1
|
Huang YR, Fan HQ, Kuang YY, Wang P, Lu S. The Relationship Between the Molecular Phenotypes of Brain Gliomas and the Imaging Features and Sensitivity of Radiotherapy and Chemotherapy. Clin Oncol (R Coll Radiol) 2024; 36:541-551. [PMID: 38821723 DOI: 10.1016/j.clon.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/28/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Gliomas are the most common primary malignant tumors of the brain, accounting for about 80% of all central nervous system malignancies. With the development of molecular biology, the molecular phenotypes of gliomas have been shown to be closely related to the process of diagnosis and treatment. The molecular phenotype of glioma also plays an important role in guiding treatment plans and evaluating treatment effects and prognosis. However, due to the heterogeneity of the tumors and the trauma associated with the surgical removal of tumor tissue, the application of molecular phenotyping in glioma is limited. With the development of imaging technology, functional magnetic resonance imaging (MRI) can provide structural and function information about tumors in a noninvasive and radiation-free manner. MRI is very important for the diagnosis of intracranial lesions. In recent years, with the development of the technology for tumor molecular diagnosis and imaging, the use of molecular phenotype information and imaging procedures to evaluate the treatment outcome of tumors has become a hot topic. By reviewing the related literature on glioma treatment and molecular typing that has been published in the past 20 years, and referring to the latest 2020 NCCN treatment guidelines, summarizing the imaging characteristic and sensitivity of radiotherapy and chemotherapy of different molecular phenotypes of glioma. In this article, we briefly review the imaging characteristics of different molecular phenotypes in gliomas and their relationship with radiosensitivity and chemosensitivity of gliomas.
Collapse
Affiliation(s)
- Y-R Huang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - H-Q Fan
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Y-Y Kuang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - P Wang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - S Lu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Gue R, Lakhani DA. The 2021 World Health Organization Central Nervous System Tumor Classification: The Spectrum of Diffuse Gliomas. Biomedicines 2024; 12:1349. [PMID: 38927556 PMCID: PMC11202067 DOI: 10.3390/biomedicines12061349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The 2021 edition of the World Health Organization (WHO) classification of central nervous system tumors introduces significant revisions across various tumor types. These updates, encompassing changes in diagnostic techniques, genomic integration, terminology, and grading, are crucial for radiologists, who play a critical role in interpreting brain tumor imaging. Such changes impact the diagnosis and management of nearly all central nervous system tumor categories, including the reclassification, addition, and removal of specific tumor entities. Given their pivotal role in patient care, radiologists must remain conversant with these revisions to effectively contribute to multidisciplinary tumor boards and collaborate with peers in neuro-oncology, neurosurgery, radiation oncology, and neuropathology. This knowledge is essential not only for accurate diagnosis and staging, but also for understanding the molecular and genetic underpinnings of tumors, which can influence treatment decisions and prognostication. This review, therefore, focuses on the most pertinent updates concerning the classification of adult diffuse gliomas, highlighting the aspects most relevant to radiological practice. Emphasis is placed on the implications of new genetic information on tumor behavior and imaging findings, providing necessary tools to stay abreast of advancements in the field. This comprehensive overview aims to enhance the radiologist's ability to integrate new WHO classification criteria into everyday practice, ultimately improving patient outcomes through informed and precise imaging assessments.
