1
|
Wang XQ, Fan YQ, Hou DX, Pan CC, Zheng N, Si YQ. Establishment and Validation of Diagnostic Model of Microvascular Invasion in Solitary Hepatocellular Carcinoma. J INVEST SURG 2025; 38:2484539. [PMID: 40254744 DOI: 10.1080/08941939.2025.2484539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 02/22/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND The microvascular invasion (MVI) score evaluates the presence of MVI in patients with hepatocellular carcinoma (HCC) by integrating multiple factors associated with MVI. We aimed to establish a MVI scoring system for HCC based on the clinical characteristics and serum biomarkers of patients with HCC. METHODS A total of 1027 patients with HCC hospitalized at Shandong Provincial Hospital from January 2016 to August 2021 were included and randomly divided into the development group and validation group at a ratio of 3:1. Univariable and multivariable logistic regression analyses were conducted to identify independent risk factors for MVI in HCC patients. Based on these independent risk factors, the preoperative MVI scoring system (diagnostic model) for HCC was established and verified. The receiver operating characteristic (ROC) curves, calibration curves and decision curve analyses (DCA) were employed to evaluate the discrimination and clinical application of the diagnostic model. RESULTS Independent risk factors for MVI of HCC involved Hepatitis B virus infection (HBV), large tumor diameter, higher logarithm of Alpha-fetoprotein (Log AFP), higher logarithm of AFP-L3% (Log AFP-L3%), higher logarithm of protein induced by vitamin K absence or antagonist-II (Log PIVKA-II) and higher logarithm of Carbohydrate antigen 125 (Log CA125). The diagnostic model incorporating these six independent risk factors was finally established. The areas under the ROC curve (AUC) assessed by the nomogram in the development cohort and validation cohort were 0.806 (95% CI, 0.773-0.839) and 0.818 (95% CI, 0.763-0.874) respectively. The calibration curve revealed that the results predicted by our diagnostic model for MVI in HCC were highly consistent with the postoperative pathological outcomes. The DCA further indicated promising clinical application of the diagnostic model. CONCLUSION An effective preoperative diagnostic model for MVI of HCC based on readily available tumor markers and clinical characteristics has been established, which is both clinically significant and easy to implement for diagnosing MVI.
Collapse
Affiliation(s)
- Xiu-Qin Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying-Qi Fan
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dong-Xing Hou
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cui-Cui Pan
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ni Zheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan-Quan Si
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Zhou J, Yang D, Tang H. Magnetic resonance imaging radiomics based on artificial intelligence is helpful to evaluate the prognosis of single hepatocellular carcinoma. Heliyon 2025; 11:e41735. [PMID: 39866463 PMCID: PMC11761343 DOI: 10.1016/j.heliyon.2025.e41735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/28/2025] Open
Abstract
Background Previous studies mostly use single-type features to establish a prediction model. We aim to develop a comprehensive prediction model that effectively identify patients with poor prognosis for single hepatocellular carcinoma (HCC) based on artificial intelligence (AI). Patients and methods: 236 single HCC patients were studied to establish a comprehensive prediction model. We collected the basic information of patients and used AI to extract the features of magnetic resonance (MR) images. Results The clinical model based on linear regression (LR) algorithm (AUC: 0.658, 95%CI: 0.5021-0.8137), the radiomics model and deep transfer learning (DTL) model based on light gradient-boosting machine (Light GBM) algorithm (AUC: 0.761, 95%CI: 0.6326-0.8886 and AUC: 0.784, 95%CI: 0.6587-0.9087, respectively) were the optimal prediction models. A comparison revealed that the integrated nomogram had the largest area under the receiver operating characteristic curve (AUC) (all P < 0.05). In the training cohort, the integrated nomogram was predictive of recurrence-free survival (RFS) as well as overall survival (OS) (C-index: 0.735 and 0.712, P < 0.001). In the test cohort, the integrated nomogram also can predict RFS and OS (C-index: 0.718 and 0.740, P < 0.001) in patients. Conclusion The integrated nomogram composed of signatures in the prediction models can not only predict the postoperative recurrence of single HCC patients but also stratify the risk of OS after the operation.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daofeng Yang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Mostafa G, Mahmoud H, Abd El-Hafeez T, E ElAraby M. The power of deep learning in simplifying feature selection for hepatocellular carcinoma: a review. BMC Med Inform Decis Mak 2024; 24:287. [PMID: 39367397 PMCID: PMC11452940 DOI: 10.1186/s12911-024-02682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is a highly aggressive, prevalent, and deadly type of liver cancer. With the advent of deep learning techniques, significant advancements have been made in simplifying and optimizing the feature selection process. OBJECTIVE Our scoping review presents an overview of the various deep learning models and algorithms utilized to address feature selection for HCC. The paper highlights the strengths and limitations of each approach, along with their potential applications in clinical practice. Additionally, it discusses the benefits of using deep learning to identify relevant features and their impact on the accuracy and efficiency of diagnosis, prognosis, and treatment of HCC. DESIGN The review encompasses a comprehensive analysis of the research conducted in the past few years, focusing on the methodologies, datasets, and evaluation metrics adopted by different studies. The paper aims to identify the key trends and advancements in the field, shedding light on the promising areas for future research and development. RESULTS The findings of this review indicate that deep learning techniques have shown promising results in simplifying feature selection for HCC. By leveraging large-scale datasets and advanced neural network architectures, these methods have demonstrated improved accuracy and robustness in identifying predictive features. CONCLUSIONS We analyze published studies to reveal the state-of-the-art HCC prediction and showcase how deep learning can boost accuracy and decrease false positives. But we also acknowledge the challenges that remain in translating this potential into clinical reality.
Collapse
Affiliation(s)
- Ghada Mostafa
- Computer Science Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt.
