal pancreas with different field of views (FOV) on 5.0 T magnetic resonance imaging (MRI) system. Twenty healthy subjects underwent two sessions of large FOV (lFOV) and reduced FOV (rFOV) DWI sequence scanning. Two radiologists measured the apparent diffusion coefficient (ADC) values and the signal-to-noise ratio (SNR) of the pancreatic head, body, and tail on DWI images, simultaneously, using a 5-point scale, evaluate the artifacts and image quality. One radiologist re-measured the ADC on DWI images again after a 4-week interval. The test-retest repeatability of two scan sessions were also evaluated. Intra-observer and inter-observer at lFOV and rFOV, the ADC values were not significantly different (P > 0.05), intraclass correlation coefficients (ICCs) and coefficient of variations were excellence (ICCs 0.85-0.99, CVs < 8.0%). The ADC values were lower with rFOV than lFOV DWI for the head, body, tail, and overall pancreas. The consistency of the two scan sessions were high. The high stability and repeatability of pancreas DWI has been confirmed at 5.0 T. Scan durations are reduced while resolution and image quality are improved with rFOV DWI, which is more preferable than lFOV for routine pancreas imaging.
Collapse
Affiliation(s)
- Zhiyong Jiang
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Rd, Wuchang District, Wuhan, Hubei, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Rd, Wuchang District, Wuhan, Hubei, China
| | - Dan Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Rd, Wuchang District, Wuhan, Hubei, China
| | - Hao Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Rd, Wuchang District, Wuhan, Hubei, China
| | - Hao Mei
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Rd, Wuchang District, Wuhan, Hubei, China
| | - Xiaopeng Song
- United Imaging Healthcare, Shanghai, China.
- Wuhan Zhongke Industrial Research Institute of Medical Science, Wuhan, Hubei, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Rd, Wuchang District, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Wang YF, Ren Y, Zhu CF, Qian L, Yang Q, Deng WM, Zou LY, Liu Z, Luo DH. Optimising diffusion-weighted imaging of the thyroid gland using dedicated surface coil. Clin Radiol 2022; 77:e791-e798. [PMID: 36096939 DOI: 10.1016/j.crad.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
AIM To assess the feasibility of applying field-of-view (FOV) optimised and constrained undistorted single-shot (FOCUS) diffusion-weighted imaging (DWI) in the thyroid gland by comparing its image quality with conventional DWI (C-DWI) qualitatively and quantitatively using a dedicated surface coil exclusively designed for the thyroid gland at 3 T magnetic resonance imaging (MRI). MATERIALS AND METHODS In this prospective study, 32 healthy volunteers who had undergone 3 T the thyroid gland MRI with FOCUS-DWI and C-DWI were enrolled. Two independent reviewers assessed the overall image quality, artefacts, sharpness, and geometric distortion based on a five-point Likert scale. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) were quantified for both sequences. Interobserver agreement, qualitative scores, and quantitative parameters were compared between two sequences. RESULTS Agreement between the two readers was good for FOCUS-DWI (κ = 0.714-0.778) and moderate to good for C-DWI (κ = 0.525-0.672) in qualitative image quality assessment. Qualitatively, image quality (overall image quality, artefacts, sharpness, and geometric distortion) was significantly better in FOCUS-DWI than that in the C-DWI (all p<0.05); however, quantitatively, FOCUS-DWI had significantly lower SNRs (p<0.001) and CNRs (p=0.012) compared with C-DWI. The ADC value on FOCUS-DWI was significantly higher than that on C-DWI (p<0.001). CONCLUSION FOCUS-DWI depicted the thyroid gland with significantly better image quality qualitatively and less ghost artefacts, but had significantly lower SNR and CNR quantitatively, compared with C-DWI, suggesting that both DWI sequences have advantages and could be chosen for different purposes.