Collapse
Affiliation(s)
- Racine Gue
- Department of Neuroradiology, West Virginia University, Morgantown, WV 26506, USA
| | - Dhairya A. Lakhani
- Department of Neuroradiology, West Virginia University, Morgantown, WV 26506, USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Zhu Q, Jiang H, Cui Y, Ren X, Li M, Zhang X, Li H, Shen S, Li M, Lin S. Intratumoral calcification: not only a diagnostic but also a prognostic indicator in oligodendrogliomas. Eur Radiol 2024; 34:3674-3685. [PMID: 37968476 DOI: 10.1007/s00330-023-10405-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Calcification is a hallmark characteristic of oligodendroglioma (ODG) that may be used as a diagnostic factor, but its prognostic implications remain unclear. This study aimed to investigate the features of calcified ODGs and to evaluate the differences in survival between patients with calcified and noncalcified ODGs. METHODS We retrospectively reviewed the records of 305 consecutive patients who were diagnosed with IDH-mutant, 1p/19q codeleted ODG at our institution from July 2009 to August 2020. Patients with intratumoral calcification were identified. The clinical, radiologic, and molecular features of the patients in the calcified group and noncalcified group were recorded. Univariate and multivariate analyses were performed to identify prognostic factors. RESULTS Of the 305 patients, 112 (36.7%) were confirmed to have intratumoral calcification. Compared to ODGs without calcification, ODGs with calcifications had a larger tumor diameter; lower degree of resection; higher tumor grade; higher MGMT methylation level; higher Ki-67 index; and higher rates of midline crossing, enhancement, cyst, and 1q/19p copolysomy, and patients with calcification were more likely to receive chemoradiotherapy. ODGs with T2 hypointense calcification had a higher Hounsfield unit (HU) value on CT scans, and a lower degree of resection. Patients with T2 hypointense calcification ODGs had a shorter survival than those with non-hypointense calcification ODGs. ODGs with calcification and cysts showed a higher Ki-67 index, tumor grade, and enhanced rate, and the patients had an unfavorable overall survival (OS). Calcification was found to be a negative prognostic factor for both progression-free survival (PFS) and OS by univariate analysis, which was confirmed by the Cox proportional hazard model. CONCLUSIONS Calcification is a useful negative prognostic factor for PFS and OS in patients with ODGs and could therefore be helpful in guiding personalized treatment and predicting patient prognosis. CLINICAL RELEVANCE STATEMENT Calcification can serve as an independent prognostic factor for patients with oligodendroglioma and shows a vital role in guiding individualized treatment. KEY POINTS • Intratumoral calcification is an independent negative prognostic risk factor for progression-free survival and overall survival in oligodendroglioma patients. • Calcifications in oligodendroglioma can be divided into hypointense and non-hypointense subtypes based on T2-weighted imaging, and patients with T2-hypointense calcification oligodendrogliomas have worse prognosis. • Calcification concurrent with cysts indicates a more aggressive phenotype of oligodendrogliomas and a significantly reduced survival rate.
Collapse
Affiliation(s)
- Qinghui Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, #49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haoyi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, #119 Fanyang Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
4
|
Pons-Escoda A, Majos C, Smits M, Oleaga L. Presurgical diagnosis of diffuse gliomas in adults: Post-WHO 2021 practical perspectives from radiologists in neuro-oncology units. RADIOLOGIA 2024; 66:260-277. [PMID: 38908887 DOI: 10.1016/j.rxeng.2024.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 06/24/2024]
Abstract
The 2021 World Health Organization classification of CNS tumours was greeted with enthusiasm as well as an initial potential overwhelm. However, with time and experience, our understanding of its key aspects has notably improved. Using our collective expertise gained in neuro-oncology units in hospitals in different countries, we have compiled a practical guide for radiologists that clarifies the classification criteria for diffuse gliomas in adults. Its format is clear and concise to facilitate its incorporation into everyday clinical practice. The document includes a historical overview of the classifications and highlights the most important recent additions. It describes the main types in detail with an emphasis on their appearance on imaging. The authors also address the most debated issues in recent years. It will better prepare radiologists to conduct accurate presurgical diagnoses and collaborate effectively in clinical decision making, thus impacting decisions on treatment, prognosis, and overall patient care.