- Computer Science Unit, Deraya University, EL-Minia, Egypt.
| | - Hamdi Mahmoud
- Computer Science Department, Faculty of Computers and Artificial Intelligence, Beni-Suef National University, Beni-Suef, Egypt.
| | - Tarek Abd El-Hafeez
- Department of Computer Science, Faculty of Science, Minia University, EL-Minia, Egypt.
- Computer Science Unit, Deraya University, EL-Minia, Egypt.
| | - Mohamed E ElAraby
- Computer Science Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
4
|
Zhang R, Wang Y, Li Z, Shi Y, Yu D, Huang Q, Chen F, Xiao W, Hong Y, Feng Z. Dynamic radiomics based on contrast-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma. BMC Med Imaging 2024; 24:80. [PMID: 38584254 PMCID: PMC11000376 DOI: 10.1186/s12880-024-01258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE To exploit the improved prediction performance based on dynamic contrast-enhanced (DCE) MRI by using dynamic radiomics for microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS We retrospectively included 175 and 75 HCC patients who underwent preoperative DCE-MRI from September 2019 to August 2022 in institution 1 (development cohort) and institution 2 (validation cohort), respectively. Static radiomics features were extracted from the mask, arterial, portal venous, and equilibrium phase images and used to construct dynamic features. The static, dynamic, and dynamic-static radiomics (SR, DR, and DSR) signatures were separately constructed based on the feature selection method of LASSO and classification algorithm of logistic regression. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) were plotted to evaluate and compare the predictive performance of each signature. RESULTS In the three radiomics signatures, the DSR signature performed the best. The AUCs of the SR, DR, and DSR signatures in the training set were 0.750, 0.751 and 0.805, respectively, while in the external validation set, the corresponding AUCs were 0.706, 0756 and 0.777. The DSR signature showed significant improvement over the SR signature in predicting MVI status (training cohort: P = 0.019; validation cohort: P = 0.044). After external validation, the AUC value of the SR signature decreased from 0.750 to 0.706, while the AUC value of the DR signature did not show a decline (AUCs: 0.756 vs. 0.751). CONCLUSIONS The dynamic radiomics had an improved effect on the MVI prediction in HCC, compared with the static DCE MRI-based radiomics models.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Wang
- Department of Ultrasound, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Li
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushu Shi
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danping Yu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Huang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Hong
- College of Mathematical Medicine, Zhejiang Normal University School, Jinhua, China
| | - Zhan Feng
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Yang J, Dong X, Wang F, Jin S, Zhang B, Zhang H, Pan W, Gan M, Duan S, Zhang L, Hu H, Ji W. A deep learning model based on MRI for prediction of vessels encapsulating tumour clusters and prognosis in hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:1074-1083. [PMID: 38175256 DOI: 10.1007/s00261-023-04141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE This study aimed to build and evaluate a deep learning (DL) model to predict vessels encapsulating tumor clusters (VETC) and prognosis preoperatively in patients with hepatocellular carcinoma (HCC). METHODS 320 pathologically confirmed HCC patients (58 women and 262 men) from two hospitals were included in this retrospective study. Institution 1 (n = 219) and Institution 2 (n = 101) served as the training and external test cohorts, respectively. Tumors were evaluated three-dimensionally and regions of interest were segmented manually in the arterial, portal venous, and delayed phases (AP, PP, and DP). Three ResNet-34 DL models were developed, consisting of three models based on a single sequence. The fusion model was developed by inputting the prediction probability of the output from the three single-sequence models into logistic regression. The area under the receiver operating characteristic curve (AUC) was used to compare performance, and the Delong test was used to compare AUCs. Early recurrence (ER) was defined as recurrence within two years of surgery and early recurrence-free survival (ERFS) rate was evaluated by Kaplan-Meier survival analysis. RESULTS Among the 320 HCC patients, 227 were VETC- and 93 were VETC+ . In the external test cohort, the fusion model showed an AUC of 0.772, a sensitivity of 0.80, and a specificity of 0.61. The fusion model-based prediction of VETC high-risk and low-risk categories exhibits a significant difference in ERFS rates, akin to the outcomes observed in VETC + and VETC- confirmed through pathological analyses (p < 0.05). CONCLUSIONS A DL framework based on ResNet-34 has demonstrated potential in facilitating non-invasive prediction of VETC as well as patient prognosis.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Radiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximen St, Linhai, Taizhou, 317000, Zhejiang, China
| | - Xue Dong
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People's Republic of China
| | - Shengze Jin
- Department of Radiology, Taizhou Hospital of Zhejiang Province, Shaoxing University, Taizhou, 318000, Zhejiang, China
| | - Binhao Zhang
- Department of Radiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximen St, Linhai, Taizhou, 317000, Zhejiang, China
| | - Huangqi Zhang
- Department of Radiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximen St, Linhai, Taizhou, 317000, Zhejiang, China
| | - Wenting Pan
- Department of Radiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximen St, Linhai, Taizhou, 317000, Zhejiang, China
| | - Meifu Gan
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, Zhejiang, China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Pudong New Town, No.1, Huatuo Road, Shanghai, 210000, China
| | - Limin Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People's Republic of China
| | - Wenbin Ji
- Department of Radiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximen St, Linhai, Taizhou, 317000, Zhejiang, China.
