1
|
Lisi C, Moser LJ, Mergen V, Flohr T, Eberhard M, Alkadhi H. Increasing the rate of datasets amenable to CT FFR and quantitative plaque analysis: Value of software for reducing stair-step artifacts demonstrated in photon-counting detector CT. Eur J Radiol Open 2024; 12:100574. [PMID: 38882632 PMCID: PMC11179571 DOI: 10.1016/j.ejro.2024.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose To determine the value of an algorithm for reducing stair-step artifacts for advanced coronary analyses in sequential mode coronary CT angiography (CCTA). Methods Forty patients undergoing sequential mode photon-counting detector CCTA with at least one stair-step artifact were included. Twenty patients (14 males; mean age 57±17years) with 45 segments showing stair-step artifacts and without atherosclerosis were included for CTFFR analysis. Twenty patients (20 males; mean age 74±13years) with 22 segments showing stair-step artifacts crossing an atherosclerotic plaque were included for quantitative plaque analysis. Artifacts were graded, and CTFFR and quantitative coronary plaque analyses were performed in standard reconstructions and in those reconstructed with a software (entitled ZeeFree) for artifact reduction. Results Stair-step artifacts were significantly reduced in ZeeFree compared to standard reconstructions (p<0.05). In standard reconstructions, CTFFR was not feasible in 3/45 (7 %) segments but was feasible in all ZeeFree reconstructions. In 9/45 (20 %) segments without atherosclerosis, the ZeeFree algorithm led to a change of CTFFR values from pathologic in standard to physiologic values in ZeeFree reconstructions. In one segment (1/22, 5 %), quantitative plaque analysis was not feasible in standard but only in ZeeFree reconstruction. The mean overall plaque volume (111±60 mm3), the calcific (77±47 mm3), fibrotic (31±28 mm3), and lipidic (4±3 mm3) plaque components were higher in standard than in ZeeFree reconstructions (overall 75±50 mm3, p<0.001; calcific 51±42 mm3, p<0.001; fibrotic 22±19 mm3, p<0.05; lipidic 3±3 mm3, p=0.055). Conclusion Despite the lack of reference standard modalities for CTFFR and coronary plaque analysis, initial evidence indicates that an algorithm for reducing stair-step artifacts in sequential mode CCTA increases the rate and quality of datasets amenable to advanced coronary artery analysis, hereby potentially improving patient management.
Collapse
Affiliation(s)
- Costanza Lisi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Lukas J Moser
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victor Mergen
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Flohr
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Eberhard
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Langenbach MC, Sandstede J, Sieren MM, Barkhausen J, Gutberlet M, Bamberg F, Lehmkuhl L, Maintz D, Naehle CP. German Radiological Society and the Professional Association of German Radiologists Position Paper on Coronary computed tomography: Clinical Evidence and Quality of Patient Care in Chronic Coronary Syndrome. ROFO-FORTSCHR RONTG 2023; 195:115-134. [PMID: 36634682 DOI: 10.1055/a-1973-9687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This position paper is a joint statement of the German Radiological Society (DRG) and the Professional Association of German Radiologists (BDR), which reflects the current state of knowledge about coronary computed tomography. It is based on preclinical and clinical studies that have investigated the clinical relevance as well as the technical requirements and fundamentals of cardiac computed tomography. CITATION FORMAT: · Langenbach MC, Sandstede J, Sieren M et al. DRG and BDR Position Paper on Coronary CT: Clinical Evidence and Quality of Patient Care in Chronic Coronary Syndrome. Fortschr Röntgenstr 2023; 195: 115 - 133.