Collapse
Affiliation(s)
- A Pons-Escoda
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Facultat de Medicina i Ciencies de La Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| | - C Majos
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Neuro-Oncology Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain
| | - M Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands; Medical Delta, Delft, The Netherlands
| | - L Oleaga
- Radiology Department, Hospital Clínic Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Liu Z, Duan T, Zhang Y, Weng S, Xu H, Ren Y, Zhang Z, Han X. Radiogenomics: a key component of precision cancer medicine. Br J Cancer 2023; 129:741-753. [PMID: 37414827 PMCID: PMC10449908 DOI: 10.1038/s41416-023-02317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics, radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Tian Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Picca A, Bruno F, Nichelli L, Sanson M, Rudà R. Advances in molecular and imaging biomarkers in lower-grade gliomas. Expert Rev Neurother 2023; 23:1217-1231. [PMID: 37982735 DOI: 10.1080/14737175.2023.2285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Lower-grade (grade 2-3) gliomas (LGGs) constitutes a group of primary brain tumors with variable clinical behaviors and treatment responses. Recent advancements in molecular biology have redefined their classification, and novel imaging modalities emerged for the noninvasive diagnosis and follow-up. AREAS COVERED This review comprehensively analyses the current knowledge on molecular and imaging biomarkers in LGGs. Key molecular alterations, such as IDH mutations and 1p/19q codeletion, are discussed for their prognostic and predictive implications in guiding treatment decisions. Moreover, the authors explore theranostic biomarkers for the potential of tailored therapies. Additionally, they also describe the utility of advanced imaging modalities, including widely available techniques, as dynamic susceptibility contrast perfusion-weighted imaging and less validated, emerging approaches, for the noninvasive LGGs characterization and follow-up. EXPERT OPINION The integration of molecular markers enhanced the stratification of LGGs, leading to the new concept of integrated histomolecular classification. While the IDH mutation is an established key prognostic and predictive marker, recent results from IDH inhibitors trials showed its potential value as a theranostic marker. In this setting, advanced MRI techniques such as 2-D-hydroxyglutarate spectroscopy are very promising for the noninvasive diagnosis and monitoring of LGGs. This progress offers exciting prospects for personalized medicine and improved treatment outcomes in LGGs.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| | - Lucia Nichelli
- Service de Neuroradiologie, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Sanson
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
7
|
Martin KC, Ma C, Yip S. From Theory to Practice: Implementing the WHO 2021 Classification of Adult Diffuse Gliomas in Neuropathology Diagnosis. Brain Sci 2023; 13:brainsci13050817. [PMID: 37239289 DOI: 10.3390/brainsci13050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Diffuse gliomas are the most common type of primary central nervous system (CNS) neoplasm to affect the adult population. The diagnosis of adult diffuse gliomas is dependent upon the integration of morphological features of the tumour with its underlying molecular alterations, and the integrative diagnosis has become of increased importance in the fifth edition of the WHO classification of CNS neoplasms (WHO CNS5). The three major diagnostic entities of adult diffuse gliomas are as follows: (1) astrocytoma, IDH-mutant; (2) oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and (3) glioblastoma, IDH-wildtype. The aim of this review is to summarize the pathophysiology, pathology, molecular characteristics, and major diagnostic updates encountered in WHO CNS5 of adult diffuse gliomas. Finally, the application of implementing the necessary molecular tests for diagnostic workup of these entities in the pathology laboratory setting is discussed.
Collapse
Affiliation(s)
- Karina Chornenka Martin
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Crystal Ma
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
8
|
Dao Trong P, Kilian S, Jesser J, Reuss D, Aras FK, Von Deimling A, Herold-Mende C, Unterberg A, Jungk C. Risk Estimation in Non-Enhancing Glioma: Introducing a Clinical Score. Cancers (Basel) 2023; 15:cancers15092503. [PMID: 37173969 PMCID: PMC10177456 DOI: 10.3390/cancers15092503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The preoperative grading of non-enhancing glioma (NEG) remains challenging. Herein, we analyzed clinical and magnetic resonance imaging (MRI) features to predict malignancy in NEG according to the 2021 WHO classification and developed a clinical score, facilitating risk estimation. A discovery cohort (2012-2017, n = 72) was analyzed for MRI and clinical features (T2/FLAIR mismatch sign, subventricular zone (SVZ) involvement, tumor volume, growth rate, age, Pignatti score, and symptoms). Despite a "low-grade" appearance on MRI, 81% of patients were classified as WHO grade 3 or 4. Malignancy was then stratified by: (1) WHO grade (WHO grade 2 vs. WHO grade 3 + 4) and (2) molecular criteria (IDHmut WHO grade 2 + 3 vs. IDHwt glioblastoma + IDHmut astrocytoma WHO grade 4). Age, Pignatti score, SVZ involvement, and T2/FLAIR mismatch sign predicted malignancy only when considering molecular criteria, including IDH mutation and CDKN2A/B deletion status. A multivariate regression confirmed age and T2/FLAIR mismatch sign as independent predictors (p = 0.0009; p = 0.011). A "risk estimation in non-enhancing glioma" (RENEG) score was derived and tested in a validation cohort (2018-2019, n = 40), yielding a higher predictive value than the Pignatti score or the T2/FLAIR mismatch sign (AUC of receiver operating characteristics = 0.89). The prevalence of malignant glioma was high in this series of NEGs, supporting an upfront diagnosis and treatment approach. A clinical score with robust test performance was developed that identifies patients at risk for malignancy.