- Department of Radiology, Taizhou Hospital, Zhejiang University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
6
|
Cui L, Qin Z, Sun S, Feng W, Hou M, Yu D. Diffusion-weighted imaging-based radiomics model using automatic machine learning to differentiate cerebral cystic metastases from brain abscesses. J Cancer Res Clin Oncol 2024; 150:132. [PMID: 38492096 PMCID: PMC10944436 DOI: 10.1007/s00432-024-05642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES To develop a radiomics model based on diffusion-weighted imaging (DWI) utilizing automated machine learning method to differentiate cerebral cystic metastases from brain abscesses. MATERIALS AND METHODS A total of 186 patients with cerebral cystic metastases (n = 98) and brain abscesses (n = 88) from two clinical institutions were retrospectively included. The datasets (129 from institution A) were randomly portioned into separate 75% training and 25% internal testing sets. Radiomics features were extracted from DWI images using two subregions of the lesion (cystic core and solid wall). A thorough image preprocessing method was applied to DWI images to ensure the robustness of radiomics features before feature extraction. Then the Tree-based Pipeline Optimization Tool (TPOT) was utilized to search for the best optimized machine learning pipeline, using a fivefold cross-validation in the training set. The external test set (57 from institution B) was used to evaluate the model's performance. RESULTS Seven distinct TPOT models were optimized to distinguish between cerebral cystic metastases and abscesses either based on different features combination or using wavelet transform. The optimal model demonstrated an AUC of 1.00, an accuracy of 0.97, sensitivity of 1.00, and specificity of 0.93 in the internal test set, based on the combination of cystic core and solid wall radiomics signature using wavelet transform. In the external test set, this model reached 1.00 AUC, 0.96 accuracy, 1.00 sensitivity, and 0.93 specificity. CONCLUSION The DWI-based radiomics model established by TPOT exhibits a promising predictive capacity in distinguishing cerebral cystic metastases from abscesses.
Collapse
Affiliation(s)
- Linyang Cui
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Department of Radiology, Weihai Central Hospital Affiliated to Qingdao University, Weihai, 264400, Shandong, China
| | - Zheng Qin
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Siyuan Sun
- Qilu Pharmaceutical Co., Ltd, Jinan, 250100, Shandong, China
| | - Weihua Feng
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Mingyuan Hou
- Department of Imaging, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, 264200, Shandong, China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
7
|
Ahn JC, Shah VH. Artificial intelligence in gastroenterology and hepatology. ARTIFICIAL INTELLIGENCE IN CLINICAL PRACTICE 2024:443-464. [DOI: 10.1016/b978-0-443-15688-5.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Qin X, Zhu J, Tu Z, Ma Q, Tang J, Zhang C. Contrast-Enhanced Ultrasound with Deep Learning with Attention Mechanisms for Predicting Microvascular Invasion in Single Hepatocellular Carcinoma. Acad Radiol 2023; 30 Suppl 1:S73-S80. [PMID: 36567144 DOI: 10.1016/j.acra.2022.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
RATIONALE AND OBJECTIVES Prediction of microvascular invasion (MVI) status of hepatocellular carcinoma (HCC) holds clinical significance for decision-making regarding the treatment strategy and evaluation of patient prognosis. We developed a deep learning (DL) model based on contrast-enhanced ultrasound (CEUS) to predict MVI of HCC. MATERIALS AND METHODS We retrospectively analyzed the data for single primary HCCs that were evaluated with CEUS 1 week before surgical resection from December 2014 to February 2022. The study population was divided into training (n = 198) and test (n = 54) cohorts. In this study, three DL models (Resnet50, Resnet50+BAM, Resnet50+SE) were trained using the training cohort and tested in the test cohort. Tumor characteristics were also evaluated by radiologists, and multivariate regression analysis was performed to determine independent indicators for the development of predictive nomogram models. The performance of the three DL models was compared to that of the MVI prediction model based on radiologist evaluations. RESULTS The best-performing model, ResNet50+SE model achieved the ROC of 0.856, accuracy of 77.2, specificity of 93.9%, and sensitivity of 52.4% in the test group. The MVI prediction model based on a combination of three independent predictors showed a C-index of 0.729, accuracy of 69.4, specificity of 73.8%, and sensitivity of 62%. CONCLUSION The DL algorithm can accurately predict MVI of HCC on the basis of CEUS images, to help identify high-risk patients for the assist treatment.
Collapse
Affiliation(s)
- Xiachuan Qin
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, AH, China, 230022; Department of Ultrasound, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nan Chong, Sichuan, China
| | - Jianhui Zhu
- Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
| | - Zhengzheng Tu
- Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
| | - Qianqing Ma
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, AH, China, 230022
| | - Jin Tang
- Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
| | - Chaoxue Zhang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, AH, China, 230022.
