1
|
Selby NM, Francis ST. Assessment of Acute Kidney Injury using MRI. J Magn Reson Imaging 2025; 61:25-41. [PMID: 38334370 PMCID: PMC11645494 DOI: 10.1002/jmri.29281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
There has been growing interest in using quantitative magnetic resonance imaging (MRI) to describe and understand the pathophysiology of acute kidney injury (AKI). The ability to assess kidney blood flow, perfusion, oxygenation, and changes in tissue microstructure at repeated timepoints is hugely appealing, as this offers new possibilities to describe nature and severity of AKI, track the time-course to recovery or progression to chronic kidney disease (CKD), and may ultimately provide a method to noninvasively assess response to new therapies. This could have significant clinical implications considering that AKI is common (affecting more than 13 million people globally every year), harmful (associated with short and long-term morbidity and mortality), and currently lacks specific treatments. However, this is also a challenging area to study. After the kidney has been affected by an initial insult that leads to AKI, complex coexisting processes ensue, which may recover or can progress to CKD. There are various preclinical models of AKI (from which most of our current understanding derives), and these differ from each other but more importantly from clinical AKI. These aspects are fundamental to interpreting the results of the different AKI studies in which renal MRI has been used, which encompass different settings of AKI and a variety of MRI measures acquired at different timepoints. This review aims to provide a comprehensive description and interpretation of current studies (both preclinical and clinical) in which MRI has been used to assess AKI, and discuss future directions in the field. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nicholas M Selby
- Centre for Kidney Research and Innovation, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Wang Y, Wang B, Qin J, Yan H, Chen H, Guo J, Wu PY, Wang X. Use of multiparametric MRI to noninvasively assess iodinated contrast-induced acute kidney injury. Magn Reson Imaging 2024; 114:110248. [PMID: 39357626 DOI: 10.1016/j.mri.2024.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE To gauge the utility of multiparametric MRI in characterizing pathologic changes after iodinated contrast-induced acute kidney injury (CI-AKI) in rats. METHODS We randomly grouped 24 rats injected with 8 g iodine/kg of body weight (n = 6 each) and 6 rats injected with saline as controls. All rats underwent T1, T2 mapping and diffusion kurtosis imaging (DKI) after contrast injection at 0 (control), 1, 3, 7, 13 days. T1, T2, and mean kurtosis (MK) values were performed in renal outer/inner stripes of outer medulla (OSOM and ISOM) and cortex (CO), and their diagnosis performance for CI-AKI also been evaluated. Serum creatinine (SCr), insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor metalloproteinase 2 (TIMP-2), aquaporin-1 (AQP1), α-smooth muscle actin (α-SMA), and histologic indices were examined. RESULTS Compared with controls, urinary concentrations of both TIMP-2 and IGFBP7 were obviously elevated from Day 1 to Day 13 (all p < 0.05). T2 values were significantly higher than control group for Days 1 and 3, and T1 and MK increased were more remarkable at all time points (Days 1-13) in CI-AKI (all p < 0.05) than control group. Changes in T1 and MK strongly correlated with renal injury scores of all anatomical compartments and with expression levels of AQP1 and moderately correlated with α-SMA. Changes in T2 values correlating moderately with renal scores of CO, ISOM and OSOM and AQP1. The MK obtained the highest area under the receiver operating characteristic (ROC) curve of 0.846 with a sensitivity of 70.8 % and specificity of 88.9 %. CONCLUSIONS Combined use of multiparametric MRI could be a valid noninvasive method for comprehensive monitoring of CI-AKI. Among these parameters, MK may achieve the best diagnostic performance for CI-AKI.
