1
|
Guerrisi A, Miseo L, Falcone I, Messina C, Ungania S, Elia F, Desiderio F, Valenti F, Cantisani V, Soriani A, Caterino M. Quantitative ultrasound radiomics analysis to evaluate lymph nodes in patients with cancer: a systematic review. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2024; 45:586-596. [PMID: 38663433 DOI: 10.1055/a-2275-8342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This systematic review aims to evaluate the role of ultrasound (US) radiomics in assessing lymphadenopathy in patients with cancer and the ability of radiomics to predict metastatic lymph node involvement. A systematic literature search was performed in the PubMed (MEDLINE), Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE (Ovid) databases up to June 13, 2023. 42 articles were included in which the lymph node mass was assessed with a US exam, and the analysis was performed using radiomics methods. From the survey of the selected articles, experimental evidence suggests that radiomics features extracted from US images can be a useful tool for predicting and characterizing lymphadenopathy in patients with breast, head and neck, and cervical cancer. This noninvasive and effective method allows the extraction of important information beyond mere morphological characteristics, extracting features that may be related to lymph node involvement. Future studies are needed to investigate the role of US-radiomics in other types of cancers, such as melanoma.
Collapse
Affiliation(s)
- Antonio Guerrisi
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| | - Ludovica Miseo
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| | - Italia Falcone
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Claudia Messina
- Library, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| | - Sara Ungania
- Medical Physics and Expert Systems Laboratory, Department of Research and Advanced Technologies, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Fulvia Elia
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| | - Flora Desiderio
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| | - Fabio Valenti
- UOC Oncological Translational Research, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Vito Cantisani
- Department of Radiology, "Sapienza" University of Rome, Roma, Italy
| | - Antonella Soriani
- Medical Physics and Expert Systems Laboratory, Department of Research and Advanced Technologies, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Mauro Caterino
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Roma, Italy
| |
Collapse
|
2
|
Hu A, Tian J, Deng X, Wang Z, Li Y, Wang J, Liu L, Li Q. The diagnosis and management of small and indeterminate lymph nodes in papillary thyroid cancer: preoperatively and intraoperatively. Front Endocrinol (Lausanne) 2024; 15:1484838. [PMID: 39610843 PMCID: PMC11602296 DOI: 10.3389/fendo.2024.1484838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Although thyroid cancer is an indolent tumor with a favorable prognosis, lymph node metastasis (LNM) serves as a major concern for many patients. Because LNM is strongly correlated with recurrence, distant metastasis, and shortened survival, a precise and timely diagnosis and following appropriate management for LNM are necessary. However, significant challenges still exist in the diagnosis of small LNs (<1 cm in diameter), and their low volume makes it difficult to determine whether they are metastatic or benign. Therefore, the diagnostic technique for these small and indeterminate LNs (siLNs) has been one of the leading research subjects in recent years. The implementation of innovative technologies, such as contrast-enhanced ultrasonography, frozen section, and molecular detection, has brought great progress to the diagnosis of siLNs. Meanwhile, the strategies for managing siLNs in clinical practice have evolved considerably over the past several years, with several appropriate options recommended by guidelines. In this review, we aim to provide a systematic overview of the latest studies and potential evidence about effective approaches for detecting and evaluating siLNs. Furthermore, the following management modalities of siLNs in different situations are well discussed.
Collapse
Affiliation(s)
- Ang Hu
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiahe Tian
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinpei Deng
- Department of Urology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongyu Wang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yin Li
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianwei Wang
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Longzhong Liu
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuli Li
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Xu Y, Zhang C. Prediction of lateral neck metastasis in patients with papillary thyroid cancer with suspicious lateral lymph ultrasonic imaging based on central lymph node metastasis features. Oncol Lett 2024; 28:472. [PMID: 39211301 PMCID: PMC11358722 DOI: 10.3892/ol.2024.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Neck lymphatic metastasis is a common occurrence with thyroid cancers, and pre operative lateral lymph node metastasis (LLNM) and postoperative lateral lymph node recurrence (LLNR) are two independent risk factors that are negatively associated with the prognosis of patients with thyroid cancer. The aim of the present study was to investigate the relationship between central lymph node metastasis (CLNM) and LLNM in patients with papillary thyroid carcinoma (PTC) with sonographically suspected LLNM, such as those without lymph node fine-needle aspiration (FNA) cytological results or negative FNA results at the time of diagnosis. The predictive ability of CLNM regarding LLNR was also investigated. The present study retrospectively reviewed the clinical data of 1,061 patients that were surgically treated for PTC and 128 patients with sonographically suspected lateral lymph nodes that received central lymph node dissection and lateral lymph node dissection at the Thyroid Department of The First Affiliated Hospital of Anhui Medical University (Hefei, China) from June 2019 to June 2021. In patients with suspicious ultrasonic images suggesting LLNM, a significant association between the central lymph node ratio (CLNR), the number of positive central lymph nodes and LLNM was demonstrated. Otherwise, there were no statistically significant differences between the CLNR in patients with PTC and patients with PTC without evidence of lateral cervical metastasis. However, the rate of LLNR increased significantly when the number of positive central lymph nodes was >3. In conclusion, the CLNR and the number of positive central lymph nodes could be used to predict LLNM in patients with PTC with sonographically suspect lateral lymph nodes, including those with no FNA cytological results or negative FNA results, which may potentially support physicians in making personalized clinical decisions.
Collapse
Affiliation(s)
- Yuxing Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Chao Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
4
|
Zhang S, Liu R, Wang Y, Zhang Y, Li M, Wang Y, Wang S, Ma N, Ren J. Ultrasound-Base Radiomics for Discerning Lymph Node Metastasis in Thyroid Cancer: A Systematic Review and Meta-analysis. Acad Radiol 2024; 31:3118-3130. [PMID: 38555183 DOI: 10.1016/j.acra.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE Ultrasound is the imaging modality of choice for preoperative diagnosis of lymph node metastasis (LNM) in thyroid cancer (TC), yet its efficacy remains suboptimal. As radiomics gains traction in tumor diagnosis, its integration with ultrasound for LNM differentiation in TC has emerged, but its diagnostic merit is debated. This study assesses the accuracy of ultrasound-integrated radiomics in preoperatively diagnosing LNM in TC. METHODS Literatures were searched in PubMed, Embase, Cochrane, and Web of Science until July 11, 2023. Quality of the studies was assessed by the radiomics quality score (RQS). A meta-analysis was executed using a bivariate mixed effects model, with a subgroup analysis based on modeling variables (clinical features, radiomics features, or their combination). RESULTS Among 27 articles (16,410 TC patients, 6356 with LNM), the average RQS was 16.5 (SD:5.47). Sensitivity of the models based on clinical features, radiomics features, and radiomics features plus clinical features were 0.64, 0.76 and 0.69. Specificities were 0.77, 0.78 and 0.82. SROC values were 0.76, 0.84 and 0.81. CONCLUSION Ultrasound-based radiomics effectively evaluates LNM in TC preoperatively. Adding clinical features does not notably enhance the model's performance. Some radiomics studies showed high bias, possibly due to the absence of standard application guidelines.
Collapse
Affiliation(s)
- Sijie Zhang
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, PR China
| | - Ruijuan Liu
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, PR China
| | - Yiyang Wang
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Yuewei Zhang
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Mengpu Li
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Yang Wang
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Siyu Wang
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Na Ma
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Junhong Ren
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, PR China; Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
5
|
Wang B, Bao C, Wang X, Wang Z, Zhang Y, Liu Y, Wang R, Han X. Inter-equipment validation of PET-based radiomics for predicting EGFR mutation statuses in patients with non-small cell lung cancer. Clin Radiol 2024; 79:571-578. [PMID: 38821756 DOI: 10.1016/j.crad.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/03/2023] [Accepted: 12/31/2023] [Indexed: 06/02/2024]
Abstract
AIM To validate the inter-equipment generality of the radiomics based on PET images to predict the EGFR mutation status of patients with non-small cell lung cancer. MATERIALS AND METHODS Patients were retrospectively collected in the departments of nuclear medicine of Heyi branch (Siemens equipment) and East branch (General Electric (GE) equipment) of the first affiliated hospital of Zhengzhou university. 5 predicting logistic regression models were established. The 1st one was trained and tested by the GE dataset; The 2nd one was trained and tested by the Siemens dataset; The 3rd one was trained and tested by the mixed dataset consisting of GE and Siemens. The 4th one was trained by GE and tested by Siemens; The 5th one was trained by Siemens and tested by GE. RESULTS For the 1st ∼ 5th models, the mean values of AUCs for training/testing datasets were 0.78/0.73, 0.74/0.72, 0.75/0.70, 0.74/0.65 and 0.68/0.63, respectively. CONCLUSION The AUCs of the models trained and tested on the datasets from the same equipment were higher than those for different equipment. The inter-equipment generality of the radiomics was not good enough in clinical practice.
Collapse
Affiliation(s)
- B Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - C Bao
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - X Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - Z Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - Y Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - Y Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - R Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - X Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China; Henan Medical Key Laboratory of Molecular Imaging, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China.
| |
Collapse
|
6
|
Qian L, Liu X, Zhou S, Zhi W, Zhang K, Li H, Li J, Chang C. A cutting-edge deep learning-and-radiomics-based ultrasound nomogram for precise prediction of axillary lymph node metastasis in breast cancer patients ≥ 75 years. Front Endocrinol (Lausanne) 2024; 15:1323452. [PMID: 39072273 PMCID: PMC11272464 DOI: 10.3389/fendo.2024.1323452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Objective The objective of this study was to develop a deep learning-and-radiomics-based ultrasound nomogram for the evaluation of axillary lymph node (ALN) metastasis risk in breast cancer patients ≥ 75 years. Methods The study enrolled breast cancer patients ≥ 75 years who underwent either sentinel lymph node biopsy or ALN dissection at Fudan University Shanghai Cancer Center. DenseNet-201 was employed as the base model, and it was trained using the Adam optimizer and cross-entropy loss function to extract deep learning (DL) features from ultrasound images. Additionally, radiomics features were extracted from ultrasound images utilizing the Pyradiomics tool, and a Rad-Score (RS) was calculated employing the Lasso regression algorithm. A stepwise multivariable logistic regression analysis was conducted in the training set to establish a prediction model for lymph node metastasis, which was subsequently validated in the validation set. Evaluation metrics included area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1-score. The calibration of the model's performance and its clinical prediction accuracy were assessed using calibration curves and decision curves respectively. Furthermore, integrated discrimination improvement and net reclassification improvement were utilized to quantify enhancements in RS. Results Histological grade, axillary ultrasound, and RS were identified as independent risk factors for predicting lymph node metastasis. The integration of the RS into the clinical prediction model significantly improved its predictive performance, with an AUC of 0.937 in the training set, surpassing both the clinical model and the RS model alone. In the validation set, the integrated model also outperformed other models with AUCs of 0.906, 0.744, and 0.890 for the integrated model, clinical model, and RS model respectively. Experimental results demonstrated that this study's integrated prediction model could enhance both accuracy and generalizability. Conclusion The DL and radiomics-based model exhibited remarkable accuracy and reliability in predicting ALN status among breast cancer patients ≥ 75 years, thereby contributing to the enhancement of personalized treatment strategies' efficacy and improvement of patients' quality of life.