| |
Collapse
|
9
|
Wang T, Li Z, Yu H, Duan C, Feng W, Chang L, Yu J, Liu F, Gao J, Zang Y, Luo Z, Liu H, Zhang Y, Zhou X. Prediction of microvascular invasion in hepatocellular carcinoma based on preoperative Gd-EOB-DTPA-enhanced MRI: Comparison of predictive performance among 2D, 2D-expansion and 3D deep learning models. Front Oncol 2023; 13:987781. [PMID: 36816963 PMCID: PMC9936232 DOI: 10.3389/fonc.2023.987781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose To evaluate and compare the predictive performance of different deep learning models using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI in predicting microvascular invasion (MVI) in hepatocellular carcinoma. Methods The data of 233 patients with pathologically confirmed hepatocellular carcinoma (HCC) treated at our hospital from June 2016 to June 2021 were retrospectively analyzed. Three deep learning models were constructed based on three different delineate methods of the region of interest (ROI) using the Darwin Scientific Research Platform (Beijing Yizhun Intelligent Technology Co., Ltd., China). Manual segmentation of ROI was performed on the T1-weighted axial Hepatobiliary phase images. According to the ratio of 7:3, the samples were divided into a training set (N=163) and a validation set (N=70). The receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of three models, and their sensitivity, specificity and accuracy were assessed. Results Among 233 HCC patients, 109 were pathologically MVI positive, including 91 men and 18 women, with an average age of 58.20 ± 10.17 years; 124 patients were MVI negative, including 93 men and 31 women, with an average age of 58.26 ± 10.20 years. Among three deep learning models, 2D-expansion-DL model and 3D-DL model showed relatively good performance, the AUC value were 0.70 (P=0.003) (95% CI 0.57-0.82) and 0.72 (P<0.001) (95% CI 0.60-0.84), respectively. In the 2D-expansion-DL model, the accuracy, sensitivity and specificity were 0.7143, 0.739 and 0.688. In the 3D-DL model, the accuracy, sensitivity and specificity were 0.6714, 0.800 and 0.575, respectively. Compared with the 3D-DL model (based on 3D-ResNet), the 2D-DL model is smaller in scale and runs faster. The frames per second (FPS) for the 2D-DL model is 244.7566, which is much larger than that of the 3D-DL model (73.3374). Conclusion The deep learning model based on Gd-EOB-DTPA-enhanced MRI could preoperatively evaluate MVI in HCC. Considering that the predictive performance of 2D-expansion-DL model was almost the same as the 3D-DL model and the former was relatively easy to implement, we prefer the 2D-expansion-DL model in practical research.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhen Li
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
| | - Haiyang Yu
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chongfeng Duan
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Weihua Feng
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | | | - Jing Yu
- Yizhun Medical AI Co., Ltd, Beijing, China
| | - Fang Liu
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Juan Gao
- Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yichen Zang
- Department of Ultrasound, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ziwei Luo
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hao Liu
- Yizhun Medical AI Co., Ltd, Beijing, China
| | - Yu Zhang
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoming Zhou
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China,*Correspondence: Xiaoming Zhou,
| |
Collapse
|
10
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
11
|
Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging. Diagn Interv Imaging 2023; 104:24-36. [PMID: 36272931 DOI: 10.1016/j.diii.2022.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and currently the third-leading cause of cancer-related death worldwide. Recently, artificial intelligence (AI) has emerged as an important tool to improve clinical management of HCC, including for diagnosis, prognostication and evaluation of treatment response. Different AI approaches, such as machine learning and deep learning, are both based on the concept of developing prediction algorithms from large amounts of data, or big data. The era of digital medicine has led to a rapidly expanding amount of routinely collected health data which can be leveraged for the development of AI models. Various studies have constructed AI models by using features extracted from ultrasound imaging, computed tomography imaging and magnetic resonance imaging. Most of these models have used convolutional neural networks. These tools have shown promising results for HCC detection, characterization of liver lesions and liver/tumor segmentation. Regarding treatment, studies have outlined a role for AI in evaluation of treatment response and improvement of pre-treatment planning. Several challenges remain to fully integrate AI models in clinical practice. Future research is still needed to robustly evaluate AI algorithms in prospective trials, and improve interpretability, generalizability and transparency. If such challenges can be overcome, AI has the potential to profoundly change the management of patients with HCC. The purpose of this review was to sum up current evidence on AI approaches using imaging for the clinical management of HCC.
Collapse
|
12
|
Fahmy D, Alksas A, Elnakib A, Mahmoud A, Kandil H, Khalil A, Ghazal M, van Bogaert E, Contractor S, El-Baz A. The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14246123. [PMID: 36551606 PMCID: PMC9777232 DOI: 10.3390/cancers14246123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.
Collapse
Affiliation(s)
- Dalia Fahmy
- Diagnostic Radiology Department, Mansoura University Hospital, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Heba Kandil
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Faculty of Computer Sciences and Information, Mansoura University, Mansoura 35516, Egypt
| | - Ashraf Khalil
- College of Technological Innovation, Zayed University, Abu Dhabi 4783, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
13
|
Gao S, Zhang Y, Sun W, Jin K, Dai Y, Wang F, Qian X, Han J, Sheng R, Zeng M. Assessment of an
MR
Elastography‐Based Nomogram as a Potential Imaging Biomarker for Predicting Microvascular Invasion of Hepatocellular Carcinoma. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Shanshan Gao
- Department of Radiology, Zhongshan Hospital Fudan University Shanghai China
- Central Research Institute United Imaging Healthcare Shanghai China
| | - Yunfei Zhang
- Central Research Institute United Imaging Healthcare Shanghai China
- Shanghai Institute of Medical Imaging Shanghai China
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital Fudan University Shanghai China
- Central Research Institute United Imaging Healthcare Shanghai China
| | - Kaipu Jin
- Department of Radiology, Zhongshan Hospital Fudan University Shanghai China
- Central Research Institute United Imaging Healthcare Shanghai China
| | - Yongming Dai
- Shanghai Institute of Medical Imaging Shanghai China
| | - Feihang Wang
- Central Research Institute United Imaging Healthcare Shanghai China
- Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai China
| | - Xianling Qian
- Department of Radiology, Zhongshan Hospital Fudan University Shanghai China
- Central Research Institute United Imaging Healthcare Shanghai China
| | - Jing Han
- Department of Pathology, Zhongshan Hospital Fudan University Shanghai China
| | - Ruofan Sheng
- Department of Radiology, Zhongshan Hospital Fudan University Shanghai China
- Department of Radiology, Zhongshan Hospital (Xiamen) Fudan University Xiamen China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital Fudan University Shanghai China
- Central Research Institute United Imaging Healthcare Shanghai China
- Department of Cancer Center, Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
14
|
Deng Y, Jia X, Yu G, Hou J, Xu H, Ren A, Wang Z, Yang D, Yang Z. Can a proposed double branch multimodality-contribution-aware TripNet improve the prediction performance of the microvascular invasion of hepatocellular carcinoma based on small samples? Front Oncol 2022; 12:1035775. [PMID: 36387069 PMCID: PMC9640917 DOI: 10.3389/fonc.2022.1035775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVES To evaluate the potential improvement of prediction performance of a proposed double branch multimodality-contribution-aware TripNet (MCAT) in microvascular invasion (MVI) of hepatocellular carcinoma (HCC) based on a small sample. METHODS In this retrospective study, 121 HCCs from 103 consecutive patients were included, with 44 MVI positive and 77 MVI negative, respectively. A MCAT model aiming to improve the accuracy of deep neural network and alleviate the negative effect of small sample size was proposed and the improvement of MCAT model was verified among comparisons between MCAT and other used deep neural networks including 2DCNN (two-dimentional convolutional neural network), ResNet (residual neural network) and SENet (squeeze-and-excitation network), respectively. RESULTS Through validation, the AUC value of MCAT is significantly higher than 2DCNN based on CT, MRI, and both imaging (P < 0.001 for all). The AUC value of model with single branch pretraining based on small samples is significantly higher than model with end-to-end training in CT branch and double branch (0.62 vs 0.69, p=0.016, 0.65 vs 0.83, p=0.010, respectively). The AUC value of the double branch MCAT based on both CT and MRI imaging (0.83) was significantly higher than that of the CT branch MCAT (0.69) and MRI branch MCAT (0.73) (P < 0.001, P = 0.03, respectively), which was also significantly higher than common-used ReNet (0.67) and SENet (0.70) model (P < 0.001, P = 0.005, respectively). CONCLUSION A proposed Double branch MCAT model based on a small sample can improve the effectiveness in comparison to other deep neural networks or single branch MCAT model, providing a potential solution for scenarios such as small-sample deep learning and fusion of multiple imaging modalities.
