1
|
Ye YX, Yang L, Kang Z, Wang MQ, Xie XD, Lou KX, Bao J, Du M, Li ZX. Magnetic resonance imaging-based lymph node radiomics for predicting the metastasis of evaluable lymph nodes in rectal cancer. World J Gastrointest Oncol 2024; 16:1849-1860. [PMID: 38764830 PMCID: PMC11099437 DOI: 10.4251/wjgo.v16.i5.1849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Lymph node (LN) staging in rectal cancer (RC) affects treatment decisions and patient prognosis. For radiologists, the traditional preoperative assessment of LN metastasis (LNM) using magnetic resonance imaging (MRI) poses a challenge. AIM To explore the value of a nomogram model that combines Conventional MRI and radiomics features from the LNs of RC in assessing the preoperative metastasis of evaluable LNs. METHODS In this retrospective study, 270 LNs (158 nonmetastatic, 112 metastatic) were randomly split into training (n = 189) and validation sets (n = 81). LNs were classified based on pathology-MRI matching. Conventional MRI features [size, shape, margin, T2-weighted imaging (T2WI) appearance, and CE-T1-weighted imaging (T1WI) enhancement] were evaluated. Three radiomics models used 3D features from T1WI and T2WI images. Additionally, a nomogram model combining conventional MRI and radiomics features was developed. The model used univariate analysis and multivariable logistic regression. Evaluation employed the receiver operating characteristic curve, with DeLong test for comparing diagnostic performance. Nomogram performance was assessed using calibration and decision curve analysis. RESULTS The nomogram model outperformed conventional MRI and single radiomics models in evaluating LNM. In the training set, the nomogram model achieved an area under the curve (AUC) of 0.92, which was significantly higher than the AUCs of 0.82 (P < 0.001) and 0.89 (P < 0.001) of the conventional MRI and radiomics models, respectively. In the validation set, the nomogram model achieved an AUC of 0.91, significantly surpassing 0.80 (P < 0.001) and 0.86 (P < 0.001), respectively. CONCLUSION The nomogram model showed the best performance in predicting metastasis of evaluable LNs.
Collapse
Affiliation(s)
- Yong-Xia Ye
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Liu Yang
- Department of Colorectal Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Zheng Kang
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Mei-Qin Wang
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Xiao-Dong Xie
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Ke-Xin Lou
- Department of Pathology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Jun Bao
- Colorectal Center, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Mei Du
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Zhe-Xuan Li
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| |
Collapse
|
2
|
Dong X, Ren G, Chen Y, Yong H, Zhang T, Yin Q, Zhang Z, Yuan S, Ge Y, Duan S, Liu H, Wang D. Effects of MRI radiomics combined with clinical data in evaluating lymph node metastasis in mrT1-3a staging rectal cancer. Front Oncol 2023; 13:1194120. [PMID: 37909021 PMCID: PMC10614283 DOI: 10.3389/fonc.2023.1194120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Objective To investigate the value of a clinical-MRI radiomics model based on clinical characteristics and T2-weighted imaging (T2WI) for preoperatively evaluating lymph node (LN) metastasis in patients with MRI-predicted low tumor (T) staging rectal cancer (mrT1, mrT2, and mrT3a with extramural spread ≤ 5 mm). Methods This retrospective study enrolled 303 patients with low T-staging rectal cancer (training cohort, n = 213, testing cohort n = 90). A total of 960 radiomics features were extracted from T2WI. Minimum redundancy and maximum relevance (mRMR) and support vector machine were performed to select the best performed radiomics features for predicting LN metastasis. Multivariate logistic regression analysis was then used to construct the clinical and clinical-radiomics combined models. The model performance for predicting LN metastasis was assessed by receiver operator characteristic curve (ROC) and clinical utility implementing a nomogram and decision curve analysis (DCA). The predictive performance for LN metastasis was also compared between the combined model and human readers (2 seniors). Results Fourteen radiomics features and 2 clinical characteristics were selected for predicting LN metastasis. In the testing cohort, a higher positive predictive value of 75.9% for the combined model was achieved than those of the clinical model (44.8%) and two readers (reader 1: 54.9%, reader 2: 56.3%) in identifying LN metastasis. The interobserver agreement between 2 readers was moderate with a kappa value of 0.416. A clinical-radiomics nomogram and decision curve analysis demonstrated that the combined model was clinically useful. Conclusion T2WI-based radiomics combined with clinical data could improve the efficacy in noninvasively evaluating LN metastasis for the low T-staging rectal cancer and aid in tailoring treatment strategies.