Collapse
Affiliation(s)
- Lang Qian
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xihui Liu
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shichong Zhou
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenxiang Zhi
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Zhang
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoqiu Li
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiawei Li
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai Chang
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Lv X, Lu JJ, Song SM, Hou YR, Hu YJ, Yan Y, Yu T, Ye DM. Prediction of lymph node metastasis in patients with papillary thyroid cancer based on radiomics analysis and intraoperative frozen section analysis: A retrospective study. Clin Otolaryngol 2024; 49:462-474. [PMID: 38622816 DOI: 10.1111/coa.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/28/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION To evaluate the diagnostic efficiency among the clinical model, the radiomics model and the nomogram that combined radiomics features, frozen section (FS) analysis and clinical characteristics for the prediction of lymph node (LN) metastasis in patients with papillary thyroid cancer (PTC). METHODS A total of 208 patients were randomly divided into two groups randomly with a proportion of 7:3 for the training groups (n = 146) and the validation groups (n = 62). The Least Absolute Shrinkage and Selection Operator (LASSO) regression was used for the selection of radiomics features extracted from ultrasound (US) images. Univariate and multivariate logistic analyses were used to select predictors associated with the status of LN. The clinical model, radiomics model and nomogram were subsequently established by logistic regression machine learning. The area under the curve (AUC), sensitivity and specificity were used to evaluate the diagnostic performance of the different models. The Delong test was used to compare the AUC of the three models. RESULTS Multivariate analysis indicated that age, size group, Adler grade, ACR score and the psammoma body group were independent predictors of lymph node metastasis (LNM). The results showed that in both the training and validation groups, the nomogram showed better performance than the clinical model, albeit not statistically significant (p > .05), and significantly outperformed the radiomics model (p < .05). However, the nomogram exhibits a slight improvement in sensitivity that could reduce the incidence of false negatives. CONCLUSION We propose that the nomogram holds substantial promise as an effective tool for predicting LNM in patients with PTC.
Collapse
Affiliation(s)
- Xin Lv
- Department of Oncology, Yingkou Central Hospital, Yingkou, People's Republic of China
| | - Jing-Jing Lu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Si-Meng Song
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Yi-Ru Hou
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Yan-Jun Hu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Yan Yan
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Dong-Man Ye
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| |
Collapse
|
8
|
Wang D, He X, Huang C, Li W, Li H, Huang C, Hu C. Magnetic resonance imaging-based radiomics and deep learning models for predicting lymph node metastasis of squamous cell carcinoma of the tongue. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:214-224. [PMID: 38378316 DOI: 10.1016/j.oooo.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVE This study aimed to establish a combined method of radiomics and deep learning (DL) in magnetic resonance imaging (MRI) to predict lymph node metastasis (LNM) preoperatively in patients with squamous cell carcinoma of the tongue. STUDY DESIGN In total, MR images of 196 patients with lingual squamous cell carcinoma were divided into training (n = 156) and test (n = 40) cohorts. Radiomics and DL features were extracted from MR images and selected to construct machine learning models. A DL radiomics nomogram was established via multivariate logistic regression by incorporating the radiomics signature, the DL signature, and MRI-reported LN status. RESULTS Nine radiomics and 3 DL features were selected. In the radiomics test cohort, the multilayer perceptron model performed best with an area under the receiver operating characteristic curve (AUC) of 0.747, but in the DL cohort, the best model (logistic regression) performed less well (AUC = 0.655). The DL radiomics nomogram showed good calibration and performance with an AUC of 0.934 (outstanding discrimination ability) in the training cohort and 0.757 (acceptable discrimination ability) in the test cohort. The decision curve analysis demonstrated that the nomogram could offer more net benefit than a single radiomics or DL signature. CONCLUSION The DL radiomics nomogram exhibited promising performance in predicting LNM, which facilitates personalized treatment of tongue cancer.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunming Huang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haosen Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cicheng Huang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Dinets A, Gorobeiko M, Lovin A, Dibrova V, Hoperia V. PSAMMOMA BODIES IN LYMPH NODES OF THE NECK: POSSIBLE PRECURSOR OF LOCOREGIONAL METASTASES OF PAPILLARY THYROID CARCINOMA. Exp Oncol 2024; 46:61-67. [PMID: 38852051 DOI: 10.15407/exp-oncology.2024.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of well-differentiated thyroid cancer accounting for up to 80% of all thyroid neoplasms. Metastases to the regional lymph nodes (RLN) of the neck are a feature of its biological aggressiveness. The presence of psammoma bodies may be considered a pathomorphological feature of PTC in addition to the papillary structure of tumor and specific nuclear changes. The aim of the study was to evaluate a clinical value of psammoma bodies in the RLN of PTC patients. MATERIALS AND METHODS 91 patients with PTC who were surgically treated at the Verum Expert Clinic were enrolled in the study. The clinical and pathomorphological data were retrieved from the archival medical records. RESULTS According to the results of the clinico-morphological analysis, 51 patients (56%) with PTC had metastases in the RLN of the neck, and 40 (44%) patients had no metastases. Among 51 patients with metastases in the RLN, in 4 patients psammoma bodies in the RLN and tumor tissue were identified. In 3 of these 4 patients, the size of the primary PTC tumor was less than 10 mm, but an aggressive cancer course such as significant number of metastases in the RLN or multifocal growth was found in all these cases. CONCLUSIONS The presence of psammoma bodies in RLN and primary PTC tumor could be suggested as a predictor of metastasis to lymph nodes. The detection of point echogenic foci in the lymph nodes by ultrasound at the preoperative stage is a sign of psammoma bodies. This finding can be useful for improving the efficacy in selection of surgical treatment tactics for the optimal neck dissection by planning neck dissection in the presence of such point echogenic foci at the preoperative stage and performing regular check-ups of the patients.
Collapse
Affiliation(s)
- A Dinets
- Department of Healthcare, Kyiv Agrarian University, Kyiv, Ukraine
- Department of Surgery, Verum Expert Clinic, Kyiv, Ukraine
| | - M Gorobeiko
- Department of Healthcare, Kyiv Agrarian University, Kyiv, Ukraine
- Department of Surgery, Lancet Clinical and Lab, Kyiv, Ukraine
| | - A Lovin
- Department of Surgery, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - V Dibrova
- Department of Pathological Anatomy, Bogomolets National Medical University, Kyiv, Ukraine
| | - V Hoperia
- Department of Fundamental Medicine, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
10
|
Wu L, Zhou Y, Li L, Ma W, Deng H, Ye X. Application of ultrasound elastography and radiomic for predicting central cervical lymph node metastasis in papillary thyroid microcarcinoma. Front Oncol 2024; 14:1354288. [PMID: 38800382 PMCID: PMC11116610 DOI: 10.3389/fonc.2024.1354288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Objective This study aims to combine ultrasound (US) elastography (USE) and radiomic to predict central cervical lymph node metastasis (CLNM) in patients with papillary thyroid microcarcinoma (PTMC). Methods A total of 204 patients with 204 thyroid nodules who were confirmed with PTMC and treated in our hospital were enrolled and randomly assigned to the training set (n = 142) and the validation set (n = 62). US features, USE (gender, shape, echogenic foci, thyroid imaging reporting and data system (TIRADS) category, and elasticity score), and radiomic signature were employed to build three models. A nomogram was plotted for the combined model, and decision curve analysis was applied for clinical use. Results The combined model (USE and radiomic) showed optimal diagnostic performance in both training (AUC = 0.868) and validation sets (AUC = 0.857), outperforming other models. Conclusion The combined model based on USE and radiomic showed a superior performance in the prediction of CLNM of patients with PTMC, covering the shortage of low specificity of conventional US in detecting CLNM.
Collapse
Affiliation(s)
| | | | | | | | - Hongyan Deng
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhua Ye
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Lin SY, Li MY, Zhou CP, Ao W, Huang WY, Wang SS, Yu JF, Tang ZH, Abdelhamid Ahmed AH, Wang TY, Wang ZH, Hua S, Randolph GW, Zhao WX, Wang B. Accurate preoperative prediction of nodal metastasis in papillary thyroid microcarcinoma: Towards optimal management of patients. Head Neck 2024; 46:1009-1019. [PMID: 38441255 DOI: 10.1002/hed.27720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE To enhance the accuracy in predicting lymph node metastasis (LNM) preoperatively in patients with papillary thyroid microcarcinoma (PTMC), refining the "low-risk" classification for tailored treatment strategies. METHODS This study involves the development and validation of a predictive model using a cohort of 1004 patients with PTMC undergoing thyroidectomy along with central neck dissection. The data was divided into a training cohort (n = 702) and a validation cohort (n = 302). Multivariate logistic regression identified independent LNM predictors in PTMC, leading to the construction of a predictive nomogram model. The model's performance was assessed through ROC analysis, calibration curve analysis, and decision curve analysis. RESULTS Identified LNM predictors in PTMC included age, tumor maximum diameter, nodule-capsule distance, capsular contact length, bilateral suspicious lesions, absence of the lymphatic hilum, microcalcification, and sex. Especially, tumors larger than 7 mm, nodules closer to the capsule (less than 3 mm), and longer capsular contact lengths (more than 1 mm) showed higher LNM rates. The model exhibited AUCs of 0.733 and 0.771 in the training and validation cohorts respectively, alongside superior calibration and clinical utility. CONCLUSION This study proposes and substantiates a preoperative predictive model for LNM in patients with PTMC, honing the precision of "low-risk" categorization. This model furnishes clinicians with an invaluable tool for individualized treatment approach, ensuring better management of patients who might be proposed observation or ablative options in the absence of such predictive information.