Collapse
Affiliation(s)
- Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Key Laboratory of Intelligent Imaging, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China, 030001; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Jiangbo Qin
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Haili Yan
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Haoyuan Chen
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Jinxia Guo
- GE Healthcare, MR Research China, Beijing 100000, China.
| | - Pu-Yeh Wu
- GE Healthcare, MR Research China, Beijing 100000, China
| | - Xiaochun Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Key Laboratory of Intelligent Imaging, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China, 030001; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| |
Collapse
|
3
|
Li H, Daniel AJ, Buchanan CE, Nery F, Morris DM, Li S, Huang Y, Sousa JA, Sourbron S, Mendichovszky IA, Thomas DL, Priest AN, Francis ST. Improvements in Between-Vendor MRI Harmonization of Renal T 2 Mapping using Stimulated Echo Compensation. J Magn Reson Imaging 2024; 60:2144-2155. [PMID: 38380700 DOI: 10.1002/jmri.29282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND T2 mapping is valuable to evaluate pathophysiology in kidney disease. However, variations in T2 relaxation time measurements across MR scanners and vendors may occur requiring additional correction. PURPOSE To harmonize renal T2 measurements between MR vendor platforms, and use an extended-phase-graph-based fitting method ("StimFit") to correct stimulated echoes and reduce between-vendor variations. STUDY TYPE Prospective. SUBJECTS 8 healthy "travelling" volunteers (37.5% female, 32 ± 6 years) imaged on four MRI systems across three vendors at four sites, 10 healthy volunteers (50% female, 32 ± 8 years) scanned multiple times on a given MR scanner for repeatability evaluation. ISMRM/NIST system phantom scanned for evaluation of T2 accuracy. FIELD STRENGTH/SEQUENCE 3T, multiecho spin-echo sequence. ASSESSMENT T2 images fit using conventional monoexponential fitting and "StimFit." Mean absolute percentage error (MAPE) of phantom measurements with reference T2 values. Average cortex and medulla T2 values compared between MR vendors, with masks obtained from T2-weighted images and T1 maps. Full-width-at-half-maximum (FWHM) T2 distributions to evaluate local homogeneity of measurements. STATISTICAL TESTS Coefficient of variation (CV), linear mixed-effects model, analysis of variance, student's t-tests, Bland-Altman plots, P-value <0.05 considered statistically significant. RESULTS In the ISMRM/NIST phantom, "StimFit" reduced the MAPE from 4.9%, 9.1%, 24.4%, and 18.1% for the four sites (three vendors) to 3.3%, 3.0%, 6.6%, and 4.1%, respectively. In vivo, there was a significant difference in kidney T2 measurements between vendors using a monoexponential fit, but not with "StimFit" (P = 0.86 and 0.92, cortex and medulla, respectively). The intervendor CVs of T2 measures were reduced from 8.0% to 2.6% (cortex) and 7.1% to 2.8% (medulla) with StimFit, resulting in no significant differences for the CVs of intravendor repeat acquisitions (P = 0.13 and 0.05). "StimFit" significantly reduced the FWHM of T2 distributions in the cortex and whole kidney. DATA CONCLUSION Stimulated-echo correction reduces renal T2 variation across MR vendor platforms. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Hao Li
- The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Alexander J Daniel
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | | | - Fábio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - David M Morris
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Shaohang Li
- The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Yuan Huang
- Department of Radiology, University of Cambridge, Cambridge, UK
- EPSRC Cambridge Mathematics of Information in Healthcare Hub, University of Cambridge, Cambridge, UK
| | - João A Sousa
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Iosif A Mendichovszky
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David L Thomas
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrew N Priest
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK
| |
Collapse
|
4
|