Collapse
Affiliation(s)
- Philip Dao Trong
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Samuel Kilian
- Institute of Medical Biometry, Heidelberg University, 69120 Heidelberg, Germany
| | - Jessica Jesser
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - David Reuss
- Division of Neuropathology, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), CCU Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Fuat Kaan Aras
- Division of Neuropathology, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Andreas Von Deimling
- Division of Neuropathology, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), CCU Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Fukuya Y, Tamura M, Nitta M, Saito T, Tsuzuki S, Koriyama S, Kuwano A, Kawamata T, Muragaki Y. Tumor volume and calcifications as indicators for preoperative differentiation of grade II/III diffuse gliomas. J Neurooncol 2023; 161:555-562. [PMID: 36749444 DOI: 10.1007/s11060-023-04244-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE To retrospectively evaluate preoperative clinical factors for their ability to preoperatively differentiate malignancy grades in patients with incipient supratentorial grade II/III diffuse gliomas. METHODS This retrospective study included 206 adult patients with incipient supratentorial grade II/III diffuse gliomas according to the 2016 World Health Organization classification of tumors of the central nervous system. The cohort included 136 men and 70 women, with a median age of 41 years. Preoperative factors included age, sex, presence of calcifications on computed tomography scans, and preoperative tumor volume measured using preoperative magnetic resonance imaging. RESULTS In patients with oligodendrogliomas (IDH-mutant and 1p/19q-codeleted), calcifications were significantly more frequent (p = 0.0034) and tumor volume was significantly larger (p < 0.001) in patients with grade III tumors than in those with grade II tumors. Moreover, in patients with IDH-mutant astrocytomas, preoperative tumor volume was significantly larger (p = 0.0042) in patients with grade III tumors than in those with grade II tumors. In contrast, none of the evaluated preoperative clinical factors were significantly different between the patients with grade II and III IDH-wildtype astrocytomas. CONCLUSION In adult patients with suspicison incipient supratentorial grade II/III diffuse gliomas, presence of calcifications and larger preoperative tumor volume might be used as preoperative indices to differentiate between malignancy grades II and III in oligodendrogliomas (IDH-mutant and 1p/19q-codeleted) and larger preoperative tumor volume might have similar utility in IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Yasukazu Fukuya
- Department of Radiology, Kobe Comprehensive Medical College, 7-1-21 Tomugaoka, Suma-ku, Kobe-shi, Hyogo 654-0142, Japan
| | - Manabu Tamura
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan. .,Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan.