Collapse
Affiliation(s)
- Yuhui Deng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Medical Imaging Division, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Xibin Jia
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Gaoyuan Yu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Jian Hou
- Department of Radiology, The People’s Hospital of Jimo.Qingdao, Qingdao, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ahong Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Deng Y, Li J, Xu H, Ren A, Wang Z, Yang D, Yang Z. Diagnostic Accuracy of the Apparent Diffusion Coefficient for Microvascular Invasion in Hepatocellular Carcinoma: A Meta-analysis. J Clin Transl Hepatol 2022; 10:642-650. [PMID: 36062283 PMCID: PMC9396311 DOI: 10.14218/jcth.2021.00254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Microvascular invasion (MVI) is a major risk factor for the early recurrence of hepatocellular carcinoma (HCC) and it seriously worsens the prognosis. Accurate preoperative evaluation of the presence of MVI could greatly benefit the treatment management and prognosis prediction of HCC patients. The study aim was to evaluate the diagnostic performance of the apparent diffusion coefficient (ADC), a quantitative parameter for the preoperative diagnosis MVI in HCC patients. METHODS Original articles about diffusion-weighted imaging (DWI) and/or intravoxel incoherent motion (IVIM) conducted on a 3.0 or 1.5 Tesla magnetic resonance imaging (MRI) system indexed through January 17, 2021were collected from MEDLINE/PubMed, Web of Science, EMBASE, and the Cochrane Library. Methodological quality was evaluated using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). The pooled sensitivity, specificity, and summary area under the receiver operating characteristic curve (AUROC) were calculated, and meta-regression analysis was performed using a bivariate random effects model through a meta-analysis. RESULTS Nine original articles with a total of 988 HCCs were included. Most studies had low bias risk and minimal applicability concerns. The pooled sensitivity, specificity and AUROC of the ADC value were 73%, 70%, and 0.78, respectively. The time interval between the index test and the reference standard was identified as a possible source of heterogeneity by subgroup meta-regression analysis. CONCLUSIONS Meta-analysis showed that the ADC value had moderate accuracy for predicting MVI in HCC. The time interval accounted for the heterogeneity.
Collapse
Affiliation(s)
- Yuhui Deng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Medical Imaging Division, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jisheng Li
- Department of Interventional Radiology, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, Shandong, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ahong Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Correspondence to: Dawei Yang and Zhenghan Yang, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-1868-2746 (DY) and https://orcid.org/0000-0003-3986-1732 (ZY). Tel: +86-13488676354 (DY) and +86-13910831365 (ZY), Fax: +86-10-63138490, E-mail: (DY) and (ZY)
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Correspondence to: Dawei Yang and Zhenghan Yang, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-1868-2746 (DY) and https://orcid.org/0000-0003-3986-1732 (ZY). Tel: +86-13488676354 (DY) and +86-13910831365 (ZY), Fax: +86-10-63138490, E-mail: (DY) and (ZY)
| |
Collapse
|
16
|
Liu B, Zeng Q, Huang J, Zhang J, Zheng Z, Liao Y, Deng K, Zhou W, Xu Y. IVIM using convolutional neural networks predicts microvascular invasion in HCC. Eur Radiol 2022; 32:7185-7195. [PMID: 35713662 DOI: 10.1007/s00330-022-08927-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The study aimed to investigate the diagnostic performance of intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging for prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) using convolutional neural networks (CNNs). METHODS This retrospective study included 114 patients with pathologically confirmed HCC from December 2014 to August 2021. All patients underwent MRI examination including IVIM sequence with 9 b-values preoperatively. First, 9 b-value images were superimposed in the channel dimension, and a b-value volume with a shape of 32 × 32 × 9 dimension was obtained. Secondly, an image resampling method was performed for data augmentation to generate more samples for training. Finally, deep features to predict MVI in HCC were directly derived from a b-value volume based on the CNN. Moreover, a deep learning model based on parameter maps and a fusion model combined with deep features of IVIM, clinical characteristics, and IVIM parameters were also constructed. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic performance for MVI prediction in HCC. RESULTS Deep features directly extracted from IVIM-DWI (0.810 (range 0.760, 0.829)) using CNN yielded better performance for prediction of MVI than those from IVIM parameter maps (0.590 (range 0.555, 0.643)). Furthermore, the performance of the fusion model combined with deep features of IVIM-DWI, clinical features (α-fetoprotein (AFP) level and tumor size), and apparent diffusion coefficient (ADC) (0.829 (range 0.776, 0.848)) was slightly improved. CONCLUSIONS Deep learning with CNN based on IVIM-DWI can be conducive to preoperative prediction of MVI in patients with HCC. KEY POINTS • Deep learning assessment of IVIM data for prediction of MVI in HCC can overcome the unstable and low performance of IVIM parameters. • Deep learning model based on IVIM performs better than parameter values, clinical features, and deep learning model based on parameter maps. • The fusion model combined with deep features of IVIM, clinical characteristics, and ADC yields better performance for prediction of MVI than the model only based on IVIM.