Collapse
Affiliation(s)
- Marcel C Langenbach
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Koln, Germany.,Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jörn Sandstede
- Radiologische Allianz, Hamburg, Germany.,Berufsverband der deutschen Radiologen e. V. (BDR), München, Deutschland
| | - Malte M Sieren
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein Campus Luebeck, Lübeck, Germany
| | - Jörg Barkhausen
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein Campus Luebeck, Lübeck, Germany
| | - Matthias Gutberlet
- Department of Diagnostic and Interventional Radiology, Leipzig Heart Centre University Hospital, Leipzig, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Lehmkuhl
- Department for Diagnostic and Interventional Radiology, RHÖN Clinic, Campus Bad Neustadt, Germany
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Koln, Germany
| | - Claas P Naehle
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Koln, Germany.,Radiologische Allianz, Hamburg, Germany
| |
Collapse
|
3
|
Langenbach MC, Sandstede J, Sieren MM, Barkhausen J, Gutberlet M, Bamberg F, Lehmkuhl L, Maintz D, Nähle CP. [German Radiological Society and the Professional Association of German Radiologists position paper on coronary computed tomography: clinical evidence and quality of patient care in chronic coronary syndrome]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:1-19. [PMID: 36633613 PMCID: PMC9838426 DOI: 10.1007/s00117-022-01096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 01/13/2023]
Abstract
This position paper is a joint statement of the German Radiological Society (DRG) and the Professional Association of German Radiologists (BDR), which reflects the current state of knowledge about coronary computed tomography (CT). It is based on preclinical and clinical studies that have investigated the clinical relevance as well as the technical requirements and fundamentals of cardiac computed tomography.
Collapse
Affiliation(s)
- M C Langenbach
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln, Köln, Deutschland.
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - J Sandstede
- Radiologische Allianz, Hamburg, Deutschland
- Berufsverband der deutschen Radiologen e. V. (BDR), München, Deutschland
| | - M M Sieren
- Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Deutschland
| | - J Barkhausen
- Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Deutschland
| | - M Gutberlet
- Abteilung für Diagnostische und Interventionelle Radiologie, Herzzentrum Leipzig - Universität Leipzig, Leipzig, Deutschland
| | - F Bamberg
- Medizinische Fakultät, Abteilung für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Freiburg, Freiburg, Deutschland
| | - L Lehmkuhl
- Abteilung für Diagnostische und Interventionelle Radiologie, RHÖN Klinik, Campus Bad Neustadt, Bad Neustadt, Deutschland
| | - D Maintz
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln, Köln, Deutschland
| | - C P Nähle
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln, Köln, Deutschland
- Radiologische Allianz, Hamburg, Deutschland
| |
Collapse
|
4
|
Yan C, Ma J, Tian D, Zhang C, Zhang F, Zhao Y, Fu S, Sun Y, Zhang Q. Evaluation of Myocardial Microcirculation in Rats under a High-Altitude Hypoxic Environment by Computed Tomography Myocardial Perfusion Imaging. Int Heart J 2023; 64:928-934. [PMID: 37778996 DOI: 10.1536/ihj.23-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This study aims to examine the changes in myocardial microcirculation in rats in a high-altitude hypoxic environment via computed tomography (CT) myocardial perfusion imaging technology. Rats in two groups were raised in different environments from 4 weeks of age for a period of 24 weeks. At 28 weeks of age, both groups underwent CT myocardial perfusion scanning, and the following myocardial perfusion parameters were measured: time to peak (TTP), mean transit time (MTT), blood flow (BF), and blood volume (BV). Following the scan, the rats were sacrificed, the cardiac index and right ventricular hypertrophy index were obtained, and hematoxylin-eosin (HE) staining was utilized to observe the pathological changes in the myocardium. In the group of rats that are subject to a high-altitude hypoxic environment for 24 weeks (the high-altitude group), the TTP and MTT values were increased (P < 0.05), the BF and BV values were lower (P < 0.05), the right heart mass was higher (P < 0.05) than that in the low-altitude group. As shown by the pathological results of HE staining, the gap between cardiomyocytes in the high-altitude group was widened, the arrangement of cardiomyocytes was irregular, and the cells were filled with a few fat vacuoles. The myocardial microcirculation is altered in a high-altitude hypoxic environment. In particular, the myocardium is in a state of inadequate perfusion, the BF in the myocardium slows down, and the right heart displays compensatory hypertrophy.