Collapse
Affiliation(s)
- Xue Dong
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Ren
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhong Chen
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Yong
- Department of Radiology, Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Tingting Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiufeng Yin
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyang Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijun Yuan
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqiong Ge
- Department of Medicine, GE Healthcare China, Shanghai, China
| | - Shaofeng Duan
- Department of Medicine, GE Healthcare China, Shanghai, China
| | - Huanhuan Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Li J, Gao X, Dominik Nickel M, Cheng J, Zhu J. Native T1 mapping for differentiating the histopathologic type, grade, and stage of rectal adenocarcinoma: a pilot study. Cancer Imaging 2022; 22:30. [PMID: 35715848 PMCID: PMC9204907 DOI: 10.1186/s40644-022-00461-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Previous studies have indicated that T1 relaxation time could be utilized for the analysis of tissue characteristics. T1 mapping technology has been gradually used on research of body tumor. In this study, the application of native T1 relaxation time for differentiating the histopathologic type, grade, and stage of rectal adenocarcinoma was investigated. Methods One hundred and twenty patients with pathologically confirmed rectal adenocarcinoma were retrospectively evaluated. All patients underwent high-resolution anatomical magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and T1 mapping sequences. Parameters of T1 relaxation time and apparent diffusion coefficient (ADC) were measured between the different groups. The diagnostic power was evaluated though the receiver operating characteristic (ROC) curve. Results The T1 and ADC values varied significantly between rectal mucinous adenocarcinoma (MC) and non-mucinous rectal adenocarcinoma (AC) ([1986.1 ± 163.3 ms] vs. [1562.3 ± 244.2 ms] and [1.38 ± 0.23 × 10−3mm2/s] vs. [1.03 ± 0.15 × 10−3mm2/s], respectively; P < 0.001). In the AC group, T1 relaxation time were significantly different between the low- and high-grade adenocarcinoma cases ([1508.7 ± 188.6 ms] vs. [1806.5 ± 317.5 ms], P < 0.001), while no differences were apparent in the ADC values ([1.03 ± 0.14 × 10−3mm2/s] vs. [1.04 ± 0.18 × 10−3mm2/s], P > 0.05). No significant differences in T1 and ADC values were identified between the different T and N stage groups for both MC and AC (all P > 0.05). Conclusions Native T1 relaxation time can be used to discriminate MC from AC. The T1 relaxation time was helpful for differentiating the low- and high-grade of AC.
Collapse
Affiliation(s)
- Juan Li
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, No.1, Jianshe Dong Road, Zhengzhou, 450052, China
| | - Xuemei Gao
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, No.1, Jianshe Dong Road, Zhengzhou, 450052, China
| | | | - Jingliang Cheng
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, No.1, Jianshe Dong Road, Zhengzhou, 450052, China.
| | - Jinxia Zhu
- MR Collaboration, Siemens Healthcare Ltd, Beijing, 100000, China
| |
Collapse
|
4
|
Zhou YW, Long YX, Liu X, Liu JY, Qiu M. Tumor calcification is associated with better survival in metastatic colorectal cancer patients treated with bevacizumab plus chemotherapy. Future Oncol 2022; 18:2453-2464. [PMID: 35712899 DOI: 10.2217/fon-2021-1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aims: The purpose was to investigate the correlation between calcification and outcome in metastatic colorectal cancer (mCRC) patients who received bevacizumab plus chemotherapy as the first-line treatment. Methods: A single retrospective cohort study was conducted with all diagnosed mCRC cases who received bevacizumab and chemotherapy as the first-line therapy. Results: Among all enrolled patients (n = 159), 31 had tumor calcification. The median overall survival and progression-free survival were significantly better in patients with tumor calcification than in those without calcification. A higher objective overall response rate was also observed in the tumor calcification group. On multivariate analysis, tumor calcification was independently associated with overall survival and progression-free survival. Conclusions: Tumor calcification was independently associated with improved survival in mCRC patients treated with bevacizumab plus chemotherapy.