Collapse
Affiliation(s)
- Y F Wang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Y Ren
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - C F Zhu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - L Qian
- MR Research, GE Healthcare, Beijing, China
| | - Q Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - W M Deng
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - L Y Zou
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Z Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - D H Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China; Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Jovanovic S, Tadic B, Knezevic DJ, Ostojic S. Diagnostic challenge and surgical management of multiple pancreatic neuroendocrine tumors – A case report. Niger J Clin Pract 2022; 25:971-973. [DOI: 10.4103/njcp.njcp_1971_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Harder FN, Kamal O, Kaissis GA, Heid I, Lohöfer FK, McTavish S, Van AT, Katemann C, Peeters JM, Karampinos DC, Makowski MR, Braren RF. Qualitative and Quantitative Comparison of Respiratory Triggered Reduced Field-of-View (FOV) Versus Full FOV Diffusion Weighted Imaging (DWI) in Pancreatic Pathologies. Acad Radiol 2021; 28 Suppl 1:S234-S243. [PMID: 33390324 DOI: 10.1016/j.acra.2020.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate the effects of a reduced field-of-view (rFOV) acquisition in diffusion-weighted magnetic resonance imaging of the pancreas. MATERIALS AND METHODS We enrolled 153 patients who underwent routine clinical MRI work-up including respiratory-triggered diffusion-weighted single-shot echo-planar imaging (DWI) with full field-of-view (fFOV, 3 × 3 × 4 mm3 voxel size) and reduced field-of-view (rFOV, 2.5 × 2.5 × 3 mm3 voxel size) for suspected pancreatic pathology. Two experienced radiologists were asked to subjectively rate (Likert Scale 1-4) image quality (overall image quality, lesion conspicuity, anatomical detail, artifacts). In addition, quantitative image parameters were assessed (apparent diffusion coefficient, apparent signal to noise ratio, apparent contrast to noise ratio [CNR]). RESULTS All subjective metrics of image quality were rated in favor of rFOV DWI images compared to fFOV DWI images with substantial-to-high inter-rater reliability. Calculated ADC values of normal pancreas, pancreatic pathologies and reference tissues revealed no differences between both sequences. Whereas the apparent signal to noise ratio was higher in fFOV images, apparent CNR was higher in rFOV images. CONCLUSION rFOV DWI provides higher image quality and apparent CNR values, favorable in the analysis of pancreatic pathologies.
Collapse
Affiliation(s)
- Felix N Harder
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Omar Kamal
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine; Department of Radiology, South Egypt Cancer Institute, Assiut University, Egypt
| | - Georgios A Kaissis
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine; Department of Computing, Faculty of Engineering, Imperial College of Science, Technology and Medicine, United Kingdom
| | - Irina Heid
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Fabian K Lohöfer
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Sean McTavish
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Anh T Van
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | | | | | - Dimitrios C Karampinos
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Marcus R Makowski
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine
| | - Rickmer F Braren
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine.
| |
Collapse
|
11
|
Zhao L, Liang M, Wu PY, Yang Y, Zhang H, Zhao X. A preliminary study of synthetic magnetic resonance imaging in rectal cancer: imaging quality and preoperative assessment. Insights Imaging 2021; 12:120. [PMID: 34420097 PMCID: PMC8380206 DOI: 10.1186/s13244-021-01063-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To compare the imaging quality, T stage and extramural venous invasion (EMVI) evaluation between the conventional and synthetic T2-weighted imaging (T2WI), and to investigate the role of quantitative values obtained from synthetic magnetic resonance imaging (MRI) for assessing nodal staging in rectal cancer (RC). METHODS Ninety-four patients with pathologically proven RC who underwent rectal MRI examinations including synthetic MRI were retrospectively recruited. The image quality of conventional and synthetic T2WI was compared regarding signal-to-noise ratio (SNR), contrast-to-noise (CNR), sharpness of the lesion edge, lesion conspicuity, absence of motion artifacts, and overall image quality. The accuracy of T stage and EMVI evaluation on conventional and synthetic T2WI were compared using the Mc-Nemar test. The quantitative T1, T2, and PD values were used to predict the nodal staging of MRI-evaluated node-negative RC. RESULTS There were no statistically significant differences between conventional and synthetic T2WI in SNR, CNR, overall image quality, lesion conspicuity, and absence of motion artifacts (p = 0.058-0.978). There were no significant differences in the diagnostic accuracy of T stage and EMVI between conventional and synthetic T2WI from two observers (p = 0.375 and 0.625 for T stage; p = 0.625 and 0.219 for EMVI). The T2 value showed good diagnostic performance for predicting the nodal staging of RC with the area under the receiver operating characteristic, sensitivity, specificity, and accuracy of 0.854, 90.0%, 71.4%, and 80.3%, respectively. CONCLUSIONS Synthetic MRI may facilitate preoperative staging and EMVI evaluation of RC by providing synthetic T2WI and quantitative maps in one acquisition.