Collapse
Affiliation(s)
- Si-Ying Lin
- Department of Thyroid Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Precision Management of Thyroid Cancer of Fujian Province, Fuzhou, China
| | - Meng-Yao Li
- Department of Thyroid Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chi-Peng Zhou
- Department of Thyroid Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wei Ao
- Department of Thyroid Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wen-Yu Huang
- Department of Thyroid Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Si-Si Wang
- Department of Thyroid Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Fan Yu
- Department of Thyroid Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zi-Han Tang
- Department of Thyroid Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Amr H Abdelhamid Ahmed
- Division of Thyroid and Parathyroid Endocrine Surgery, Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Ting-Yi Wang
- Department of General, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhi-Hong Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Surong Hua
- Department of General Surgery, Peking Union Medical College, Peking, China
| | - Gregory W Randolph
- Division of Thyroid and Parathyroid Endocrine Surgery, Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wen-Xin Zhao
- Department of Thyroid Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Precision Management of Thyroid Cancer of Fujian Province, Fuzhou, China
| | - Bo Wang
- Department of Thyroid Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Precision Management of Thyroid Cancer of Fujian Province, Fuzhou, China
- Division of Thyroid and Parathyroid Endocrine Surgery, Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Zhang MB, Meng ZL, Mao Y, Jiang X, Xu N, Xu QH, Tian J, Luo YK, Wang K. Cervical lymph node metastasis prediction from papillary thyroid carcinoma US videos: a prospective multicenter study. BMC Med 2024; 22:153. [PMID: 38609953 PMCID: PMC11015607 DOI: 10.1186/s12916-024-03367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Prediction of lymph node metastasis (LNM) is critical for individualized management of papillary thyroid carcinoma (PTC) patients to avoid unnecessary overtreatment as well as undesired under-treatment. Artificial intelligence (AI) trained by thyroid ultrasound (US) may improve prediction performance. METHODS From September 2017 to December 2018, patients with suspicious PTC from the first medical center of the Chinese PLA general hospital were retrospectively enrolled to pre-train the multi-scale, multi-frame, and dual-direction deep learning (MMD-DL) model. From January 2019 to July 2021, PTC patients from four different centers were prospectively enrolled to fine-tune and independently validate MMD-DL. Its diagnostic performance and auxiliary effect on radiologists were analyzed in terms of receiver operating characteristic (ROC) curves, areas under the ROC curve (AUC), accuracy, sensitivity, and specificity. RESULTS In total, 488 PTC patients were enrolled in the pre-training cohort, and 218 PTC patients were included for model fine-tuning (n = 109), internal test (n = 39), and external validation (n = 70). Diagnostic performances of MMD-DL achieved AUCs of 0.85 (95% CI: 0.73, 0.97) and 0.81 (95% CI: 0.73, 0.89) in the test and validation cohorts, respectively, and US radiologists significantly improved their average diagnostic accuracy (57% vs. 60%, P = 0.001) and sensitivity (62% vs. 65%, P < 0.001) by using the AI model for assistance. CONCLUSIONS The AI model using US videos can provide accurate and reproducible prediction of cervical lymph node metastasis in papillary thyroid carcinoma patients preoperatively, and it can be used as an effective assisting tool to improve diagnostic performance of US radiologists. TRIAL REGISTRATION We registered on the Chinese Clinical Trial Registry website with the number ChiCTR1900025592.
Collapse
Affiliation(s)
- Ming-Bo Zhang
- Department of Ultrasound, the First Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Zhe-Ling Meng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Mao
- Department of Ultrasound, the First Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Xue Jiang
- Department of Ultrasound, the Fourth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Ning Xu
- Department of Ultrasound, Beijing Tong Ren Hospital, Beijing, China
| | - Qing-Hua Xu
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Kun Luo
- Department of Ultrasound, the First Medical Center, General Hospital of Chinese PLA, Beijing, China.
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Chen J, Wen Z, Yang X, Jia J, Zhang X, Pian L, Zhao P. Ultrasound-Based Radiomics for the Classification of Henoch-Schönlein Purpura Nephritis in Children. ULTRASONIC IMAGING 2024; 46:110-120. [PMID: 38140769 DOI: 10.1177/01617346231220000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Henoch-Schönlein purpura nephritis (HSPN) is one of the most common kidney diseases in children. The current diagnosis and classification of HSPN depend on pathological biopsy, which is seriously limited by its invasive and high-risk nature. The aim of the study was to explore the potential of radiomics model for evaluating the histopathological classification of HSPN based on the ultrasound (US) images. A total of 440 patients with Henoch-Schönlein purpura nephritis proved by biopsy were analyzed retrospectively. They were grouped according to two histopathological categories: those without glomerular crescent formation (ISKDC grades I-II) and those with glomerular crescent formation (ISKDC grades III-V). The patients were randomly assigned to either a training cohort (n = 308) or a validation cohort (n = 132) with a ratio of 7:3. The sonologist manually drew the regions of interest (ROI) on the ultrasound images of the right kidney including the cortex and medulla. Then, the ultrasound radiomics features were extracted using the Pyradiomics package. The dimensions of radiomics features were reduced by Spearman correlation coefficients and least absolute shrinkage and selection operator (LASSO) method. Finally, three radiomics models using k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established, respectively. The predictive performance of such classifiers was assessed with receiver operating characteristic (ROC) curve. 105 radiomics features were extracted from derived US images of each patient and 14 features were ultimately selected for the machine learning analysis. Three machine learning models including k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established for HSPN classification. Of the three classifiers, the SVM classifier performed the best in the validation cohort [area under the curve (AUC) =0.870 (95% CI, 0.795-0.944), sensitivity = 0.706, specificity = 0.950]. The US-based radiomics had good predictive value for HSPN classification, which can be served as a noninvasive tool to evaluate the severity of renal pathology and crescentic formation in children with HSPN.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ultrasound Medical, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Ultrasound Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zeying Wen
- Department of Radiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoqing Yang
- Department of Pathology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jie Jia
- Department of Ultrasound Medical, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaodong Zhang
- Department of Ultrasound Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Linping Pian
- Department of Ultrasound Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ping Zhao
- Department of Ultrasound Medical, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Mu J, Cao Y, Zhong X, Diao W, Jia Z. Prediction of cervical lymph node metastasis in differentiated thyroid cancer based on radiomics models. Br J Radiol 2024; 97:526-534. [PMID: 38366237 PMCID: PMC11027254 DOI: 10.1093/bjr/tqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/06/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
OBJECTIVE The accurate clinical diagnosis of cervical lymph node metastasis plays an important role in the treatment of differentiated thyroid cancer (DTC). This study aimed to explore and summarize a more objective approach to detect cervical malignant lymph node metastasis of DTC via radiomics models. METHODS PubMed, Web of Science, MEDLINE, EMBASE, and Cochrane databases were searched for all eligible studies. Articles using radiomics models based on ultrasound, computed tomography, or magnetic resonance imaging to assess cervical lymph node metastasis preoperatively were included. Characteristics and diagnostic accuracy measures were extracted. Bias and applicability judgments were evaluated by the revised QUADAS-2 tool. The estimates were pooled using a random-effects model. Additionally, the leave-one-out method was conducted to assess the heterogeneity. RESULTS Twenty-nine radiomics studies with 6160 validation set patients were included in the qualitative analysis, and 11 studies with 3863 validation set patients were included in the meta-analysis. Four of them had an external independent validation set. The studies were heterogeneous, and a significant risk of bias was found in 29 studies. Meta-analysis showed that the pooled sensitivity and specificity for preoperative prediction of lymph node metastasis via US-based radiomics were 0.81 (95% CI, 0.73-0.86) and 0.87 (95% CI, 0.83-0.91), respectively. CONCLUSIONS Although radiomics-based models for cervical lymphatic metastasis in DTC have been demonstrated to have moderate diagnostic capabilities, broader data, standardized radiomics features, robust feature selection, and model exploitation are still needed in the future. ADVANCES IN KNOWLEDGE The radiomics models showed great potential in detecting malignant lymph nodes in thyroid cancer.
Collapse
Affiliation(s)
- Jingshi Mu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Zhong
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Diao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
15
|
Liu Q, Li Y, Hao Y, Fan W, Liu J, Li T, Liu L. Multi-modal ultrasound multistage classification of PTC cervical lymph node metastasis via DualSwinThyroid. Front Oncol 2024; 14:1349388. [PMID: 38434683 PMCID: PMC10906093 DOI: 10.3389/fonc.2024.1349388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Objective This study aims to predict cervical lymph node metastasis in papillary thyroid carcinoma (PTC) patients with high accuracy. To achieve this, we introduce a novel deep learning model, DualSwinThyroid, leveraging multi-modal ultrasound imaging data for prediction. Materials and methods We assembled a substantial dataset consisting of 3652 multi-modal ultrasound images from 299 PTC patients in this retrospective study. The newly developed DualSwinThyroid model integrates various ultrasound modalities and clinical data. Following its creation, we rigorously assessed the model's performance against a separate testing set, comparing it with established machine learning models and previous deep learning approaches. Results Demonstrating remarkable precision, DualSwinThyroid achieved an AUC of 0.924 and an 96.3% accuracy on the test set. The model efficiently processed multi-modal data, pinpointing features indicative of lymph node metastasis in thyroid nodule ultrasound images. It offers a three-tier classification that aligns each level with a specific surgical strategy for PTC treatment. Conclusion DualSwinThyroid, a deep learning model designed with multi-modal ultrasound radiomics, effectively estimates the degree of cervical lymph node metastasis in PTC patients. In addition, it also provides early, precise identification and facilitation of interventions for high-risk groups, thereby enhancing the strategic selection of surgical approaches in managing PTC patients.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Yue Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanhong Hao
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenwen Fan
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingjing Liu
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Liu
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Sun P, Wei Y, Chang C, Du J, Tong Y. Ultrasound-Based Nomogram for Predicting the Aggressiveness of Papillary Thyroid Carcinoma in Adolescents and Young Adults. Acad Radiol 2024; 31:523-535. [PMID: 37394408 DOI: 10.1016/j.acra.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 07/04/2023]
Abstract
RATIONALE AND OBJECTIVES Assessing the aggressiveness of papillary thyroid carcinoma (PTC) preoperatively might play an important role in guiding therapeutic strategy. This study aimed to develop and validate a nomogram that integrated ultrasound (US) features with clinical characteristics to preoperatively predict aggressiveness in adolescents and young adults with PTC. MATERIALS AND METHODS In this retrospective study, a total of 2373 patients were enrolled and randomly divided into two groups with 1000 bootstrap sampling. The multivariable logistic regression (LR) analysis or least absolute shrinkage and selection operator LASSO regression was applied to select predictive US and clinical characteristics in the training cohort. By incorporating most powerful predictors, two predictive models presented as nomograms were developed, and their performance was assessed with respect to discrimination, calibration, and clinical usefulness. RESULTS The LR_model that incorporated gender, tumor size, multifocality, US-reported cervical lymph nodes (CLN) status, and calcification demonstrated good discrimination and calibration with an area under curve (AUC), sensitivity and specificity of 0.802 (0.781-0.821), 65.58% (62.61%-68.55%), and 82.31% (79.33%-85.46%), respectively, in the training cohort; and 0.768 (0.736-0.797), 60.04% (55.62%-64.46%), and 83.62% (78.84%-87.71%), respectively, in the validation cohort. Gender, tumor size, orientation, calcification, and US-reported CLN status were combined to build LASSO_model. Compared with LR_model, the LASSO_model yielded a comparable diagnostic performance in both cohorts, the AUC, sensitivity, and specificity were 0.800 (0.780-0.820), 65.29% (62.26%-68.21%), and 81.93% (78.77%-84.91%), respectively, in the training cohort; and 0.763 (0.731-0.792), 59.43% (55.12%-63.93%), and 84.98% (80.89%-89.08%), respectively, in the validation cohort. The decision curve analysis indicated that using the two nomograms to predict the aggressiveness of PTC provided a greater benefit than either the treat-all or treat-none strategy. CONCLUSION Through these two easy-to-use nomograms, the possibility of the aggressiveness of PTC in adolescents and young adults can be objectively quantified preoperatively. The two nomograms may serve as a useful clinical tool to provide valuable information for clinical decision-making.
