1
|
Tominaga M, Yamazaki M, Umezu H, Sugino H, Fuzawa Y, Yagi T, Ishikawa H. Prognostic Value and Pathological Correlation of Peritumoral Radiomics in Surgically Resected Non-Small Cell Lung Cancer. Acad Radiol 2024; 31:3801-3810. [PMID: 38402002 DOI: 10.1016/j.acra.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/26/2024]
Abstract
RATIONALE AND OBJECTIVES To determine the additional value of peritumoral radiomics in predicting overall survival (OS) in surgically resected non-small cell lung cancer (NSCLC) and its correlation with pathological findings. METHODS A total of 526 patients with surgically resected NSCLC were included (191 training, 160 internal validation, and 175 external validation cohorts). CT images were used to segment the gross tumor volume (GTV) and peritumoral volume (PTV) within distances of 3, 6, 9 mm from the tumor boundary (PTV3, PTV6, and PTV9), and radiomic features were extracted. Four prognostic models for OS (GTV, GTV + PTV3, GTV + PTV6, and GTV + PTV9) were constructed using the training cohort. The prognostic ability and feature importance were evaluated using the validation cohorts. Pathological findings were compared between the two patient groups (n = 30 for each) having the top 30 and bottom 30 values of the most important peritumoral feature. RESULTS The GTV+ PTV3 models exhibited the highest predictive ability, which was higher than that of the GTV model in the internal validation cohort (C-index: 0.666 vs. 0.616, P = 0.027) and external validation cohort (C-index: 0.705 vs. 0.656, P = 0.048). The most important feature was GLDM_Dependence_Entropy, extracted from PTV3. High peritumoral GLDM_Dependence_Entropy was associated with a high proportion of invasive histological types, tumor spread through air spaces, and tumor-infiltrating lymphocytes (all P < 0.05). CONCLUSION The GTV and PTV3 combination demonstrated a higher prognostic ability, compared to GTV alone. Peritumoral radiomic features may be associated with various pathological prognostic factors.
Collapse
Affiliation(s)
- Masaki Tominaga
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Motohiko Yamazaki
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Hajime Umezu
- Division of Pathology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Hideaki Sugino
- Division of Pathology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Yuma Fuzawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takuya Yagi
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
2
|
Masquelin AH, Cheney N, José Estépar RS, Bates JHT, Kinsey CM. LDCT image biomarkers that matter most for the deep learning classification of indeterminate pulmonary nodules. Cancer Biomark 2024:CBM230444. [PMID: 38848168 DOI: 10.3233/cbm-230444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND Continued improvement in deep learning methodologies has increased the rate at which deep neural networks are being evaluated for medical applications, including diagnosis of lung cancer. However, there has been limited exploration of the underlying radiological characteristics that the network relies on to identify lung cancer in computed tomography (CT) images. OBJECTIVE In this study, we used a combination of image masking and saliency activation maps to systematically explore the contributions of both parenchymal and tumor regions in a CT image to the classification of indeterminate lung nodules. METHODS We selected individuals from the National Lung Screening Trial (NLST) with solid pulmonary nodules 4-20 mm in diameter. Segmentation masks were used to generate three distinct datasets; 1) an Original Dataset containing the complete low-dose CT scans from the NLST, 2) a Parenchyma-Only Dataset in which the tumor regions were covered by a mask, and 3) a Tumor-Only Dataset in which only the tumor regions were included. RESULTS The Original Dataset significantly outperformed the Parenchyma-Only Dataset and the Tumor-Only Dataset with an AUC of 80.80 ± 3.77% compared to 76.39 ± 3.16% and 78.11 ± 4.32%, respectively. Gradient-weighted class activation mapping (Grad-CAM) of the Original Dataset showed increased attention was being given to the nodule and the tumor-parenchyma boundary when nodules were classified as malignant. This pattern of attention remained unchanged in the case of the Parenchyma-Only Dataset. Nodule size and first-order statistical features of the nodules were significantly different with the average malignant and benign nodule maximum 3d diameter being 23 mm and 12 mm, respectively. CONCLUSION We conclude that network performance is linked to textural features of nodules such as kurtosis, entropy and intensity, as well as morphological features such as sphericity and diameter. Furthermore, textural features are more positively associated with malignancy than morphological features.