Collapse
Affiliation(s)
- Li Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Meng Liang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Pu-Yeh Wu
- GE Healthcare, MR Research China, No. 1 Tongji South Road Beijing Economic Technology Development Area, Beijing, 100176, China
| | - Yang Yang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Hongmei Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
12
|
The Chinese guidelines for the diagnosis and treatment of pancreatic neuroendocrine neoplasms (2020). JOURNAL OF PANCREATOLOGY 2021. [DOI: 10.1097/jp9.0000000000000064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Meng X, Hu H, Wang Y, Hu D, Li Z, Feng C. Application of bi-planar reduced field-of-view DWI (rFOV DWI) in the assessment of muscle-invasiveness of bladder cancer. Eur J Radiol 2020; 136:109486. [PMID: 33434861 DOI: 10.1016/j.ejrad.2020.109486] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To compare the image quality of the reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with the full field-of-view (fFOV) DWI in the assessment of bladder cancer (BC); and to explore the possible superiority of bi-planar (axial and sagittal) rFOV DWI over single planar fFOV DWI in predicting muscle-invasiveness of BC. MATERIALS AND METHODS This retrospective study analyzed 61 patients with BC who underwent DWI sequences including axial fFOV DWI, axial rFOV DWI, and sagittal rFOV DWI. Qualitative and quantitative image quality assessment were compared between axial fFOV DWI and rFOV DWI sequences. The tumor with its base could be clearly displayed on DWI was defined as the evaluable lesion, and the number of evaluable lesions detected from single axial fFOV DWI, axial rFOV DWI, sagittal rFOV DWI, and bi-planar rFOV DWI sequences was recorded and compared. The apparent diffusion coefficient (ADC) was compared between non-muscular-invasive bladder cancer (NMIBC) and muscular-invasive bladder cancer (MIBC) based on the sequences of axial fFOV DWI and rFOV DWI, respectively. Vesical Imaging-Reporting and Data System (VI-RADS) was introduced to evaluate the overall risk of muscle-invasiveness of BC and receiver operating characteristic (ROC) curve analysis was applied to assess the diagnostic performance. RESULTS The contrast-to-noise ratio (CNR) of the rFOV DWI was significantly higher than that of fFOV DWI (p < 0.01), while the signal-to-noise ratio (SNR) was significantly lower than that of fFOV DWI (p < 0.01). The subjective score of rFOV DWI was significantly higher than that of fFOV DWI (p < 0.01). The ADC value of the MIBC group was significantly lower than that of the NMIBC in both rFOV DWI and fFOV DWI (all p < 0.01). The number of evaluable lesions detected from the bi-planar rFOV DWI was significantly higher than that detected from the single axial fFOV DWI, axial rFOV DWI, and sagittal rFOV DWI (all p < 0.01). VI-RADS based on the bi-planar rFOV DWI offered high predictive power (the area under the ROC curve, 0.946) for predicting the presence of muscle-invasiveness of BC. CONCLUSION Bi-planar rFOV DWI may provide more diagnostic confidence than the single planar DWI for predicting the presence of muscle-invasiveness in BC, with improved image quality over the fFOV DWI.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Henglong Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanchun Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cui Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|