Collapse
Affiliation(s)
- Baoer Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Qingyuan Zeng
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, 232 Wide Ring East Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Jianbin Huang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Jing Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Zeyu Zheng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Yuting Liao
- GE Healthcare, 10/F, GE Tower, No.87 Hua Cheng Avenue, Pearl River New City, Tianhe District, Guangzhou, 510623, People's Republic of China
| | - Kan Deng
- Philips Healthcare, 18F, Block B, China International Center, No.33 Zhongshan 3rd Road, Guangzhou, 510055, People's Republic of China
| | - Wu Zhou
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, 232 Wide Ring East Road, Panyu District, Guangzhou, 510006, People's Republic of China.
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
17
|
MVI-Mind: A Novel Deep-Learning Strategy Using Computed Tomography (CT)-Based Radiomics for End-to-End High Efficiency Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14122956. [PMID: 35740620 PMCID: PMC9221272 DOI: 10.3390/cancers14122956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Microvascular invasion is an important indicator for reflecting the prognosis of hepatocellular carcinoma, but the traditional diagnosis requires a postoperative pathological examination. This study is the first to propose an end-to-end deep learning architecture for predicting microvascular invasion in hepatocellular carcinoma by collecting retrospective data. This method can achieve noninvasive, accurate and efficient preoperative prediction only through the patient’s radiomic data, which is very beneficial to doctors for clinical decision making in HCC patients. Abstract Microvascular invasion (MVI) in hepatocellular carcinoma (HCC) directly affects a patient’s prognosis. The development of preoperative noninvasive diagnostic methods is significant for guiding optimal treatment plans. In this study, we investigated 138 patients with HCC and presented a novel end-to-end deep learning strategy based on computed tomography (CT) radiomics (MVI-Mind), which integrates data preprocessing, automatic segmentation of lesions and other regions, automatic feature extraction, and MVI prediction. A lightweight transformer and a convolutional neural network (CNN) were proposed for the segmentation and prediction modules, respectively. To demonstrate the superiority of MVI-Mind, we compared the framework’s performance with that of current, mainstream segmentation, and classification models. The test results showed that MVI-Mind returned the best performance in both segmentation and prediction. The mean intersection over union (mIoU) of the segmentation module was 0.9006, and the area under the receiver operating characteristic curve (AUC) of the prediction module reached 0.9223. Additionally, it only took approximately 1 min to output a prediction for each patient, end-to-end using our computing device, which indicated that MVI-Mind could noninvasively, efficiently, and accurately predict the presence of MVI in HCC patients before surgery. This result will be helpful for doctors to make rational clinical decisions.
Collapse
|
18
|
Wang F, Yan CY, Wang CH, Yang Y, Zhang D. The Roles of Diffusion Kurtosis Imaging and Intravoxel Incoherent Motion Diffusion-Weighted Imaging Parameters in Preoperative Evaluation of Pathological Grades and Microvascular Invasion in Hepatocellular Carcinoma. Front Oncol 2022; 12:884854. [PMID: 35646649 PMCID: PMC9131658 DOI: 10.3389/fonc.2022.884854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Background Currently, there are disputes about the parameters of diffusion kurtosis imaging (DKI), intravoxel incoherent motion (IVIM), and diffusion-weighted imaging (DWI) in predicting pathological grades and microvascular invasion (MVI) in hepatocellular carcinoma (HCC). The aim of our study was to investigate and compare the predictive power of DKI and IVIM-DWI parameters for preoperative evaluation of pathological grades and MVI in HCC. Methods PubMed, Web of Science, and Embase databases were searched for relevant studies published from inception to October 2021. Review Manager 5.3 was used to summarize standardized mean differences (SMDs) of mean kurtosis (MK), mean diffusivity (MD), tissue diffusivity (D), pseudo diffusivity (D*), perfusion fraction (f), mean apparent diffusion coefficient (ADCmean), and minimum apparent diffusion coefficient (ADCmin). Stata12.0 was used to pool the sensitivity, specificity, and area under the curve (AUC). Overall, 42 up-to-standard studies with 3,807 cases of HCC were included in the meta-analysis. Results The SMDs of ADCmean, ADCmin, and D values, but not those of D* and f values, significantly differed between well, moderately, and poorly differentiated HCC (P < 0.01). The sensitivity, specificity, and AUC of the MK, D, ADCmean, and ADCmin for preoperative prediction of poorly differentiated HCC were 69%/94%/0.89, 87%/80%/0.89, 82%/75%/0.86, and 83%/64%/0.81, respectively. In addition, the sensitivity, specificity, and AUC of the D and ADCmean for preoperative prediction of well-differentiated HCC were 87%/83%/0.92 and 82%/88%/0.90, respectively. The SMDs of ADCmean, ADCmin, D, MD, and MK values, but not f values, showed significant differences (P < 0.01) between MVI-positive (MVI+) and MVI-negative (MVI-) HCC. The sensitivity and specificity of D and ADCmean for preoperative prediction of MVI+ were 80%/80% and 74%/71%, respectively; the AUC of the D (0.87) was significantly higher than that of ADCmean (0.78) (Z = −2.208, P = 0.027). Sensitivity analysis showed that the results of the above parameters were stable and reliable, and subgroup analysis confirmed a good prediction effect. Conclusion DKI parameters (MD and MK) and IVIM-DWI parameters (D value, ADCmean, and ADCmin) can be used as a noninvasive and simple preoperative examination method to predict the grade and MVI in HCC. Compared with ADCmean and ADCmin, MD and D values have higher diagnostic efficacy in predicting the grades of HCC, and D value has superior diagnostic efficacy to ADCmean in predicting MVI+ in HCC. However, f value cannot predict the grade or MVI in HCC.