Collapse
Affiliation(s)
- Axel H Masquelin
- Electrical and Biomedical Engineering, University of Vermont, Burlington, VT, USA
| | - Nick Cheney
- Computer Science, University of Vermont, Burlington, VT, USA
| | | | - Jason H T Bates
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, USA
| | - C Matthew Kinsey
- Department of Medicine, Pulmonary and Critical Care, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
3
|
Wu T, Gao C, Lou X, Wu J, Xu M, Wu L. Predictive value of radiomic features extracted from primary lung adenocarcinoma in forecasting thoracic lymph node metastasis: a systematic review and meta-analysis. BMC Pulm Med 2024; 24:246. [PMID: 38762472 PMCID: PMC11102161 DOI: 10.1186/s12890-024-03020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/16/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The application of radiomics in thoracic lymph node metastasis (LNM) of lung adenocarcinoma is increasing, but diagnostic performance of radiomics from primary tumor to predict LNM has not been systematically reviewed. Therefore, this study sought to provide a general overview regarding the methodological quality and diagnostic performance of using radiomic approaches to predict the likelihood of LNM in lung adenocarcinoma. METHODS Studies were gathered from literature databases such as PubMed, Embase, the Web of Science Core Collection, and the Cochrane library. The Radiomic Quality Score (RQS) and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) were both used to assess the quality of each study. The pooled sensitivity, specificity, and area under the curve (AUC) of the best radiomics models in the training and validation cohorts were calculated. Subgroup and meta-regression analyses were also conducted. RESULTS Seventeen studies with 159 to 1202 patients each were enrolled between the years of 2018 to 2022, of which ten studies had sufficient data for the quantitative evaluation. The percentage of RQS was between 11.1% and 44.4% and most of the studies were considered to have a low risk of bias and few applicability concerns in QUADAS-2. Pyradiomics and logistic regression analysis were the most commonly used software and methods for radiomics feature extraction and selection, respectively. In addition, the best prediction models in seventeen studies were mainly based on radiomics features combined with non-radiomics features (semantic features and/or clinical features). The pooled sensitivity, specificity, and AUC of the training cohorts were 0.84 (95% confidence interval (CI) [0.73-0.91]), 0.88 (95% CI [0.81-0.93]), and 0.93(95% CI [0.90-0.95]), respectively. For the validation cohorts, the pooled sensitivity, specificity, and AUC were 0.89 (95% CI [0.82-0.94]), 0.86 (95% CI [0.74-0.93]) and 0.94 (95% CI [0.91-0.96]), respectively. CONCLUSIONS Radiomic features based on the primary tumor have the potential to predict preoperative LNM of lung adenocarcinoma. However, radiomics workflow needs to be standardized to better promote the applicability of radiomics. TRIAL REGISTRATION CRD42022375712.
Collapse
Affiliation(s)
- Ting Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China
| | - Chen Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China
| | - Xinjing Lou
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China
| | - Jun Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China.
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China.
| | - Linyu Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China.
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China.
| |
Collapse
|
4
|
Prosper AE, Kammer MN, Maldonado F, Aberle DR, Hsu W. Expanding Role of Advanced Image Analysis in CT-detected Indeterminate Pulmonary Nodules and Early Lung Cancer Characterization. Radiology 2023; 309:e222904. [PMID: 37815447 PMCID: PMC10623199 DOI: 10.1148/radiol.222904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 10/11/2023]
Abstract
The implementation of low-dose chest CT for lung screening presents a crucial opportunity to advance lung cancer care through early detection and interception. In addition, millions of pulmonary nodules are incidentally detected annually in the United States, increasing the opportunity for early lung cancer diagnosis. Yet, realization of the full potential of these opportunities is dependent on the ability to accurately analyze image data for purposes of nodule classification and early lung cancer characterization. This review presents an overview of traditional image analysis approaches in chest CT using semantic characterization as well as more recent advances in the technology and application of machine learning models using CT-derived radiomic features and deep learning architectures to characterize lung nodules and early cancers. Methodological challenges currently faced in translating these decision aids to clinical practice, as well as the technical obstacles of heterogeneous imaging parameters, optimal feature selection, choice of model, and the need for well-annotated image data sets for the purposes of training and validation, will be reviewed, with a view toward the ultimate incorporation of these potentially powerful decision aids into routine clinical practice.