Collapse
Affiliation(s)
- Peixuan Sun
- Diagnostic Imaging Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Wei
- Department of Ultrasound, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Cai Chang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Jun Du
- Diagnostic Imaging Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuyang Tong
- Department of Ultrasound, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
17
|
Chen W, Lin G, Cheng F, Kong C, Li X, Zhong Y, Hu Y, Su Y, Weng Q, Chen M, Xia S, Lu C, Xu M, Ji J. Development and Validation of a Dual-Energy CT-Based Model for Predicting the Number of Central Lymph Node Metastases in Clinically Node-Negative Papillary Thyroid Carcinoma. Acad Radiol 2024; 31:142-156. [PMID: 37280128 DOI: 10.1016/j.acra.2023.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/08/2023]
Abstract
RATIONALE AND OBJECTIVES This study aimed to develop and validate a dual-energy CT (DECT)-based model for preoperative prediction of the number of central lymph node metastases (CLNMs) in clinically node-negative (cN0) papillary thyroid carcinoma (PTC) patients. MATERIALS AND METHODS Between January 2016 and January 2021, 490 patients who underwent lobectomy or thyroidectomy, CLN dissection, and preoperative DECT examinations were enrolled and randomly allocated into the training (N = 345) and validation cohorts (N = 145). The patients' clinical characteristics and quantitative DECT parameters obtained on primary tumors were collected. Independent predictors of> 5 CLNMs were identified and integrated to construct a DECT-based prediction model, for which the area under the curve (AUC), calibration, and clinical usefulness were assessed. Risk group stratification was performed to distinguish patients with different recurrence risks. RESULTS More than 5 CLNMs were found in 75 (15.3%) cN0 PTC patients. Age, tumor size, normalized iodine concentration (NIC), normalized effective atomic number (nZeff) and the slope of the spectral Hounsfield unit curve (λHu) in the arterial phase were independently associated with> 5 CLNMs. The DECT-based nomogram that incorporated predictors demonstrated favorable performance in both cohorts (AUC: 0.842 and 0.848) and significantly outperformed the clinical model (AUC: 0.688 and 0.694). The nomogram showed good calibration and added clinical benefit for predicting> 5 CLNMs. The KaplanMeier curves for recurrence-free survival showed that the high- and low-risk groups stratified by the nomogram were significantly different. CONCLUSION The nomogram based on DECT parameters and clinical factors could facilitate preoperative prediction of the number of CLNMs in cN0 PTC patients.
Collapse
Affiliation(s)
- Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Guihan Lin
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Feng Cheng
- Department of Head and Neck Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chunli Kong
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xia Li
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yi Zhong
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yumin Hu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yanping Su
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shuiwei Xia
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China; Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.
| |
Collapse
|
18
|
Dong L, Han X, Yu P, Zhang W, Wang C, Sun Q, Song F, Zhang H, Zheng G, Mao N, Song X. CT Radiomics-Based Nomogram for Predicting the Lateral Neck Lymph Node Metastasis in Papillary Thyroid Carcinoma: A Prospective Multicenter Study. Acad Radiol 2023; 30:3032-3046. [PMID: 37210266 DOI: 10.1016/j.acra.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/22/2023]
Abstract
RATIONALE AND OBJECTIVES This study is based on multicenter cohorts and aims to utilize computed tomography (CT) images to construct a radiomics nomogram for predicting the lateral neck lymph node (LNLN) metastasis in the papillary thyroid carcinoma (PTC) and further explore the biological basis under its prediction. MATERIALS AND METHODS In the multicenter study, 1213 lymph nodes from 409 patients with PTC who underwent CT examinations and received open surgery and lateral neck dissection were included. A prospective test cohort was used in validating the model. Radiomics features were extracted from the CT images of each patient's LNLNs. Selectkbest, maximum relevance and minimum redundancy and the least absolute shrinkage and selection operator (LASSO) algorithm were used in reducing the dimensionality of radiomics features in the training cohort. Then, a radiomics signature (Rad-score) was calculated as the sum of each feature multiplied by the nonzero coefficient from LASSO. A nomogram was generated using the clinical risk factors of the patients and Rad-score. The nomograms' performance was analyzed in terms of accuracy, sensitivity, specificity, confusion matrix, receiver operating characteristic curves, and areas under the receiver operating characteristic curve (AUCs). The clinical usefulness of the nomogram was evaluated by decision curve analysis. Moreover, three radiologists with different working experiences and nomogram were compared to one another. Whole transcriptomics sequencing was performed in 14 tumor samples; the correlation of biological functions and high and low LNLN samples predicted by the nomogram was further investigated. RESULTS A total of 29 radiomics features were used in constructing the Rad-score. Rad-score and clinical risk factors (age, tumor diameter, location and number of suspected tumors) compose the nomogram. The nomogram exhibited good discrimination performance of the nomogram for predicting LNLN metastasis in the training cohort (AUC, 0.866), internal test cohort (0.845), external test cohort (0.725), and prospective test cohort (0.808) and showed diagnostic capability comparable to senior radiologists, significantly outperforming junior radiologists (p < 0.05). Functional enrichment analysis suggested that the nomogram can reflect the ribosome-related structures of cytoplasmic translation in patients with PTC. CONCLUSION Our radiomics nomogram provides a noninvasive method that incorporates radiomics features and clinical risk factors for predicting LNLN metastasis in patients with PTC.
Collapse
Affiliation(s)
- Luchao Dong
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong 264003, People's Republic of China (L.D., F.S.); Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., X.S.); Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., N.M., X.S.)
| | - Xiao Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., X.S.); Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., N.M., X.S.)
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., X.S.); Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., N.M., X.S.)
| | - Wenbin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., X.S.); Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., N.M., X.S.)
| | - Cai Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., X.S.); Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., N.M., X.S.); School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261042, People's Republic of China (C.W.)
| | - Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., X.S.); Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., N.M., X.S.)
| | - Fei Song
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong 264003, People's Republic of China (L.D., F.S.); Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., X.S.); Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., N.M., X.S.)
| | - Haicheng Zhang
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (H.Z., N.M., X.S.); Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (H.Z., N.M.)
| | - Guibin Zheng
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (G.Z.)
| | - Ning Mao
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., N.M., X.S.); Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (H.Z., N.M., X.S.); Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (H.Z., N.M.)
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., X.S.); Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, People's Republic of China (L.D., X.H., P.Y., W.Z., C.W., Q.S., F.S., N.M., X.S.); Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, People's Republic of China (H.Z., N.M., X.S.).
| |
Collapse
|
19
|
Yang Y, Gan M, Yi K, Han S, Lin Z, Shi Y, Ming J. Guiding the postoperative radioactive iodine-131 therapy for patients with papillary thyroid carcinoma according to the prognostic risk groups: a SEER-based study. J Cancer Res Clin Oncol 2023; 149:17147-17157. [PMID: 37782329 DOI: 10.1007/s00432-023-05299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE The effectiveness of iodine-131(131I) therapy in patients with papillary thyroid cancer (PTC) of various stage is controversial. This study aimed to use prognostic risk groups to guide 131I therapy in patients with PTC after radical thyroidectomy. METHODS Data of 53,484 patients with PTC after radical thyroidectomy were collected from the Epidemiology and End Results (SEER) database. Patients were divided into subgroups according to MACIS system and regional lymph node involvement. The prognostic role of 131I therapy was investigated by comparing Kaplan-Meier survival analysis and Cox proportional hazard models in different subgroups. RESULTS Sex, age, tumor size, invasion, regional lymph node involvement, and distant metastasis was related to the survival of patients with PTC. If MACIS < 7, 131I treatment didn't affect the cancer-specific survival (CSS) rate. If MACIS ≥ 7, 131I therapy didn't work on CSS rate for patients with N0 or N1a < 5 status; 131I therapy had improved CSS rate for patients in the N1a ≥ 5 or N1b status. If patients with distant metastasis, invasion, or large tumor, 131I therapy didn't improve CSS rate for patients in N0 or N1a < 5 stage. CONCLUSION After radical thyroidectomy, if MACIS < 7, patients with PTC could avoid 131I therapy. If MACIS ≥ 7, patients in the N0 or N1a < 5 could avoid 131I therapy; those in the N1a ≥ 5 or N1b stage should be given 131I therapy. Among them, all patients with distant metastasis should be given 131I therapy.
Collapse
Affiliation(s)
- Yuping Yang
- Department of Breast and Thyroid Surgery, Army Specialty Medical Center, Chongqing, China
| | - Mingyu Gan
- Department of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Kun Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Han
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zijing Lin
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanling Shi
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Ming
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Wang J, Wang Y, Wang P, Shen X, Wang L, He D. Construction and evaluation of a nomogram prediction model for aspiration pneumonia in patients with acute ischemic stroke. Heliyon 2023; 9:e22048. [PMID: 38034684 PMCID: PMC10682132 DOI: 10.1016/j.heliyon.2023.e22048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Background Aspiration Pneumonia (AP) is a leading cause of death in patients with Acute Ischemic Stroke (AIS). Early detection, diagnosis and effective prevention measures are crucial for improving patient prognosis. However, there is a lack of research predicting AP occurrence after AIS. This study aimed to identify risk factors and develop a nomogram model to determine the probability of developing AP after AIS. Method A total of 3258 AIS patients admitted to Jinshan Hospital of Fudan University between January 1, 2016, and August 20, 2022, were included. Among them, 307 patients were diagnosed with AP (AP group), while 2951 patients formed the control group (NAP group). Univariate and multivariate logistic regression analyses were conducted to identify relevant risk factors for AP after AIS. These factors were used to establish a scoring system and develop a nomogram model using R software. Results Univariate analysis revealed 20 factors significantly associated (P < 0.05) with the development of AP after AIS. These factors underwent multivariate logistic regression analysis, which identified age (elderly), National Institute of Health Stroke Scale (NIHSS) score, dysphagia, atrial fibrillation, cardiac insufficiency, renal insufficiency, hepatic insufficiency, elevated Fasting Blood Glucose (FBG), elevated C-Reactive Protein (CRP), elevated Neutrophil percentage (NEUT%), and decreased prealbumin as independent risk factors. A nomogram model incorporating these 11 risk factors was constructed, with a C-index of 0.872 (95 % CI: 0.845-0.899), indicating high accuracy. Calibration and clinical decision analyses demonstrated the model's reliability and clinical value. Conclusion A nomogram model incorporating age, NIHSS score, dysphagia, atrial fibrillation, cardiac insufficiency, renal insufficiency, hepatic insufficiency, FBG, CRP, NEUT%, and prealbumin effectively predicts AP risk in AIS patients. This model provides guidance for early intervention strategies, enabling the identification of high-risk individuals for timely preventive measures.