Collapse
Affiliation(s)
- Yu-Wen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Xiu Long
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xia Liu
- Department of Colorectal Cancer Center, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Borgheresi A, De Muzio F, Agostini A, Ottaviani L, Bruno A, Granata V, Fusco R, Danti G, Flammia F, Grassi R, Grassi F, Bruno F, Palumbo P, Barile A, Miele V, Giovagnoni A. Lymph Nodes Evaluation in Rectal Cancer: Where Do We Stand and Future Perspective. J Clin Med 2022; 11:2599. [PMID: 35566723 PMCID: PMC9104021 DOI: 10.3390/jcm11092599] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
The assessment of nodal involvement in patients with rectal cancer (RC) is fundamental in disease management. Magnetic Resonance Imaging (MRI) is routinely used for local and nodal staging of RC by using morphological criteria. The actual dimensional and morphological criteria for nodal assessment present several limitations in terms of sensitivity and specificity. For these reasons, several different techniques, such as Diffusion Weighted Imaging (DWI), Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), and Dynamic Contrast Enhancement (DCE) in MRI have been introduced but still not fully validated. Positron Emission Tomography (PET)/CT plays a pivotal role in the assessment of LNs; more recently PET/MRI has been introduced. The advantages and limitations of these imaging modalities will be provided in this narrative review. The second part of the review includes experimental techniques, such as iron-oxide particles (SPIO), and dual-energy CT (DECT). Radiomics analysis is an active field of research, and the evidence about LNs in RC will be discussed. The review also discusses the different recommendations between the European and North American guidelines for the evaluation of LNs in RC, from anatomical considerations to structured reporting.
Collapse
Affiliation(s)
- Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
| | - Letizia Ottaviani
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Federica Flammia
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Abruzzo Health Unit 1, Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, 67100 L’Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| |
Collapse
|
6
|
Liu Z, Huang C, Tian H, Liu Y, Huang Y, Zhu Z. Establishment of a Dynamic Nomogram for Predicting the Risk of Lymph Node Metastasis in T1 Stage Colorectal Cancer. Front Surg 2022; 9:845666. [PMID: 35388361 PMCID: PMC8977409 DOI: 10.3389/fsurg.2022.845666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/16/2022] [Indexed: 12/03/2022] Open
Abstract
Background Accurate prediction of the risk of lymph node metastasis in patients with stage T1 colorectal cancer is crucial for the formulation of treatment plans for additional surgery and lymph node dissection after endoscopic resection. The purpose of this study was to establish a predictive model for evaluating the risk of LNM in patients with stage T1 colorectal cancer. Methods The clinicopathological and imaging data of 179 patients with T1 stage colorectal cancer who underwent radical resection of colorectal cancer were collected. LASSO regression and a random forest algorithm were used to screen the important risk factors for LNM, and a multivariate logistic regression equation and dynamic nomogram were constructed. The C index, Calibration curve, and area under the ROC curve were used to evaluate the discriminant and prediction ability of the nomogram. The net reclassification index (NRI), comprehensive discriminant improvement index (IDI), and clinical decision curve (DCA) were compared with traditional ESMO criteria to evaluate the accuracy, net benefit, and clinical practicability of the model. Results The probability of lymph node metastasis in patients with T1 colorectal cancer was 11.17% (20/179). Multivariate analysis showed that the independent risk factors for LNM in T1 colorectal cancer were submucosal invasion depth, histological grade, CEA, lymphovascular invasion, and imaging results. The dynamic nomogram model constructed with independent risk factors has good discrimination and prediction capabilities. The C index was 0.914, the corrected C index was 0.890, the area under the ROC curve was 0.914, and the accuracy, sensitivity, and specificity were 93.3, 80.0, and 91.8%, respectively. The NRI, IDI, and DCA show that this model is superior to the ESMO standard. Conclusion This study establishes a dynamic nomogram that can effectively predict the risk of lymph node metastasis in patients with stage T1 colorectal cancer, which will provide certain help for the formulation of subsequent treatment plans for patients with stage T1 CRC after endoscopic resection.
Collapse
|
7
|
Chen Y, Wen Z, Ma Y, Liu Y, Que Y, Yang X, Wu Y, Yu S. Metastatic lymph node calcification in rectal cancer: comparison of CT and high-resolution MRI. Jpn J Radiol 2021; 39:642-651. [PMID: 33686499 DOI: 10.1007/s11604-021-01108-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
Calcification causes mixed signal intensity in the lymph node (LN) on high-resolution magnetic resonance imaging (MRI), which is a strong indicator of regional LN metastasis in rectal cancer. Calcified metastatic LNs in rectal cancer commonly display scattered fine punctate calcifications to varying degrees on computed tomography (CT). On high-resolution MRI, the calcifications manifest a patchy area of signal loss in corresponding calcified area that is larger than on CT. It is necessary to recognize the appearance of metastatic LN calcifications on high-resolution MRI in rectal cancer because it is the primary imaging method for local staging in rectal cancer. This pictorial essay aims to introduce an important imaging finding that can contribute to the diagnosis of LN metastasis by illustrating features and differences between CT and high-resolution MRI of metastatic LN calcifications in rectal cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ziqiang Wen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yuru Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yiyan Liu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yutao Que
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyue Yang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yunzhu Wu
- MR Scientific Marketing, SIEMENS Healthineers Ltd., Guangzhou, 510620, China
| | - Shenping Yu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|