Collapse
Affiliation(s)
- Ashley Elizabeth Prosper
- From the Department of Radiological Sciences, David Geffen School of
Medicine at UCLA, 924 Westwood Blvd, Suite 420, Los Angeles, CA 90024 (A.E.P.,
D.R.A., W.H.); Division of Allergy, Pulmonary and Critical Care Medicine,
Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
(M.N.K., F.M.); and Department of Bioengineering, UCLA Samueli School of
Engineering, Los Angeles, Calif (D.R.A., W.H.)
| | - Michael N. Kammer
- From the Department of Radiological Sciences, David Geffen School of
Medicine at UCLA, 924 Westwood Blvd, Suite 420, Los Angeles, CA 90024 (A.E.P.,
D.R.A., W.H.); Division of Allergy, Pulmonary and Critical Care Medicine,
Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
(M.N.K., F.M.); and Department of Bioengineering, UCLA Samueli School of
Engineering, Los Angeles, Calif (D.R.A., W.H.)
| | - Fabien Maldonado
- From the Department of Radiological Sciences, David Geffen School of
Medicine at UCLA, 924 Westwood Blvd, Suite 420, Los Angeles, CA 90024 (A.E.P.,
D.R.A., W.H.); Division of Allergy, Pulmonary and Critical Care Medicine,
Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
(M.N.K., F.M.); and Department of Bioengineering, UCLA Samueli School of
Engineering, Los Angeles, Calif (D.R.A., W.H.)
| | - Denise R. Aberle
- From the Department of Radiological Sciences, David Geffen School of
Medicine at UCLA, 924 Westwood Blvd, Suite 420, Los Angeles, CA 90024 (A.E.P.,
D.R.A., W.H.); Division of Allergy, Pulmonary and Critical Care Medicine,
Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
(M.N.K., F.M.); and Department of Bioengineering, UCLA Samueli School of
Engineering, Los Angeles, Calif (D.R.A., W.H.)
| | - William Hsu
- From the Department of Radiological Sciences, David Geffen School of
Medicine at UCLA, 924 Westwood Blvd, Suite 420, Los Angeles, CA 90024 (A.E.P.,
D.R.A., W.H.); Division of Allergy, Pulmonary and Critical Care Medicine,
Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
(M.N.K., F.M.); and Department of Bioengineering, UCLA Samueli School of
Engineering, Los Angeles, Calif (D.R.A., W.H.)
| |
Collapse
|
5
|
Huang W, Deng H, Li Z, Xiong Z, Zhou T, Ge Y, Zhang J, Jing W, Geng Y, Wang X, Tu W, Dong P, Liu S, Fan L. Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules. Front Oncol 2023; 13:1255007. [PMID: 37664069 PMCID: PMC10470826 DOI: 10.3389/fonc.2023.1255007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Objective To develop and validate the model for predicting benign and malignant ground-glass nodules (GGNs) based on the whole-lung baseline CT features deriving from deep learning and radiomics. Methods This retrospective study included 385 GGNs from 3 hospitals, confirmed by pathology. We used 239 GGNs from Hospital 1 as the training and internal validation set; 115 and 31 GGNs from Hospital 2 and Hospital 3 as the external test sets 1 and 2, respectively. An additional 32 stable GGNs from Hospital 3 with more than five years of follow-up were used as the external test set 3. We evaluated clinical and morphological features of GGNs at baseline chest CT and extracted the whole-lung radiomics features simultaneously. Besides, baseline whole-lung CT image features are further assisted and extracted using the convolutional neural network. We used the back-propagation neural network to construct five prediction models based on different collocations of the features used for training. The area under the receiver operator characteristic curve (AUC) was used to compare the prediction performance among the five models. The Delong test was used to compare the differences in AUC between models pairwise. Results The model integrated clinical-morphological features, whole-lung radiomic features, and whole-lung image features (CMRI) performed best among the five models, and achieved the highest AUC in the internal validation set, external test set 1, and external test set 2, which were 0.886 (95% CI: 0.841-0.921), 0.830 (95%CI: 0.749-0.893) and 0.879 (95%CI: 0.712-0.968), respectively. In the above three sets, the differences in AUC between the CMRI model and other models were significant (all P < 0.05). Moreover, the accuracy of the CMRI model in the external test set 3 was 96.88%. Conclusion The baseline whole-lung CT features were feasible to predict the benign and malignant of GGNs, which is helpful for more refined management of GGNs.
Collapse
Affiliation(s)
- Wenjun Huang
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
- Department of Radiology, The Second People’s hospital of Deyang, Deyang, Sichuan, China
| | - Heng Deng
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhaobin Li
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhanda Xiong
- Department of Artificial Intelligence Medical Imaging, Tron Technology, Shanghai, China
| | - Taohu Zhou
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
| | - Yanming Ge
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jing Zhang
- Department of Radiology, The Second People’s hospital of Deyang, Deyang, Sichuan, China
| | - Wenbin Jing
- Department of Radiology, The Second People’s hospital of Deyang, Deyang, Sichuan, China
| | - Yayuan Geng
- Clinical Research Institute, Shukun (Beijing) Technology Co., Ltd., Beijing, China
| | - Xiang Wang
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wenting Tu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peng Dong
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li Fan
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|