Collapse
Affiliation(s)
- Junming Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 201508, China
| | - Yuntao Wang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Pengfei Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 201508, China
| | - Xueting Shen
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lina Wang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Daikun He
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 201508, China
| |
Collapse
|
21
|
Lu S, Ren Y, Lu C, Qian X, Liu Y, Zhang J, Shan X, Sun E. Radiomics features from whole thyroid gland tissue for prediction of cervical lymph node metastasis in the patients with papillary thyroid carcinoma. J Cancer Res Clin Oncol 2023; 149:13005-13016. [PMID: 37466794 DOI: 10.1007/s00432-023-05184-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE We aimed to develop a clinical-radiomics nomogram that could predict the cervical lymph node metastasis (CLNM) of patients with papillary thyroid carcinoma (PTC) using clinical characteristics as well as radiomics features of dual energy computed tomography (DECT). METHOD Patients from our hospital with suspected PTC who underwent DECT for preoperative assessment between January 2021 and February 2022 were retrospectively recruited. Clinical characteristics were obtained from the medical record system. Clinical characteristics and rad-scores were examined by univariate and multivariate logistic regression. All features were incorporated into the LASSO regression model, with penalty parameter tuning performed using tenfold cross-validation, to screen risk factors for CLNM. An easily accessible radiomics nomogram was constructed. Receiver Operating Characteristic (ROC) curve together with Area Under the Curve (AUC) analysis was conducted to evaluate the discrimination performance of the model. Calibration curves were employed to assess the calibration performance of the clinical-radiomics nomogram, followed by goodness-of-fit testing. Decision curve analysis (DCA) was performed to determine the clinical utility of the established models by estimating net benefits at varying threshold probabilities for training and testing groups. RESULTS A total of 461 patients were retrospectively recruited. The rates of CLNM were 49.3% (70 /142) in the training cohort and 53.3% (32/60) in the testing cohort. Out of the 960 extracted radiomics features, 192 were significantly different in positive and negative groups (p < 0.05). On the basis of the training cohort, 12 stable features with nonzero coefficients were selected using LASSO regression. LASSO regression identified 7 risk factors for CLNM, including male gender, maximum tumor size > 10 mm, multifocality, CT-reported central CLN status, US-reported central CLN status, rad-score, and TGAb. A nomogram was developed using these factors to predict the risk of CLNM. The AUC values in each cohort were 0.850 and 0.797, respectively. The calibration curve together with the Hosmer-Lemeshow test for the nomogram indicated good agreement between predicted and pathological CLN statuses in the training and testing cohorts. Results of DCA proved that the nomogram offers a superior net benefit for predicting CLNM compared to the "treat all or none" strategy across the majority of risk thresholds. CONCLUSION A nomogram comprising the clinical characteristics as well as radiomics features of DECT and US was constructed for the prediction of CLNM for patients with PTC, which in determining whether lateral compartment neck dissection is warranted.
Collapse
Affiliation(s)
- Siyuan Lu
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China
| | - Yongzhen Ren
- Department of Ultrasonography, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China
| | - Chao Lu
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China
| | - Xiaoqin Qian
- Department of Ultrasonography, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China
| | - Yingzhao Liu
- Department of Endocrinology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China
| | - Jiulou Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiuhong Shan
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China.
| | - Eryi Sun
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China.
| |
Collapse
|
22
|
HajiEsmailPoor Z, Kargar Z, Tabnak P. Radiomics diagnostic performance in predicting lymph node metastasis of papillary thyroid carcinoma: A systematic review and meta-analysis. Eur J Radiol 2023; 168:111129. [PMID: 37820522 DOI: 10.1016/j.ejrad.2023.111129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To evaluate the diagnostic performance of radiomics in lymph node metastasis (LNM) prediction in patients with papillary thyroid carcinoma (PTC) through a systematic review and meta-analysis. METHOD A literature search of PubMed, EMBASE, and Web of Science was conducted to find relevant studies published until February 18th, 2023. Studies that reported the accuracy of radiomics in different imaging modalities for LNM prediction in PTC patients were selected. The methodological quality of included studies was evaluated by radiomics quality score (RQS) and quality assessment of diagnostic accuracy studies (QUADAS-2) tools. General characteristics and radiomics accuracy were extracted. Overall sensitivity, specificity, and area under the curve (AUC) were calculated for diagnostic accuracy evaluation. Spearman correlation coefficient and subgroup analysis were performed for heterogeneity exploration. RESULTS In total, 25 studies were included, of which 22 studies provided adequate data for meta-analysis. We conducted two types of meta-analysis: one focused solely on radiomics features models and the other combined radiomics and non-radiomics features models in the analysis. The pooled sensitivity, specificity, and AUC of radiomics and combined models were 0.75 [0.68, 0.80] vs. 0.77 [0.74, 0.80], 0.77 [0.74, 0.81] vs. 0.83 [0.78, 0.87] and 0.80 [0.73, 0.85] vs 0.82 [0.75, 0.88], respectively. The analysis showed a high heterogeneity level among the included studies. There was no threshold effect. The subgroup analysis demonstrated that utilizing ultrasonography, 2D segmentation, central and lateral LNM detection, automatic segmentation, and PyRadiomics software could slightly improve diagnostic accuracy. CONCLUSIONS Our meta-analysis shows that the radiomics has the potential for pre-operative LNM prediction in PTC patients. Although methodological quality is sufficient but we still need more prospective studies with larger sample sizes from different centers.
Collapse
Affiliation(s)
| | - Zana Kargar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Huang XW, Ding J, Zheng RR, Ma JY, Cai MT, Powell M, Lin F, Yang YJ, Jin C. An ultrasound-based radiomics model for survival prediction in patients with endometrial cancer. J Med Ultrason (2001) 2023; 50:501-510. [PMID: 37310510 PMCID: PMC10955020 DOI: 10.1007/s10396-023-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
PURPOSE To establish a nomogram integrating radiomics features based on ultrasound images and clinical parameters for predicting the prognosis of patients with endometrial cancer (EC). MATERIALS AND METHODS A total of 175 eligible patients with ECs were enrolled in our study between January 2011 and April 2018. They were divided into a training cohort (n = 122) and a validation cohort (n = 53). Least absolute shrinkage and selection operator (LASSO) regression were applied for selection of key features, and a radiomics score (rad-score) was calculated. Patients were stratified into high risk and low-risk groups according to the rad-score. Univariate and multivariable COX regression analysis was used to select independent clinical parameters for disease-free survival (DFS). A combined model based on radiomics features and clinical parameters was ultimately established, and the performance was quantified with respect to discrimination and calibration. RESULTS Nine features were selected from 1130 features using LASSO regression in the training cohort, which yielded an area under the curve (AUC) of 0.823 and 0.792 to predict DFS in the training and validation cohorts, respectively. Patients with a higher rad-score were significantly associated with worse DFS. The combined nomogram, which was composed of clinically significant variables and radiomics features, showed a calibration and favorable performance for DFS prediction (AUC 0.893 and 0.885 in the training and validation cohorts, respectively). CONCLUSION The combined nomogram could be used as a tool in predicting DFS and may assist individualized decision making and clinical treatment.
Collapse
Affiliation(s)
- Xiao-Wan Huang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Jie Ding
- Department of Ultrasound Imaging, Yueqing Hospital of Wenzhou Medical University, Wenzhou, 325015, People's Republic of China
| | - Ru-Ru Zheng
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Jia-Yao Ma
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Meng-Ting Cai
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Martin Powell
- Nottingham Treatment Centre, Nottingham University Affiliated Hospital, Nottingham, NG7 2FT, UK
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yun-Jun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chu Jin
- Wenzhou Medical University Renji College, University Town, Chashan, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
24
|
Wang C, Yu P, Zhang H, Han X, Song Z, Zheng G, Wang G, Zheng H, Mao N, Song X. Artificial intelligence-based prediction of cervical lymph node metastasis in papillary thyroid cancer with CT. Eur Radiol 2023; 33:6828-6840. [PMID: 37178202 DOI: 10.1007/s00330-023-09700-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES To develop an artificial intelligence (AI) system for predicting cervical lymph node metastasis (CLNM) preoperatively in patients with papillary thyroid cancer (PTC) based on CT images. METHODS This multicenter retrospective study included the preoperative CT of PTC patients who were divided into the development, internal, and external test sets. The region of interest of the primary tumor was outlined manually on the CT images by a radiologist who has eight years of experience. With the use of the CT images and lesions masks, the deep learning (DL) signature was developed by the DenseNet combined with convolutional block attention module. One-way analysis of variance and least absolute shrinkage and selection operator were used to select features, and a support vector machine was used to construct the radiomics signature. Random forest was used to combine the DL, radiomics, and clinical signature to perform the final prediction. The receiver operating characteristic curve, sensitivity, specificity, and accuracy were used by two radiologists (R1 and R2) to evaluate and compare the AI system. RESULTS For the internal and external test set, the AI system achieved excellent performance with AUCs of 0.84 and 0.81, higher than the DL (p = .03, .82), radiomics (p < .001, .04), and clinical model (p < .001, .006). With the aid of the AI system, the specificities of radiologists were improved by 9% and 15% for R1 and 13% and 9% for R2, respectively. CONCLUSIONS The AI system can help predict CLNM in patients with PTC, and the radiologists' performance improved with AI assistance. CLINICAL RELEVANCE STATEMENT This study developed an AI system for preoperative prediction of CLNM in PTC patients based on CT images, and the radiologists' performance improved with AI assistance, which could improve the effectiveness of individual clinical decision-making. KEY POINTS • This multicenter retrospective study showed that the preoperative CT image-based AI system has the potential for predicting the CLNM of PTC. • The AI system was superior to the radiomics and clinical model in predicting the CLNM of PTC. • The radiologists' diagnostic performance improved when they received the AI system assistance.
Collapse
Affiliation(s)
- Cai Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261042, People's Republic of China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Haicheng Zhang
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
| | - Xiao Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Zheying Song
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261042, People's Republic of China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Guibin Zheng
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
| | - Guangkuo Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Haitao Zheng
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China
| | - Ning Mao
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China.
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China.
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, People's Republic of China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, People's Republic of China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China.
| |
Collapse
|
25
|
Zhu J, Chang L, Li D, Yue B, Wei X, Li D, Wei X. Nomogram for preoperative estimation risk of lateral cervical lymph node metastasis in papillary thyroid carcinoma: a multicenter study. Cancer Imaging 2023; 23:55. [PMID: 37264400 DOI: 10.1186/s40644-023-00568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Lateral lymph node metastasis (LLNM) is frequent in papillary thyroid carcinoma (PTC) and is associated with a poor prognosis. This study aimed to developed a clinical-ultrasound (Clin-US) nomogram to predict LLNM in patients with PTC. METHODS In total, 2612 PTC patients from two hospitals (H1: 1732 patients in the training cohort and 578 patients in the internal testing cohort; H2: 302 patients in the external testing cohort) were retrospectively enrolled. The associations between LLNM and preoperative clinical and sonographic characteristics were evaluated by the univariable and multivariable logistic regression analysis. The Clin-US nomogram was built basing on multivariate logistic regression analysis. The predicting performance of Clin-US nomogram was evaluated by calibration, discrimination and clinical usefulness. RESULTS The age, gender, maximum diameter of tumor (tumor size), tumor position, internal echo, microcalcification, vascularization, mulifocality, and ratio of abutment/perimeter (A/P) > 0.25 were independently associated with LLNM metastatic status. In the multivariate analysis, gender, tumor size, mulifocality, position, microcacification, and A/P > 0.25 were independent correlative factors. Comparing the Clin-US nomogram and US features, Clin-US nomogram had the highest AUC both in the training cohort and testing cohorts. The Clin‑US model revealed good discrimination between PTC with LLNM and without LLNM in the training cohort (AUC = 0.813), internal testing cohort (AUC = 0.815) and external testing cohort (AUC = 0.870). CONCLUSION Our findings suggest that the ClinUS nomogram we newly developed can effectively predict LLNM in PTC patients and could help clinicians choose appropriate surgical procedures.