| | - Masayuki Nitta
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Taiichi Saito
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Shunsuke Tsuzuki
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Atsushi Kuwano
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Yoshihiro Muragaki
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| |
Collapse
|
10
|
Li M, Wang J, Chen X, Dong G, Zhang W, Shen S, Jiang H, Yang C, Zhang X, Zhao X, Zhu Q, Li M, Cui Y, Ren X, Lin S. The sinuous, wave-like intratumoral-wall sign is a sensitive and specific radiological biomarker for oligodendrogliomas. Eur Radiol 2022; 33:4440-4452. [PMID: 36520179 DOI: 10.1007/s00330-022-09314-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the clinical utility of the sinuous, wave-like intratumoral-wall (SWITW) sign on T2WI in diagnosing isocitrate dehydrogenase (IDH) mutant and 1p/19q codeleted (IDHmut-Codel) oligodendrogliomas, for which a relatively conservative resection strategy might be sufficient due to a better response to chemoradiotherapy and favorable prognosis. METHODS Imaging data from consecutive adult patients with diffuse lower-grade gliomas (LGGs, histological grades 2-3) in Beijing Tiantan Hospital (December 1, 2013, to October 31, 2021, BTH set, n = 711) and the Cancer Imaging Archive (TCIA) LGGs set (n = 117) were used to develop and validate our findings. Two independent observers assessed the SWITW sign and some well-reported discriminative radiological features to establish a practical diagnostic strategy. RESULTS The SWITW sign showed satisfying sensitivity (0.684 and 0.722 for BTH and TCIA sets) and specificity (0.938 and 0.914 for BTH and TCIA sets) in defining IDHmut-Codels, and the interobserver agreement was substantial (κ 0.718 and 0.756 for BTH and TCIA sets). Compared to calcification, the SWITW sign improved the sensitivity by 0.28 (0.404 to 0.684) in the BTH set, and 81.0% (277/342) of IDHmut-Codel cases demonstrated SWITW and/ or calcification positivity. Combining the SWITW sign, calcification, low ADC values, and other discriminative features, we established a concise and reliable diagnostic protocol for IDHmut-Codels. CONCLUSIONS The SWITW sign was a sensitive and specific imaging biomarker for IDHmut-Codels. The integrated protocol provided an explicable, efficient, and reproducible method for precise preoperative diagnosis, which was essential to guide individualized surgical plan-making. KEY POINTS • The SWITW sign was a sensitive and specific imaging biomarker for IDHmut-Codel oligodendrogliomas. • The SWITW sign was more sensitive than calcification and an integrated strategy could improve diagnostic sensitivity for IDHmut-Codel oligodendrogliomas. • Combining SWITW, calcification, low ADC values, and other discriminative features could make a precise preoperative diagnosis for IDHmut-Codel oligodendrogliomas.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jincheng Wang
- Department of Radiology, Peking University Cancer Hospital, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiwei Zhang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Chuanwei Yang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qinghui Zhu
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Song Lin
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Center of Brain Tumor, Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Brain Tumor, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
| |
Collapse
|
11
|
Natsumeda M, Matsuzawa H, Watanabe M, Motohashi K, Gabdulkhaev R, Tsukamoto Y, Kanemaru Y, Watanabe J, Ogura R, Okada M, Kurabe S, Okamoto K, Kakita A, Igarashi H, Fujii Y. SWI by 7T MR Imaging for the Microscopic Imaging Diagnosis of Astrocytic and Oligodendroglial Tumors. AJNR Am J Neuroradiol 2022; 43:1575-1581. [PMID: 36229164 PMCID: PMC9731250 DOI: 10.3174/ajnr.a7666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE Despite advances in molecular imaging, preoperative diagnosis of astrocytomas and oligodendrogliomas can be challenging. In the present study, we assessed whether 7T SWI can be used to distinguish astrocytomas and oligodendrogliomas and whether malignant grading of gliomas is possible. MATERIALS AND METHODS 7T SWI was performed on 21 patients with gliomas before surgery with optimization for sharp visualization of the corticomedullary junction. Scoring for cortical thickening and displacement of medullary vessels, characteristic of oligodendroglial tumors, and cortical tapering, characteristic of astrocytic tumors, was performed. Additionally, characteristics of malignancy, including thickening of the medullary veins, the presence of microbleeds, and/or necrosis were scored. RESULTS Scoring for oligodendroglial (highest possible score, +3) and astrocytic (lowest score possible, -3) characteristics yielded a significant difference between astrocytomas and oligodendrogliomas (mean, -1.93 versus +1.71, P < .01). Scoring for malignancy was significantly different among the World Health Organization grade II (n = 10), grade III (n = 4), and grade IV (n = 7) tumors (mean, 0.20 versus 1.38 versus 2.79). Cortical thickening was observed significantly more frequently in oligodendrogliomas (P < .02), with a sensitivity of 71.4% and specificity of 85.7%; observation of tapering of the cortex was higher in astrocytomas (P < .01) with a sensitivity of 85.7% and specificity of 100%. CONCLUSIONS Visualization of the corticomedullary junction by 7T SWI was useful in distinguishing astrocytomas and oligodendrogliomas. Observation of tapering of the cortex was most sensitive and specific for diagnosing astrocytomas. Reliably predicting malignant grade was also possible by 7T SWI.