Collapse
Affiliation(s)
- Chunlong Yan
- Suzhou Medical College of Soochow University
- Department of Radiology, Qinghai Provincial People's Hospital
- Department of Radiology, Jining No.1 People's Hospital
| | - Jinfeng Ma
- Suzhou Medical College of Soochow University
- Department of Hematology, Jining No.1 People's Hospital
| | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Fengjuan Zhang
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Yuchun Zhao
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Shihan Fu
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Yanqiu Sun
- Suzhou Medical College of Soochow University
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital
| |
Collapse
|
5
|
Canan A, Barbosa MF, Nomura CH, Abbara S, Kay FU. Cardiac CT Perfusion Imaging. CURRENT RADIOLOGY REPORTS 2022. [DOI: 10.1007/s40134-022-00406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
The Effects of Increasing Aortic Occlusion Times at the Level of the Highest Renal Artery (Zone II) in the Normovolemic Rabbit Model. Acad Radiol 2022; 29:986-993. [PMID: 34400077 DOI: 10.1016/j.acra.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the effects of increasing zone II resuscitative endovascular balloon occlusion of the aorta (REBOA) occlusion times on physiological, end-organ and inflammatory responses in rabbits to assess the safe aortic occlusion time in a normovolemic rabbit model. METHODS The zone ll aorta was occluded with a balloon in 32 rabbits (8 animals each for 15, 30, 60, and 90 min). 8 rabbits served as a control. ELISAs were used to examine the serum levels of ALT, AST, Cr, BUN, MDA, SOD, IL-8, IL-6, and TNF-α; HE staining was used to identify the morphological changes in the kidney; RT-PCR was used to detect the mRNA levels of IL-6, IL-8, TNF-α and NF-κB in the kidney and uterus; and Western blotting was used to measure the protein expression levels of IL-6, IL-8, TNF-α and NF-κB in the kidney and uterus. RESULTS Plasma concentrations of liver markers, kidney markers, inflammatory factors and oxidative stress indicators were significantly increased at the end of reperfusion in the 30 min, 60 min and 90 min groups. Damage to the kidney occurred in the 30 min, 60 min and 90 min groups. The mRNA and protein expression levels of IL-6, IL-8, TNF-α and NF-κB in the kidney and uterus were significantly increased at the end of reperfusion in the 30 min group, and as the time of occlusion extended, these levels continued to increase. CONCLUSION Activation of systemic inflammation and ischaemia-reperfusion injury of end-organs occurred when the occlusion time reached 30 min. Therefore, 15 min should be regarded as a safe period of REBOA in zone II.
Collapse
|
7
|
Lee H, Pursley J, Lu HM, Adams J, DeLaney T, Chen YL, Jee KW. A proof of concept treatment planning study of gated proton radiotherapy for cardiac soft tissue sarcoma. Phys Imaging Radiat Oncol 2021; 19:78-84. [PMID: 34368473 PMCID: PMC8326805 DOI: 10.1016/j.phro.2021.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/23/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
Challenges of a cardiac target due to the respiration, the heart motion and the interplay effect. Cardiac respiratory double gating with additional ECG signals for proton radiotherapy. Proton planning study with a cardiac-gated CT scan obtained at the end-expiration.
Background and Purpose Few studies on radiotherapy of cardiac targets exist, and none using a gating method according to cardiac movement. This study aimed to evaluate the dose-volume advantage of using cardiac-respiratory double gating (CRDG) in terms of target location with additional ECG signals in comparison to respiratory single gating (RSG) for proton radiotherapy of targets in the heart. Materials and Methods Cardiac motion was modeled using a cardiac-gated four-dimensional computed tomography scan obtained at the end-expiration. Plans with the prescription dose of 50 Gy (RSG and CRDG plans at diastole and systole phases) were compared in terms of clinically relevant dose-volume criteria for various target sizes and seven cardiac subsites. Potential dose sparing by utilizing CRDG over RSG was quantified in terms of surrounding organ at risk (OAR) doses while the dose coverage to the targets was fully ensured. Results The average mean dose reductions were 28 ± 10% when gated at diastole and 21 ± 12% at systole in heart and 30 ± 17% at diastole and 8 ± 9% at systole in left ventricle compared to respiratory single gating. The diastole phase was optimal for gated treatments for all target locations except right ventricle and interventricular septum. The right ventricle target was best treated at the systole phase. However, an optimal gating phase for the interventricular septum target could not be determined. Conclusions We have studied the dose-volume benefits of CRDG for each cardiac subsite, and demonstrated that CRDG may spare organs at risk better than RSG.
Collapse
Affiliation(s)
- Hyeri Lee
- Corresponding author at: Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Lunder Building, LL 236, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|