Collapse
Affiliation(s)
- Jialin Zhu
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Luchen Chang
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, 300060, China
| | - Bing Yue
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xueqing Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Deyi Li
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
26
|
Fu R, Yang H, Zeng D, Yang S, Luo P, Yang Z, Teng H, Ren J. PTC-MAS: A Deep Learning-Based Preoperative Automatic Assessment of Lymph Node Metastasis in Primary Thyroid Cancer. Diagnostics (Basel) 2023; 13:diagnostics13101723. [PMID: 37238205 DOI: 10.3390/diagnostics13101723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Identifying cervical lymph node metastasis (LNM) in primary thyroid cancer preoperatively using ultrasound is challenging. Therefore, a non-invasive method is needed to assess LNM accurately. PURPOSE To address this need, we developed the Primary Thyroid Cancer Lymph Node Metastasis Assessment System (PTC-MAS), a transfer learning-based and B-mode ultrasound images-based automatic assessment system for assessing LNM in primary thyroid cancer. METHODS The system has two parts: YOLO Thyroid Nodule Recognition System (YOLOS) for obtaining regions of interest (ROIs) of nodules, and LMM assessment system for building the LNM assessment system using transfer learning and majority voting with extracted ROIs as input. We retained the relative size features of nodules to improve the system's performance. RESULTS We evaluated three transfer learning-based neural networks (DenseNet, ResNet, and GoogLeNet) and majority voting, which had the area under the curves (AUCs) of 0.802, 0.837, 0.823, and 0.858, respectively. Method III preserved relative size features and achieved higher AUCs than Method II, which fixed nodule size. YOLOS achieved high precision and sensitivity on a test set, indicating its potential for ROIs extraction. CONCLUSIONS Our proposed PTC-MAS system effectively assesses primary thyroid cancer LNM based on preserving nodule relative size features. It has potential for guiding treatment modalities and avoiding inaccurate ultrasound results due to tracheal interference.
Collapse
Affiliation(s)
- Ruqian Fu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing 400010, China
| | - Hao Yang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing 400010, China
| | - Dezhi Zeng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing 400010, China
| | - Shuhan Yang
- Medical Data Science Academy, Chongqing Medical University, Chongqing 400010, China
| | - Peng Luo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhijie Yang
- Breast & Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hua Teng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianli Ren
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
27
|
Jiang L, Zhang Z, Guo S, Zhao Y, Zhou P. Clinical-Radiomics Nomogram Based on Contrast-Enhanced Ultrasound for Preoperative Prediction of Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma. Cancers (Basel) 2023; 15:cancers15051613. [PMID: 36900404 PMCID: PMC10001290 DOI: 10.3390/cancers15051613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
This study aimed to establish a new clinical-radiomics nomogram based on ultrasound (US) for cervical lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC). We collected 211 patients with PTC between June 2018 and April 2020, then we randomly divided these patients into the training set (n = 148) and the validation set (n = 63). 837 radiomics features were extracted from B-mode ultrasound (BMUS) images and contrast-enhanced ultrasound (CEUS) images. The maximum relevance minimum redundancy (mRMR) algorithm, least absolute shrinkage and selection operator (LASSO) algorithm, and backward stepwise logistic regression (LR) were applied to select key features and establish a radiomics score (Radscore), including BMUS Radscore and CEUS Radscore. The clinical model and clinical-radiomics model were established using the univariate analysis and multivariate backward stepwise LR. The clinical-radiomics model was finally presented as a clinical-radiomics nomogram, the performance of which was evaluated by the receiver operating characteristic curves, Hosmer-Lemeshow test, calibration curves, and decision curve analysis (DCA). The results show that the clinical-radiomics nomogram was constructed by four predictors, including gender, age, US-reported LNM, and CEUS Radscore. The clinical-radiomics nomogram performed well in both the training set (AUC = 0.820) and the validation set (AUC = 0.814). The Hosmer-Lemeshow test and the calibration curves demonstrated good calibration. The DCA showed that the clinical-radiomics nomogram had satisfactory clinical utility. The clinical-radiomics nomogram constructed by CEUS Radscore and key clinical features can be used as an effective tool for individualized prediction of cervical LNM in PTC.
Collapse
Affiliation(s)
- Liqing Jiang
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China; (L.J.); (S.G.); (Y.Z.)
| | - Zijian Zhang
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| | - Shiyan Guo
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China; (L.J.); (S.G.); (Y.Z.)
| | - Yongfeng Zhao
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China; (L.J.); (S.G.); (Y.Z.)
| | - Ping Zhou
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China; (L.J.); (S.G.); (Y.Z.)
- Correspondence:
| |
Collapse
|
28
|
An Ultrasound-based Prediction Model for Occult Contralateral Papillary Thyroid Carcinoma in Adolescents and Young Adults. Acad Radiol 2023; 30:453-460. [PMID: 36075824 DOI: 10.1016/j.acra.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate the occult contralateral papillary thyroid carcinoma (PTC)-associated ultrasound (US) and clinical characteristics and establish a US-based model for the prediction of occult contralateral carcinoma in adolescents and young adults (AYAs) who were diagnosed with unilateral thyroid carcinoma preoperatively. MATERIALS AND METHODS From January 2015 to December 2020, patients who were diagnosed with unilateral thyroid carcinoma by preoperative US examination and underwent total thyroidectomy or thyroid lobectomy with more than 60 months of US follow-up at our hospital were retrospectively collected. Univariate and multivariate analyses were applied to identify the independent risk factors associated with occult contralateral PTC in AYAs, on which a prediction model was developed. The performance of the model was evaluated with accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve. RESULTS Occult contralateral PTC was found in 91 of 365 (24.9%) PTC patients with a median age at diagnosis of 26 years (interquartile range, 24-29 years). The multivariate analysis indicated that the presence of contralateral benign nodule, intra-tumoral calcification, and intraglandular dissemination were significantly associated with occult contralateral PTC in AYAs. The prediction model, which incorporated all independent predictors, yielded an area under the receiver operating characteristic curve of .661 (95% CI: .602-.719). The accuracy, sensitivity and specificity were 67.9%, 54.9%, and 72.3%, respectively. CONCLUSION The US-based prediction model proposed here exhibited a favorable performance for predicting occult contralateral PTC, which might be used to determine the appropriate extent of surgery for AYAs who had a preoperative diagnosis of unilateral thyroid carcinoma.
Collapse
|
29
|
Zhu H, Yu B, Li Y, Zhang Y, Jin J, Ai Y, Jin X, Yang Y. Models of ultrasonic radiomics and clinical characters for lymph node metastasis assessment in thyroid cancer: a retrospective study. PeerJ 2023; 11:e14546. [PMID: 36650830 PMCID: PMC9840861 DOI: 10.7717/peerj.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 01/14/2023] Open
Abstract
Background Preoperative prediction of cervical lymph node metastasis in papillary thyroid carcinoma provided a basis for tumor staging and treatment decision. This study aimed to investigate the utility of machine learning and develop different models to preoperatively predict cervical lymph node metastasis based on ultrasonic radiomic features and clinical characteristics in papillary thyroid carcinoma nodules. Methods Data from 400 papillary thyroid carcinoma nodules were included and divided into training and validation group. With the help of machine learning, clinical characteristics and ultrasonic radiomic features were extracted and selected using randomforest and least absolute shrinkage and selection operator regression before classified by five classifiers. Finally, 10 models were built and their area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, positive predictive value and negative predictive value were measured. Results Among the 10 models, RF-RF model revealed the highest area under curve (0.812) and accuracy (0.7542) in validation group. The top 10 variables of it included age, seven textural features, one shape feature and one first-order feature, in which eight were high-dimensional features. Conclusions RF-RF model showed the best predictive performance for cervical lymph node metastasis. And the importance features selected by it highlighted the unique role of higher-dimensional statistical methods for radiomics analysis.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Ultrasound, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing Yu
- Department of Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanyan Li
- Department of Ultrasound, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuhua Zhang
- Department of Ultrasound, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Juebin Jin
- Department of Medical Engineering, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Ai
- Department of Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiance Jin
- Department of Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Yang
- Department of Ultrasound, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
30
|
Yu F, Wu W, Zhang L, Li S, Yao X, Wang J, Ni Y, Meng Q, Yang R, Wang F, Shi L. Cervical lymph node metastasis prediction of postoperative papillary thyroid carcinoma before 131I therapy based on clinical and ultrasound characteristics. Front Endocrinol (Lausanne) 2023; 14:1122517. [PMID: 36875475 PMCID: PMC9982841 DOI: 10.3389/fendo.2023.1122517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND The status of lymph nodes is crucial to determine the dose of radioiodine-131(131I) for postoperative papillary thyroid carcinoma (PTC). We aimed to develop a nomogram for predicting residual and recurrent cervical lymph node metastasis (CLNM) in postoperative PTC before 131I therapy. METHOD Data from 612 postoperative PTC patients who underwent 131I therapy from May 2019 to December 2020 were retrospectively analyzed. Clinical and ultrasound features were collected. Univariate and multivariate logistic regression analyses were performed to determine the risk factors of CLNM. Receiver operating characteristic (ROC) analysis was used to weigh the discrimination of prediction models. To generate nomograms, models with high area under the curves (AUC) were selected. Bootstrap internal validation, calibration curves and decision curves were used to assess the prediction model's discrimination, calibration, and clinical usefulness. RESULTS A total of 18.79% (115/612) of postoperative PTC patients had CLNM. Univariate logistic regression analysis found serum thyroglobulin (Tg), serum thyroglobulin antibodies (TgAb), overall ultrasound diagnosis and seven ultrasound features (aspect transverse ratio, cystic change, microcalcification, mass hyperecho, echogenicity, lymphatic hilum structure and vascularity) were significantly associated with CLNM. Multivariate analysis revealed higher Tg, higher TgAb, positive overall ultrasound and ultrasound features such as aspect transverse ratio ≥ 2, microcalcification, heterogeneous echogenicity, absence of lymphatic hilum structure and abundant vascularity were independent risk factors for CLNM. ROC analysis showed the use of Tg and TgAb combined with ultrasound (AUC = 0.903 for "Tg+TgAb+Overall ultrasound" model, AUC = 0.921 for "Tg+TgAb+Seven ultrasound features" model) was superior to any single variant. Nomograms constructed for the above two models were validated internally and the C-index were 0.899 and 0.914, respectively. Calibration curves showed satisfied discrimination and calibration of the two nomograms. DCA also proved that the two nomograms were clinically useful. CONCLUSION Through the two accurate and easy-to-use nomograms, the possibility of CLNM can be objectively quantified before 131I therapy. Clinicians can use the nomograms to evaluate the status of lymph nodes in postoperative PTC patients and consider a higher dose of 131I for those with high scores.
Collapse
Affiliation(s)
- Fei Yu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liuting Zhang
- Department of Functional Examination, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaohua Li
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaochen Yao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yudan Ni
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qingle Meng
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Yang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Liang Shi, ; Feng Wang,
| | - Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Liang Shi, ; Feng Wang,
| |
Collapse
|
31
|
Gao X, Ran X, Ding W. The progress of radiomics in thyroid nodules. Front Oncol 2023; 13:1109319. [PMID: 36959790 PMCID: PMC10029726 DOI: 10.3389/fonc.2023.1109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
Due to the development of Artificial Intelligence (AI), Machine Learning (ML), and the improvement of medical imaging equipment, radiomics has become a popular research in recent years. Radiomics can obtain various quantitative features from medical images, highlighting the invisible image traits and significantly enhancing the ability of medical imaging identification and prediction. The literature indicates that radiomics has a high potential in identifying and predicting thyroid nodules. So in this article, we explain the development, definition, and workflow of radiomics. And then, we summarize the applications of various imaging techniques in identifying benign and malignant thyroid nodules, predicting invasiveness and metastasis of thyroid lymph nodes, forecasting the prognosis of thyroid malignancies, and some new advances in molecular level and deep learning. The shortcomings of this technique are also summarized, and future development prospects are provided.