Collapse
Affiliation(s)
- M Natsumeda
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - H Matsuzawa
- Center for Integrated Human Brain Science (H.M., M.W., H.I.)
| | - M Watanabe
- Center for Integrated Human Brain Science (H.M., M.W., H.I.)
| | - K Motohashi
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | | | - Y Tsukamoto
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - Y Kanemaru
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - J Watanabe
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - R Ogura
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - M Okada
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - S Kurabe
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - K Okamoto
- Department of Translational Research (K.O.), Brain Research Institute, Niigata University, Niigata, Japan
| | - A Kakita
- Department of Pathology (R.G., A.K.)
| | - H Igarashi
- Center for Integrated Human Brain Science (H.M., M.W., H.I.)
| | - Y Fujii
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| |
Collapse
|
12
|
Feraco P, Franciosi R, Picori L, Scalorbi F, Gagliardo C. Conventional MRI-Derived Biomarkers of Adult-Type Diffuse Glioma Molecular Subtypes: A Comprehensive Review. Biomedicines 2022; 10:biomedicines10102490. [PMID: 36289752 PMCID: PMC9598857 DOI: 10.3390/biomedicines10102490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/25/2022] Open
Abstract
The introduction of molecular criteria into the classification of diffuse gliomas has added interesting practical implications to glioma management. This has created a new clinical need for correlating imaging characteristics with glioma genotypes, also known as radiogenomics or imaging genomics. Although many studies have primarily focused on the use of advanced magnetic resonance imaging (MRI) techniques for radiogenomics purposes, conventional MRI sequences remain the reference point in the study and characterization of brain tumors. A summary of the conventional imaging features of glioma molecular subtypes should be useful as a tool for daily diagnostic brain tumor management. Hence, this article aims to summarize the conventional MRI features of glioma molecular subtypes in light of the recent literature.
Collapse
Affiliation(s)
- Paola Feraco
- Neuroradiology Unit, Ospedale S. Chiara, Azienda Provinciale per i Servizi Sanitari, Largo Medaglie d’oro 9, 38122 Trento, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via S. Giacomo 14, 40138 Bologna, Italy
- Correspondence:
| | - Rossana Franciosi
- Radiology Unit, Santa Maria del Carmine Hospital, 38068 Rovereto, Italy
| | - Lorena Picori
- Nuclear Medicine Unit, Ospedale S. Chiara, Azienda Provinciale per i Servizi Sanitari, Largo Medaglie d’oro 9, 38122 Trento, Italy
| | - Federica Scalorbi
- Nuclear Medicine Unit, Foundation IRCSS, Istituto Nazionale dei Tumori, 20121 Milan, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
13
|
2021 WHO classification of tumours of the central nervous system: a review for the neuroradiologist. Neuroradiology 2022; 64:1919-1950. [DOI: 10.1007/s00234-022-03008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
|
14
|
Rao C, Jin J, Lu J, Wang C, Wu Z, Zhu Z, Tu M, Su Z, Li Q. A Multielement Prognostic Nomogram Based on a Peripheral Blood Test, Conventional MRI and Clinical Factors for Glioblastoma. Front Neurol 2022; 13:822735. [PMID: 35250826 PMCID: PMC8893080 DOI: 10.3389/fneur.2022.822735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioblastoma (GBM) is one of the most malignant types of tumors in the central nervous system, and the 5-year survival remains low. Several studies have shown that preoperative peripheral blood tests and preoperative conventional Magnetic Resonance Imaging (MRI) examinations affect the prognosis of GBM patients. Therefore, it is necessary to construct a risk score based on a preoperative peripheral blood test and conventional MRI and develop a multielement prognostic nomogram for GBM.MethodsThis study retrospectively analyzed 131 GBM patients. Determination of the association between peripheral blood test variables and conventional MRI