Collapse
Affiliation(s)
- Fei Wang
- Department of Medical Imaging, Luzhou People's Hospital, Luzhou, China.,Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chun Yue Yan
- Department of Obstetrics, Luzhou People's Hospital, Luzhou, China
| | - Cai Hong Wang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yan Yang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
19
|
Sheng R, Zeng M, Jin K, Zhang Y, Wu D, Sun H. MRI-based Nomogram Predicts the Risk of Progression of Unresectable Hepatocellular Carcinoma After Combined Lenvatinib and anti-PD-1 Antibody Therapy. Acad Radiol 2022; 29:819-829. [PMID: 34649778 DOI: 10.1016/j.acra.2021.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/01/2022]
Abstract
RATIONALE AND OBJECTIVES Combined immune and anti-angiogenic treatment has shown promising results for unresectable hepatocellular carcinoma (HCC), but with a high risk of early progression. In this study, we aimed to investigate whether pre-treatment magnetic resonance imaging (MRI) features and MRI-based nomogram could predict the risk of disease progression of unresectable HCC after first-line lenvatinib/anti-PD-1 antibody therapy. MATERIALS AND METHODS Thirty-seven HCC participants with qualified pre-treatment contrast-enhanced MRI were enrolled. All patients received combined lenvatinib and anti-PD-1 antibody treatment. Progression free survival rate was analyzed using the Kaplan-Meier method. Potential clinical-radiological risk factors for progression were analyzed using the log-rank tests and Cox regression model. The performance of MRI-based nomogram was evaluated based on C-index, calibration, and decision curve analyses. RESULTS The 6-month and 12-month cumulative progression free survival rates were 59.5% (95% confidence interval (CI), 43.6%-75.4%) and 48.0% (95% CI, 31.7%-64.3%). On multivariate analysis, no or incomplete tumor capsule (hazard ratio (HR) = 15.215 [95% CI 2.707-85.529], p = 0.002), heterogeneous signal on T2-weighted imaging (HR = 28.179 [95% CI 2.437-325.838]; p = 0.008) and arterial contrast-to-noise ratio ≤95.45 (HR = 5.113 [95% CI 1.538-17.00]; p = 0.008) were independent risk factors for disease progression. Satisfactory predictive performance of the nomogram incorporating the three independent imaging features was obtained with a C-index value of 0.880 (95% CI 0.824-0.937), and the combined nomogram had more favorable clinical prediction performance than any single feature. CONCLUSION MRI features can be considered effective predictors of disease progression for unresectable HCC with first-line lenvatinib plus anti-PD-1 antibody therapy, and the combined MRI-based nomogram achieved a superior prognostic model, which may help to identify appropriate candidates for the therapy.
Collapse
|
20
|
Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14:765-793. [PMID: 35582107 PMCID: PMC9048537 DOI: 10.4251/wjgo.v14.i4.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths. Currently, treatment selection is based on the stage of the disease. Emerging fields such as three-dimensional (3D) printing, 3D bioprinting, artificial intelligence (AI), and machine learning (ML) could lead to evidence-based, individualized management of HCC. In this review, we comprehensively report the current applications of 3D printing, 3D bioprinting, and AI/ML-based models in HCC management; we outline the significant challenges to the broad use of these novel technologies in the clinical setting with the goal of identifying means to overcome them, and finally, we discuss the opportunities that arise from these applications. Notably, regarding 3D printing and bioprinting-related challenges, we elaborate on cost and cost-effectiveness, cell sourcing, cell viability, safety, accessibility, regulation, and legal and ethical concerns. Similarly, regarding AI/ML-related challenges, we elaborate on intellectual property, liability, intrinsic biases, data protection, cybersecurity, ethical challenges, and transparency. Our findings show that AI and 3D printing applications in HCC management and healthcare, in general, are steadily expanding; thus, these technologies will be integrated into the clinical setting sooner or later. Therefore, we believe that physicians need to become familiar with these technologies and prepare to engage with them constructively.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
21
|
Zhang J, Huang S, Xu Y, Wu J. Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:763842. [PMID: 35280776 PMCID: PMC8907853 DOI: 10.3389/fonc.2022.763842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background The presence of microvascular invasion (MVI) is considered an independent prognostic factor associated with early recurrence and poor survival in hepatocellular carcinoma (HCC) patients after resection. Artificial intelligence (AI), mainly consisting of non-deep learning algorithms (NDLAs) and deep learning algorithms (DLAs), has been widely used for MVI prediction in medical imaging. Aim To assess the diagnostic accuracy of AI algorithms for non-invasive, preoperative prediction of MVI based on imaging data. Methods Original studies reporting AI algorithms for non-invasive, preoperative prediction of MVI based on quantitative imaging data were identified in the databases PubMed, Embase, and Web of Science. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) scale. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model with 95% CIs. A summary receiver operating characteristic curve and the area under the curve (AUC) were generated to assess the diagnostic accuracy of the deep learning and non-deep learning models. In the non-deep learning group, we further performed meta-regression and subgroup analyses to identify the source of heterogeneity. Results Data from 16 included studies with 4,759 cases were available for meta-analysis. Four studies on deep learning models, 12 studies on non-deep learning models, and two studies compared the efficiency of the two types. For predictive performance of deep learning models, the pooled sensitivity, specificity, PLR, NLR, and AUC values were 0.84 [0.75–0.90], 0.84 [0.77–0.89], 5.14 [3.53–7.48], 0.2 [0.12–0.31], and 0.90 [0.87–0.93]; and for non-deep learning models, they were 0.77 [0.71–0.82], 0.77 [0.73–0.80], 3.30 [2.83–3.84], 0.30 [0.24–0.38], and 0.82 [0.79–0.85], respectively. Subgroup analyses showed a significant difference between the single tumor subgroup and the multiple tumor subgroup in the pooled sensitivity, NLR, and AUC. Conclusion This meta-analysis demonstrates the high diagnostic accuracy of non-deep learning and deep learning methods for MVI status prediction and their promising potential for clinical decision-making. Deep learning models perform better than non-deep learning models in terms of the accuracy of MVI prediction, methodology, and cost-effectiveness. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php? RecordID=260891, ID:CRD42021260891.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