Collapse
Affiliation(s)
| | - Xuan Ran
- *Correspondence: Wei Ding, ; Xuan Ran,
| | - Wei Ding
- *Correspondence: Wei Ding, ; Xuan Ran,
| |
Collapse
|
32
|
Prediction of Central Lymph Node Metastasis in cN0 Papillary Thyroid Carcinoma by CT Radiomics. Acad Radiol 2022:S1076-6332(22)00493-7. [PMID: 36220726 DOI: 10.1016/j.acra.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
RATIONALE AND OBJECTIVES To explore the feasibility of the preoperative prediction of pathological central lymph node metastasis (CLNM) status in patients with negative clinical lymph node (cN0) papillary thyroid carcinoma (PTC) using a computed tomography (CT) radiomics signature. MATERIALS AND METHODS A total of 97 PTC cN0 nodules with CLNM pathology data (pN0, with CLNM, n = 59; pN1, without CLNM, n = 38) in 85 patients were divided into a training set (n = 69) and a validation set (n = 28). For each lesion, 321 radiomic features were extracted from nonenhanced, arterial and venous phase CT images. Minimum redundancy and maximum relevance and the least absolute shrinkage and selection operator were used to find the most important features with which to develop a radiomics signature in the training set. The performance of the radiomics signature was evaluated by receiver operating characteristic curves, calibration curves and decision curve analysis . RESULTS Three nonzero the least absolute shrinkage and selection operator coefficient features were selected for radiomics signature construction. The radiomics signature for distinguishing the pN0 and pN1 groups achieved areas under the curve of 0.79 (95% CI 0.67, 0.91) in the training set and 0.77 (95% CI 0.55, 0.99) in the validation set. The calibration curves demonstrated good agreement between the radiomics score-predicted probability and the pathological results in the two sets (p= 0.399, p = 0.191). The decision curve analysis curves showed that the model was clinically useful. CONCLUSION This radiomic signature could be helpful to predict CLNM status in cN0 PTC patients.
Collapse
|
33
|
Shi Y, Zou Y, Liu J, Wang Y, Chen Y, Sun F, Yang Z, Cui G, Zhu X, Cui X, Liu F. Ultrasound-based radiomics XGBoost model to assess the risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual application of SHAP. Front Oncol 2022; 12:897596. [PMID: 36091102 PMCID: PMC9458917 DOI: 10.3389/fonc.2022.897596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesA radiomics-based explainable eXtreme Gradient Boosting (XGBoost) model was developed to predict central cervical lymph node metastasis (CCLNM) in patients with papillary thyroid carcinoma (PTC), including positive and negative effects.MethodsA total of 587 PTC patients admitted at Binzhou Medical University Hospital from 2017 to 2021 were analyzed retrospectively. The patients were randomized into the training and test cohorts with an 8:2 ratio. Radiomics features were extracted from ultrasound images of the primary PTC lesions. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression were used to select CCLNM positively-related features and radiomics scores were constructed. Clinical features, ultrasound features, and radiomics score were screened out by the Boruta algorithm, and the XGBoost model was constructed from these characteristics. SHapley Additive exPlanations (SHAP) was used for individualized and visualized interpretation. SHAP addressed the cognitive opacity of machine learning models.ResultsEleven radiomics features were used to calculate the radiomics score. Five critical elements were used to build the XGBoost model: capsular invasion, radiomics score, diameter, age, and calcification. The area under the curve was 91.53% and 90.88% in the training and test cohorts, respectively. SHAP plots showed the influence of each parameter on the XGBoost model, including positive (i.e., capsular invasion, radiomics score, diameter, and calcification) and negative (i.e., age) impacts. The XGBoost model outperformed the radiologist, increasing the AUC by 44%.ConclusionsThe radiomics-based XGBoost model predicted CCLNM in PTC patients. Visual interpretation using SHAP made the model an effective tool for preoperative guidance of clinical procedures, including positive and negative impacts.
Collapse
Affiliation(s)
- Yan Shi
- Binzhou Medical University Hospital, Binzhou, China
| | - Ying Zou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jihua Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | | | | | - Fang Sun
- Binzhou Medical University Hospital, Binzhou, China
| | - Zhi Yang
- Binzhou Medical University Hospital, Binzhou, China
| | - Guanghe Cui
- Binzhou Medical University Hospital, Binzhou, China
| | - Xijun Zhu
- Binzhou Medical University Hospital, Binzhou, China
| | - Xu Cui
- Binzhou Medical University Hospital, Binzhou, China
| | - Feifei Liu
- Binzhou Medical University Hospital, Binzhou, China
- Peking University People’s Hospital, Beijing, China
- *Correspondence: Feifei Liu,
| |
Collapse
|
34
|
Liu XN, Duan YS, Yue K, Wu YS, Zhang WC, Wang XD. The optimal extent of lymph node dissection in N1b papillary thyroid microcarcinoma based on clinicopathological factors and preoperative ultrasonography. Gland Surg 2022; 11:1047-1056. [PMID: 35800750 PMCID: PMC9253184 DOI: 10.21037/gs-22-284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2022] [Indexed: 03/26/2024]
Abstract
BACKGROUND The optimal extent of lymph node (LN) dissection in the management of N1b papillary thyroid microcarcinoma (PTMC) is still under debate in clinical practice, so we aimed to identify the risk factors associated with multilevel lateral lymph node metastasis (LLNM) with regard to the extent of LN dissection. METHODS The clinical data of 182 N1b PTMC patients between January 2019 and June 2021 at Tianjin Medical University Cancer Institute and Hospital were retrospectively reviewed. The frequency pattern and distribution of LLNM were analyzed for risk factors. We assessed the diagnostic value of preoperative ultrasonography (USG) for identifying levels II-V metastasis in PTMC patients. RESULTS The proportion of multilevel LLNM in N1b PTMC was 72.1%, and the most common pattern was metastasis at two levels (41.2%). Capsule invasion [odds ratio (OR) =6.861, 95% confidence interval (CI): 1.462-32.190, P=0.015], upper pole [OR =2.125, 95% CI: 1.010-4.473, P=0.047], central LN ratio [OR =7.315, 95% CI: 1.309-40.877, P=0.023], thyroid-stimulating hormone (TSH) >1.5 mIU/mL [OR =2.773, 95% CI: 1.269-6.060, P=0.011], and extranodal extension (ENE) [OR =2.632, 95% CI: 1.207-5.739, P=0.015] were independent risk factors for multilevel metastasis. In addition, unltrasonography had high sensitivity and specificity in the diagnosis of metastasis at level V (75.0%, 78.4%) and multilevel LLNM (67.2%, 64.8%). CONCLUSIONS Modified radical neck dissection (MRND) in N1b PTMC patients may be reserved for patients with simultaneous 3-level LLNM or clinically evident metastasis at level V. Preoperative USG may have certain suggestive significance in the diagnosis of multilevel LLNM in primary PTMC.
Collapse
Affiliation(s)
- Xiao-Nan Liu
- Department of Maxillofacial & E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thyroid and Breast Surgery, Tianjin 4th Center Hospital, Tianjin, China
| | - Yuan-Sheng Duan
- Department of Maxillofacial & E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Kai Yue
- Department of Maxillofacial & E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yan-Sheng Wu
- Department of Maxillofacial & E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wen-Chao Zhang
- Department of Maxillofacial & E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xu-Dong Wang
- Department of Maxillofacial & E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
35
|
Tong Y, Zhang J, Wei Y, Yu J, Zhan W, Xia H, Zhou S, Wang Y, Chang C. Ultrasound-based radiomics analysis for preoperative prediction of central and lateral cervical lymph node metastasis in papillary thyroid carcinoma: a multi-institutional study. BMC Med Imaging 2022; 22:82. [PMID: 35501717 PMCID: PMC9059387 DOI: 10.1186/s12880-022-00809-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background An accurate preoperative assessment of cervical lymph node metastasis (LNM) is important for choosing an optimal therapeutic strategy for papillary thyroid carcinoma (PTC) patients. This study aimed to develop and validate two ultrasound (US) nomograms for the individual prediction of central and lateral compartment LNM in patients with PTC. Methods A total of 720 PTC patients from 3 institutions were enrolled in this study. They were categorized into a primary cohort, an internal validation, and two external validation cohorts. Radiomics features were extracted from conventional US images. LASSO regression was used to select optimized features to construct the radiomics signature. Two nomograms integrating independent clinical variables and radiomics signature were established with multivariate logistic regression. The performance of the nomograms was assessed with regard to discrimination, calibration, and clinical usefulness. Results The radiomics scores were significantly higher in patients with central/lateral LNM. A radiomics nomogram indicated good discrimination for central compartment LNM, with an area under the curve (AUC) of 0.875 in the training set, the corresponding value in the validation sets were 0.856, 0.870 and 0.870, respectively. Another nomogram for predicting lateral LNM also demonstrated good performance with an AUC of 0.938 and 0.905 in the training and internal validation cohorts, respectively. The AUC for the two external validation cohorts were 0.881 and 0.903, respectively. The clinical utility of the nomograms was confirmed by the decision curve analysis. Conclusion The nomograms proposed here have favorable performance for preoperatively predicting cervical LNM, hold promise for optimizing the personalized treatment, and might greatly facilitate the decision-making in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-022-00809-2.
Collapse
Affiliation(s)
- Yuyang Tong
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Jingwen Zhang
- Department of Ultrasound, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yi Wei
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Jinhua Yu
- Department of Electronic Engineering, Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, 200433, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Hansheng Xia
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, 200433, China
| | - Cai Chang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| |
Collapse
|
36
|
Yang G, Yang F, Zhang F, Wang X, Tan Y, Qiao Y, Zhang H. Radiomics Profiling Identifies the Value of CT Features for the Preoperative Evaluation of Lymph Node Metastasis in Papillary Thyroid Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12051119. [PMID: 35626275 PMCID: PMC9139816 DOI: 10.3390/diagnostics12051119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Background: The aim of this study was to identify the increased value of integrating computed tomography (CT) radiomics analysis with the radiologists’ diagnosis and clinical factors to preoperatively diagnose cervical lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) patients. Methods: A total of 178 PTC patients were randomly divided into a training (n = 125) and a test cohort (n = 53) with a 7:3 ratio. A total of 2553 radiomic features were extracted from noncontrast, arterial contrast-enhanced and venous contrast-enhanced CT images of each patient. Principal component analysis (PCA) and Pearson’s correlation coefficient (PCC) were used for feature selection. Logistic regression was employed to build clinical–radiological, radiomics and combined models. A nomogram was developed by combining the radiomics features, CT-reported lymph node status and clinical factors. Results: The radiomics model showed a predictive performance similar to that of the clinical–radiological model, with similar areas under the curve (AUC) and accuracy (ACC). The combined model showed an optimal predictive performance in both the training (AUC, 0.868; ACC, 86.83%) and test cohorts (AUC, 0.878; ACC, 83.02%). Decision curve analysis demonstrated that the combined model has good clinical application value. Conclusions: Embedding CT radiomics into the clinical diagnostic process improved the diagnostic accuracy. The developed nomogram provides a potential noninvasive tool for LNM evaluation in PTC patients.