Li H, Priest AN, Horvat-Menih I, Huang Y, Li S, Stewart GD, Mendichovszky IA, Francis ST, Gallagher FA. Fast and High-Resolution T 2 Mapping Based on Echo Merging Plus k-t Undersampling with Reduced Refocusing Flip Angles (TEMPURA) as Methods for Human Renal MRI. Magn Reson Med 2024; 92:1138-1148. [PMID: 38730565 DOI: 10.1002/mrm.30115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE To develop a highly accelerated multi-echo spin-echo method, TEMPURA, for reducing the acquisition time and/or increasing spatial resolution for kidney T2 mapping. METHODS TEMPURA merges several adjacent echoes into one k-space by either combining independent echoes or sharing one echo between k-spaces. The combined k-space is reconstructed based on compressed sensing theory. Reduced flip angles are used for the refocusing pulses, and the extended phase graph algorithm is used to correct the effects of indirect echoes. Two sequences were developed: a fast breath-hold sequence; and a high-resolution sequence. The performance was evaluated prospectively on a phantom, 16 healthy subjects, and two patients with different types of renal tumors. RESULTS The fast TEMPURA method reduced the acquisition time from 3-5 min to one breath-hold (18 s). Phantom measurements showed that fast TEMPURA had a mean absolute percentage error (MAPE) of 8.2%, which was comparable to a standardized respiratory-triggered sequence (7.4%), but much lower than a sequence accelerated by purely k-t undersampling (21.8%). High-resolution TEMPURA reduced the in-plane voxel size from 3 × 3 to 1 × 1 mm2, resulting in improved visualization of the detailed anatomical structure. In vivo T2 measurements demonstrated good agreement (fast: MAPE = 1.3%-2.5%; high-resolution: MAPE = 2.8%-3.3%) and high correlation coefficients (fast: R = 0.85-0.98; high-resolution: 0.82-0.96) with the standardized method, outperforming k-t undersampling alone (MAPE = 3.3-4.5%, R = 0.57-0.59). CONCLUSION TEMPURA provides fast and high-resolution renal T2 measurements. It has the potential to improve clinical throughput and delineate intratumoral heterogeneity and tissue habitats at unprecedented spatial resolution.
Collapse
Affiliation(s)
- Hao Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Andrew N Priest
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | | | - Yuan Huang
- Department of Radiology, University of Cambridge, Cambridge, UK
- EPSRC Cambridge Mathematics of Information in Healthcare Hub, University of Cambridge, Cambridge, UK
| | - Shaohang Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Grant D Stewart
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Iosif A Mendichovszky
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
5
|
Tao Q, Zhang Q, An Z, Chen Z, Feng Y. Multi-Parametric MRI for Evaluating Variations in Renal Structure, Function, and Endogenous Metabolites in an Animal Model With Acute Kidney Injury Induced by Ischemia Reperfusion. J Magn Reson Imaging 2024; 60:245-255. [PMID: 37881827 DOI: 10.1002/jmri.29094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Ischemia reperfusion injury (IRI)-induced acute kidney injury (AKI) may occur after renal ischemic injury. There is a lack of an accurate and comprehensive detection technique for IRI-AKI. PURPOSE To longitudinally evaluate IRI-AKI in rats by renal structure, function, and metabolites using multi-parametric MRI (mpMRI). STUDY TYPE Prospective. ANIMAL MODEL Forty-eight rats undergoing IRI-AKI. FIELD STRENGTH/SEQUENCE 7-T, T1 mapping, and arterial spin labeling (ASL): echo planar imaging (EPI) sequence; blood oxygen level-dependent (BOLD): gradient recalled echo (GRE) sequence; T2 mapping, quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST): rapid acquisition with relaxation enhancement (RARE) sequence. ASSESSMENT The mpMRI for IRI-AKI was conducted at 0 (control), 1, 3, 7, 14, and 28 days, all included eight rats. The longitudinal mpMRI signal of manually outlined cortex, outer stripe of the outer medulla (OSOM), inner stripe of the outer medulla, and medulla plus pelvis were calculated and compared, their diagnosis performance for IRI-AKI also been evaluated. STATISTICAL TESTS Pearson correlations analysis for correlation between mpMRI signal and renal injury, unpaired t-tests for comparing the signal changes, and receiver operating characteristics (ROC) analysis was used to identify most sensitive indicator of mpMRI. A P-value <0.05 was considered statistically significant. RESULTS Compared with control kidneys, the T1 and T2 values of the cortex and medulla in IRI kidneys increased and reached their highest values on day 14, and the kidneys also showed the most severe edema and segments blurred. The RBF in the cortex and OSOM showed a significant decline after day 3. The BOLD signal in the OSOM largest increased on day 28. The cortical PSR and the amine-CEST both decreased with IRI-AKI progression, and amine-CEST achieved the highest AUC for the diagnosis (0.899). DATA CONCLUSION Multi-parametric MRI may show comprehensive variations in IRI-AKI, and amine-CEST may exhibit the highest accuracy for diagnosis of IRI-AKI. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Quan Tao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Provincial Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Qianqian Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Provincial Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Ziqi An