variables and prognosis was performed by univariate Cox regression. The nomogram model, which was internally validated using a cohort of 56 GBM patients, was constructed by multivariate Cox regression. RNA sequencing data from Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA datasets were used to determine peripheral blood test-related genes based on GBM prognosis.ResultsThe constructed risk score included the neutrophil/lymphocyte ratio (NLR), lymphocyte/monocyte ratio (LMR), albumin/fibrinogen (AFR), platelet/lymphocyte ratio (PLR), and center point–to-ventricle distance (CPVD). A final nomogram was developed using factors associated with prognosis, including age, sex, the extent of tumor resection, IDH mutation status, radiotherapy status, chemotherapy status, and risk. The Area Under Curve (AUC) values of the receiver operating characteristic curve (ROC) curve were 0.876 (12-month ROC), 0.834 (24-month ROC) and 0.803 (36-month ROC) in the training set and 0.906 (12-month ROC), 0.800 (18-month ROC) and 0.776 (24-month ROC) in the validation set. In addition, vascular endothelial growth factor A (VEGFA) was closely associated with NLR and LMR and identified as the most central negative gene related to the immune microenvironment and influencing immune activities.ConclusionThe risk score was established as an independent predictor of GBM prognosis, and the nomogram model exhibit appropriate predictive power. In addition, VEGFA is the key peripheral blood test-related gene that is significantly associated with poor prognosis.
Collapse
|
15
|
Combining hyperintense FLAIR rim and radiological features in identifying IDH mutant 1p/19q non-codeleted lower-grade glioma. Eur Radiol 2022; 32:3869-3879. [DOI: 10.1007/s00330-021-08500-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
|
16
|
Dono A, Ballester LY, Primdahl D, Esquenazi Y, Bhatia A. IDH-Mutant Low-grade Glioma: Advances in Molecular Diagnosis, Management, and Future Directions. Curr Oncol Rep 2021; 23:20. [PMID: 33492489 DOI: 10.1007/s11912-020-01006-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW IDH-mutant low-grade gliomas (LGG) have emerged as a distinct clinical and molecular entity with unique treatment considerations. Here, we review updates in IDH-mutant LGG diagnosis and classification, imaging biomarkers, therapies, and neurocognitive and patient-reported outcomes. RECENT FINDINGS CDKN2A/B homozygous deletion in IDH-mutant astrocytoma is associated with shorter survival, similar to WHO grade 4. The T2-FLAIR mismatch, a highly specific but insensitive sign, is diagnostic of IDH-mutant astrocytoma. Maximal safe resection is currently indicated in all LGG cases. Radiotherapy with subsequent PCV (procarbazine, lomustine, vincristine) provides longer overall survival compared to radiotherapy alone. Temozolomide in place of PCV is reasonable, but high-level evidence is still lacking. LGG adjuvant treatment has important quality of life and neurocognitive side effects that should be considered. Although incurable, IDH-mutant LGG have a favorable survival compared to IDH-WT glioma. Recent advances in molecular-based classification, imaging, and targeted therapies will hopefully improve survival and quality of life.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center, 6431 Fannin Street, MSB 3.000, Houston, TX, 77030, USA.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Leomar Y Ballester
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center, 6431 Fannin Street, MSB 3.000, Houston, TX, 77030, USA.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA.,Memorial Hermann Health System, Houston, TX, USA
| | - Ditte Primdahl
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center, 6431 Fannin Street, MSB 3.000, Houston, TX, 77030, USA.,Memorial Hermann Health System, Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA
| | - Ankush Bhatia
- Memorial Hermann Health System, Houston, TX, USA. .,Department of Neurology, The University of Texas Health Science Center at Houston - McGovern Medical School, 6410 Fannin Street, Suite # 1014, Houston, TX, 77030, USA.
| |
Collapse
|