22
|
Radiomics Analysis of Gd-EOB-DTPA Enhanced Hepatic MRI for Assessment of Functional Liver Reserve. Acad Radiol 2022; 29:213-218. [PMID: 34183230 DOI: 10.1016/j.acra.2021.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022]
Abstract
Rationale and Objectives To evaluate the effectiveness of radiomics analysis based on Gd-EOB-DTPA enhanced hepatic MRI for functional liver reserve assessment in HCC patients. Materials and Methods Radiomics features were extracted from Gd-EOB-DTPA enhanced MRI images in 60 HCC patients. Boruta algorithm was performed to select features associated with indocyanine green retention rate at 15 min (ICG R15). Prediction and classification model were built by performing Random Forest regression analysis. Pearson correlation analysis and AUC of ROC were used to assess performance of the two models. Results A total of 165 radiomics features were extracted. Six radiomics features were selected to build the prediction model. A Predicted value of ICG R15 for each patient was calculated by the prediction model. Pearson correlation analysis revealed that predicted values were significantly associated with actual values of ICG R15 (R value = 0.90, p < 0.001). Nine radiomics features were selected to build the classification model. AUC of ROC revealed favorable performance of the classification model for identifying patients with ICG R15 <10% (AUC: 0.906, 95%CI: 0.900-0.913), <15% (AUC: 0.954, 95%CI: 0.950-0.958), and <20% (AUC: 0.996, 95%CI: 0.995-0.996). Conclusion Radiomics analysis of Gd-EOB-DTPA enhanced hepatic MRI can be used for assessment of functional liver reserve in HCC patients.
Collapse
|
23
|
Ahn JC, Qureshi TA, Singal AG, Li D, Yang JD. Deep learning in hepatocellular carcinoma: Current status and future perspectives. World J Hepatol 2021; 13:2039-2051. [PMID: 35070007 PMCID: PMC8727204 DOI: 10.4254/wjh.v13.i12.2039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the leading causes of cancer incidence and death. Despite decades of research and development of new treatment options, the overall outcomes of patients with HCC continue to remain poor. There are areas of unmet need in risk prediction, early diagnosis, accurate prognostication, and individualized treatments for patients with HCC. Recent years have seen an explosive growth in the application of artificial intelligence (AI) technology in medical research, with the field of HCC being no exception. Among the various AI-based machine learning algorithms, deep learning algorithms are considered state-of-the-art techniques for handling and processing complex multimodal data ranging from routine clinical variables to high-resolution medical images. This article will provide a comprehensive review of the recently published studies that have applied deep learning for risk prediction, diagnosis, prognostication, and treatment planning for patients with HCC.
Collapse
Affiliation(s)
- Joseph C Ahn
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55904, United States
| | - Touseef Ahmad Qureshi
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Amit G Singal
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Ju-Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
24
|
Yao S, Ye Z, Wei Y, Jiang HY, Song B. Radiomics in hepatocellular carcinoma: A state-of-the-art review. World J Gastrointest Oncol 2021; 13:1599-1615. [PMID: 34853638 PMCID: PMC8603458 DOI: 10.4251/wjgo.v13.i11.1599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/02/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common cancer and the second major contributor to cancer-related mortality. Radiomics, a burgeoning technology that can provide invisible high-dimensional quantitative and mineable data derived from routine-acquired images, has enormous potential for HCC management from diagnosis to prognosis as well as providing contributions to the rapidly developing deep learning methodology. This article aims to review the radiomics approach and its current state-of-the-art clinical application scenario in HCC. The limitations, challenges, and thoughts on future directions are also summarized.
Collapse
Affiliation(s)
- Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Han-Yu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
25
|
Zeng Q, Liu B, Xu Y, Zhou W. An attention-based deep learning model for predicting microvascular invasion of hepatocellular carcinoma using an intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging. Phys Med Biol 2021; 66. [PMID: 34469880 DOI: 10.1088/1361-6560/ac22db] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
The intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging (IVIM-DWI) with a series of images with differentb-values has great potential as a tool for detecting, diagnosing, staging, and monitoring disease progression or the response to treatment. The current clinical tumour characterisation using IVIM-DWI is based on the parameter values derived from the IVIM model. On the one hand, the calculation accuracy of such parameter values is susceptible to deviations due to noise and motion; on the other hand, the performance of the parameter values is rather limited with respect to tumour characterisation. In this article, we propose a deep learning approach to directly extract spatiotemporal features from a series ofb-value images of IVIM-DWI using a deep learning network for lesion characterisation. Specifically, we introduce an attention mechanism to select dominant features from specificb-values, channels, and spatial areas of the multipleb-value images for better lesion characterisation. The experimental results for clinical hepatocellular carcinoma (HCC) when using IVIM-DWI demonstrate the superiority of the proposed deep learning model for predicting the microvascular invasion (MVI) of HCC. In addition, the ablation study reflects the effectiveness of the attention mechanism for improving MVI prediction. We believe that the proposed model may be a useful tool for the lesion characterisation of IVIM-DWI in clinical practice.
Collapse
Affiliation(s)
- Qingyuan Zeng
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, People's Republic of China
| | - Baoer Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wu Zhou
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, People's Republic of China
| |
Collapse
|