Collapse
Affiliation(s)
- Guoqiang Yang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
| | - Fan Yang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
| | - Fengyan Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
| | - Xiaochun Wang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
| | - Yan Tan
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
| | - Ying Qiao
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
- Correspondence: (Y.Q.); (H.Z.)
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (F.Z.); (X.W.); (Y.T.)
- Correspondence: (Y.Q.); (H.Z.)
| |
Collapse
|
37
|
Zhou Y, Su GY, Hu H, Tao XW, Ge YQ, Si Y, Shen MP, Xu XQ, Wu FY. Radiomics from Primary Tumor on Dual-Energy CT Derived Iodine Maps can Predict Cervical Lymph Node Metastasis in Papillary Thyroid Cancer. Acad Radiol 2022; 29 Suppl 3:S222-S231. [PMID: 34366279 DOI: 10.1016/j.acra.2021.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 01/04/2023]
Abstract
RATIONALE AND OBJECTIVES To develop and validate 2 iodine maps based radiomics nomograms for preoperatively predicting cervical lymph node metastasis (LNM) and central lymph node metastasis (CLNM) in papillary thyroid cancer (PTC). MATERIALS AND METHODS A total of 346 patients with PTC were enrolled and allocated to training (242) and validation (104) sets. Radiomics features were extracted from arterial and venous phase iodine maps, respectively. Aggregated machine-learning strategy was applied for features selection and construction of 2 radiomics scores (LN rad-score; CLN rad-score). Logistic regression model was employed to establish two radiomics nomograms (nomogram 1: predicting LNM; nomogram 2: predicting CLNM) after incorporating LN or CLN rad-score with clinical predictors. Nomograms performance was determined by discrimination, calibration and clinical usefulness. RESULTS Nomogram 1 incorporated LN rad-score, age (categorized by 55) and CT reported LN status; Nomogram 2 incorporated CLN rad-score, capsule contact >25% and CT reported CLN status. 2 nomograms both showed good discrimination and calibration in the training (AUC = 0.847; AUC = 0.837) and validation cohorts (AUC = 0.807; AUC = 0.795). Significant improved AUC, net reclassification index (NRI) and integrated discriminatory improvement (IDI) confirmed additional great predictive value of 2 rad-scores, compared with clinical models without radiomics. Decision curve analysis indicated clinical utility of nomograms. 2 nomograms both demonstrated favorable predictive efficacy in CT reported LN or CLN negative subgroup (AUC = 0.766; AUC = 0.744). CONCLUSION The presented 2 radiomics nomograms are useful tools for preoperative prediction of LNM and CLNM in PTC.
Collapse
|
38
|
Application of Machine Learning Methods to Improve the Performance of Ultrasound in Head and Neck Oncology: A Literature Review. Cancers (Basel) 2022; 14:cancers14030665. [PMID: 35158932 PMCID: PMC8833587 DOI: 10.3390/cancers14030665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Ultrasound (US) is a non-invasive imaging method that is routinely utilized in head and neck cancer patients to assess the anatomic extent of tumors, nodal and non-nodal neck masses and for imaging the salivary glands. In this review, we summarize the present evidence on whether the application of machine learning (ML) methods can potentially improve the performance of US in head and neck cancer patients. We found that published clinical literature on ML methods applied to US datasets was limited but showed evidence of improved diagnostic and prognostic performance. However, a majority of these studies were based on retrospective evaluation and conducted at a single center with a limited number of datasets. The conduct of multi-center studies could help better validate the performance of ML-based US radiomics and facilitate the integration of these approaches into routine clinical practice. Abstract Radiomics is a rapidly growing area of research within radiology that involves the extraction and modeling of high-dimensional quantitative imaging features using machine learning/artificial intelligence (ML/AI) methods. In this review, we describe the published clinical evidence on the application of ML methods to improve the performance of ultrasound (US) in head and neck oncology. A systematic search of electronic databases (MEDLINE, PubMed, clinicaltrials.gov) was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Of 15,080 initial articles identified, 34 studies were selected for in-depth analysis. Twenty-five out of 34 studies (74%) focused on the diagnostic application of US radiomics while 6 (18%) studies focused on response assessment and 3 (8%) studies utilized US radiomics for modeling normal tissue toxicity. Support vector machine (SVM) was the most commonly employed ML method (47%) followed by multivariate logistic regression (24%) and k-nearest neighbor analysis (21%). Only 11/34 (~32%) of the studies included an independent validation set. A majority of studies were retrospective in nature (76%) and based on single-center evaluation (85%) with variable numbers of patients (12–1609) and imaging datasets (32–1624). Despite these limitations, the application of ML methods resulted in improved diagnostic and prognostic performance of US highlighting the potential clinical utility of this approach.
Collapse
|
39
|
Hu Q, Zhang WJ, Liang L, Li LL, Yin W, Su QL, Lin FF. Establishing a Predictive Nomogram for Cervical Lymph Node Metastasis in Patients With Papillary Thyroid Carcinoma. Front Oncol 2022; 11:766650. [PMID: 35127475 PMCID: PMC8809373 DOI: 10.3389/fonc.2021.766650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023] Open
Abstract
Objectives The purpose of this study was to establish a nomogram for predicting cervical lymph node metastasis (CLNM) in patients with papillary thyroid carcinoma (PTC). Materials and Methods A total of 418 patients with papillary thyroid carcinoma undergoing total thyroidectomy with cervical lymph node dissection were enrolled in the retrospective study from January 2016 to September 2019. Univariate and multivariate Logistic regression analysis were performed to screen the clinicopathologic, laboratory and ultrasound (US) parameters influencing cervical lymph nodes metastasis and develop the predicting model. Results CLNM was proved in 34.4% (144/418) of patients. In the multivariate regression analysis, Male, Age < 45 years, Tumor size > 20mm, multifocality, ambiguous boundary, extracapsular invasion and US-suggested lymph nodes metastasis were independent risk factors of CLNM (p < 0.05). Prediction nomogram showed an excellent discriminative ability, with a C-index of 0.940 (95% confidence interval [CI], 0.888-0.991), and a good calibration. Conclusion The established nomogram showed a good prediction of CLNM in patients with PTC. It is conveniently used and should be considered in the determination of surgical procedures.
Collapse
Affiliation(s)
- Qiao Hu
- Department of Ultrasound, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, China
- *Correspondence: Qiao Hu,
| | - Wang-Jian Zhang
- School of Public Health, Sun Yet-Sen University, Guangzhou, China
| | - Li Liang
- Department of Ultrasound, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, China
| | - Ling-Ling Li
- Department of Ultrasound, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, China
| | - Wu Yin
- Department of Pathology, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, China
| | - Quan-Li Su
- Department of Ultrasound, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, China
| | - Fei-Fei Lin
- Department of Ultrasound, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
40
|
Wen Q, Wang Z, Traverso A, Liu Y, Xu R, Feng Y, Qian L. A radiomics nomogram for the ultrasound-based evaluation of central cervical lymph node metastasis in papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2022; 13:1064434. [PMID: 36531493 PMCID: PMC9748155 DOI: 10.3389/fendo.2022.1064434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
PURPOSE To develop and validate a radiomics nomogram based on ultrasound (US) to predict central cervical lymph node (LN) metastasis in patients with papillary thyroid carcinoma (PTC). METHODS PTC patients with pathologically confirmed presence or absence of central cervical LN metastasis in our hospital between March 2021 and November 2021 were enrolled as the training cohort. Radiomics features were extracted from the preoperative US images, and a radiomics signature was constructed. Univariate and multivariate logistic regression analyses were used to screen out the independent risk factors, and a radiomics nomogram was established. The performance of the model was verified in the independent test cohort of PTC patients who underwent thyroidectomy and cervical LN dissection in our hospital from December 2021 to March 2022. RESULTS In the independent test cohort, the radiomics model based on long-axis cross-section and short-axis cross-section images outperformed the radiomics models based on either one of these sections (the area under the curve (AUC), 0.69 vs. 0.62 and 0.66). The radiomics signature consisted of 4 selected features. The US radiomics nomogram included the radiomics signature, age, gender, BRAF V600E mutation status, and extrathyroidal extension (ETE) status. In the independent test cohort, the AUC of the receiver operating curve(ROC) of this nomogram was 0.76, outperformingthe clinical model and the radiomics model (0.63 and 0.69, respectively), and also much better than preoperative US examination (AUC, 0.60). Decision curve analysis indicated that the radiomics nomogram was clinically useful. CONCLUSIONS This study presents an efficient and useful US radiomics nomogram that can provide comprehensive information to assist clinicians in the individualized preoperative prediction of central cervical LN metastasis in PTC patients.
Collapse
Affiliation(s)
- Quan Wen
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhixiang Wang
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Alberto Traverso
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Yujiang Liu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruifang Xu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Feng
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Linxue Qian, ; Ying Feng,
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Linxue Qian, ; Ying Feng,
| |
Collapse
|
41
|
Cao Y, Zhong X, Diao W, Mu J, Cheng Y, Jia Z. Radiomics in Differentiated Thyroid Cancer and Nodules: Explorations, Application, and Limitations. Cancers (Basel) 2021; 13:2436. [PMID: 34069887 PMCID: PMC8157383 DOI: 10.3390/cancers13102436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 02/05/2023] Open
Abstract
Radiomics is an emerging technique that allows the quantitative extraction of high-throughput features from single or multiple medical images, which cannot be observed directly with the naked eye, and then applies to machine learning approaches to construct classification or prediction models. This method makes it possible to evaluate tumor status and to differentiate malignant from benign tumors or nodules in a more objective manner. To date, the classification and prediction value of radiomics in DTC patients have been inconsistent. Herein, we summarize the available literature on the classification and prediction performance of radiomics-based DTC in various imaging techniques. More specifically, we reviewed the recent literature to discuss the capacity of radiomics to predict lymph node (LN) metastasis, distant metastasis, tumor extrathyroidal extension, disease-free survival, and B-Raf proto-oncogene serine/threonine kinase (BRAF) mutation and differentiate malignant from benign nodules. This review discusses the application and limitations of the radiomics process, and explores its ability to improve clinical decision-making with the hope of emphasizing its utility for DTC patients.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610040, China; (Y.C.); (X.Z.); (W.D.); (J.M.)
| | - Xiao Zhong
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610040, China; (Y.C.); (X.Z.); (W.D.); (J.M.)
| | - Wei Diao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610040, China; (Y.C.); (X.Z.); (W.D.); (J.M.)
| | - Jingshi Mu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610040, China; (Y.C.); (X.Z.); (W.D.); (J.M.)
| | - Yue Cheng
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610040, China;
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610040, China; (Y.C.); (X.Z.); (W.D.); (J.M.)
| |
Collapse
|