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Provincial Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zelong Chen
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Provincial Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Wang B, Wang Y, Wang J, Jin C, Zhou R, Guo J, Zhang H, Wang M. Multiparametric Magnetic Resonance Investigations on Acute and Long-Term Kidney Injury. J Magn Reson Imaging 2024; 59:43-57. [PMID: 37246343 DOI: 10.1002/jmri.28784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of critical illness and carries a significant risk of short- and long-term mortality. The prediction of the progression of AKI to long-term injury has been difficult for renal disease treatment. Radiologists are keen for the early detection of transition from AKI to long-term kidney injury, which would help in the preventive measures. The lack of established methods for early detection of long-term kidney injury underscores the pressing needs of advanced imaging technology that reveals microscopic tissue alterations during the progression of AKI. Fueled by recent advances in data acquisition and post-processing methods of magnetic resonance imaging (MRI), multiparametric MRI is showing great potential as a diagnostic tool for many kidney diseases. Multiparametric MRI studies offer a precious opportunity for real-time noninvasive monitoring of pathological development and progression of AKI to long-term injury. It provides insight into renal vasculature and function (arterial spin labeling, intravoxel incoherent motion), tissue oxygenation (blood oxygen level-dependent), tissue injury and fibrosis (diffusion tensor imaging, diffusion kurtosis imaging, T1 and T2 mapping, quantitative susceptibility mapping). The multiparametric MRI approach is highly promising but the longitudinal investigation on the transition of AKI to irreversible long-term impairment is largely ignored. Further optimization and implementation of renal MR methods in clinical practice will enhance our comprehension of not only AKI but chronic kidney diseases. Novel imaging biomarkers for microscopic renal tissue alterations could be discovered and benefit the preventative interventions. This review explores recent MRI applications on acute and long-term kidney injury while addressing lingering challenges, with emphasis on the potential value of the development of multiparametric MRI for renal imaging on clinical systems. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jinxia Guo
- GE Healthcare, MR Research China, Beijing, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Min Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Xu X, Chen M, Zhang J, Jiang Y, Chao H, Zha J. Can the apparent transverse relaxation rate (R2 *) evaluate the efficacy of concurrent chemoradiotherapy in locally advanced nasopharyngeal carcinoma? a preliminary experience. BMC Med Imaging 2023; 23:69. [PMID: 37264331 DOI: 10.1186/s12880-023-01029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND The use of the apparent transverse relaxation rate (R2*) in nasopharyngeal carcinoma (NPC) has not been previously reported in the literature. The aim of this study was to investigate the role of the R2* value in evaluating response to concurrent chemoradiotherapy (CCRT) in patients with NPC. METHODS Forty-one patients with locoregionally advanced NPC confirmed by pathology were examined by blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) before and after CCRT, and conventional MRI was performed 3 months after the completion of CCRT. All patients were divided into a responding group (RG) and a nonresponding group (NRG), according to MRI findings 3 months after the end of treatment. The R2* values before (R2*preT) and after (R2*postT) CCRT and the ΔR2* (ΔR2*=R2*postT - R2*preT) were calculated in the tumor. RESULTS Among the 41 patients, 26 were in the RG and 15 were in the NRG. There was no statistical difference in the R2*preT between RG and NRG (P = 0.307); however, there were significant differences in R2*postT and ΔR2* (P < 0.001). The area under the curve of R2*postT and ΔR2* for predicting the therapeutic response of NPC was 0.897 and 0.954, respectively, with cutoff values of 40.95 and 5.50 Hz, respectively. CONCLUSION The R2* value can be used as a potential imaging indicator to evaluate the therapeutic response of locoregionally advanced NPC.
Collapse
Affiliation(s)
- Xinhua Xu
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Ming Chen
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China.
| | - Jin Zhang
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Yunzhu Jiang
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Hua Chao
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Jianfeng Zha
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| |
Collapse
|