1
|
Chia JLL, He GS, Ngiam KY, Hartman M, Ng QX, Goh SSN. Harnessing Artificial Intelligence to Enhance Global Breast Cancer Care: A Scoping Review of Applications, Outcomes, and Challenges. Cancers (Basel) 2025; 17:197. [PMID: 39857979 PMCID: PMC11764353 DOI: 10.3390/cancers17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND In recent years, Artificial Intelligence (AI) has shown transformative potential in advancing breast cancer care globally. This scoping review seeks to provide a comprehensive overview of AI applications in breast cancer care, examining how they could reshape diagnosis, treatment, and management on a worldwide scale and discussing both the benefits and challenges associated with their adoption. METHODS In accordance with PRISMA-ScR and ensuing guidelines on scoping reviews, PubMed, Web of Science, Cochrane Library, and Embase were systematically searched from inception to end of May 2024. Keywords included "Artificial Intelligence" and "Breast Cancer". Original studies were included based on their focus on AI applications in breast cancer care and narrative synthesis was employed for data extraction and interpretation, with the findings organized into coherent themes. RESULTS Finally, 84 articles were included. The majority were conducted in developed countries (n = 54). The majority of publications were in the last 10 years (n = 83). The six main themes for AI applications were AI for breast cancer screening (n = 32), AI for image detection of nodal status (n = 7), AI-assisted histopathology (n = 8), AI in assessing post-neoadjuvant chemotherapy (NACT) response (n = 23), AI in breast cancer margin assessment (n = 5), and AI as a clinical decision support tool (n = 9). AI has been used as clinical decision support tools to augment treatment decisions for breast cancer and in multidisciplinary tumor board settings. Overall, AI applications demonstrated improved accuracy and efficiency; however, most articles did not report patient-centric clinical outcomes. CONCLUSIONS AI applications in breast cancer care show promise in enhancing diagnostic accuracy and treatment planning. However, persistent challenges in AI adoption, such as data quality, algorithm transparency, and resource disparities, must be addressed to advance the field.
Collapse
Affiliation(s)
- Jolene Li Ling Chia
- NUS Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr. S117597, Singapore 119077, Singapore (G.S.H.)
| | - George Shiyao He
- NUS Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr. S117597, Singapore 119077, Singapore (G.S.H.)
| | - Kee Yuen Ngiam
- Department of Surgery, National University Hospital, Singapore 119074, Singapore; (K.Y.N.); (M.H.)
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| | - Mikael Hartman
- Department of Surgery, National University Hospital, Singapore 119074, Singapore; (K.Y.N.); (M.H.)
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| | - Qin Xiang Ng
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Serene Si Ning Goh
- Department of Surgery, National University Hospital, Singapore 119074, Singapore; (K.Y.N.); (M.H.)
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| |
Collapse
|
2
|
Huang JX, Liu FT, Tan YT, Wang XY, Huang JH, Lin SY, Huang GL, Zhang YT, Pei XQ. Enhancing detection of high-level axillary lymph node metastasis after neoadjuvant therapy in breast cancer patients with nodal involvement: a combined approach of axilla ultrasound and breast elastography. LA RADIOLOGIA MEDICA 2025; 130:121-131. [PMID: 39565571 DOI: 10.1007/s11547-024-01936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE To develop a combined approach using shear wave elastography (SWE) and conventional ultrasound (US) to determine the extent of positive axillary lymph nodes (LNs) following neoadjuvant therapy (NAT) in breast cancer patients with nodal involvement. METHODS This prospective, multicenter study was registered on the Chinese Clinical Trial Registry (ChiCTR2400085035). From October 2018 to February 2024, a total of 303 breast cancer patients with biopsy-proven positive LN were enrolled. The conventional US features of axillary LNs and SWE characteristics of breast lesions after NAT were analyzed. The diagnostic performances of axilla US, breast SWE, and their combination in detecting residual metastasis in axillary level III after NAT were assessed. RESULTS Pathologically positive LN(s) in axilla level III were detected in 13.75% of cases following NAT. The kappa value for the axilla level with positive LN confirmed by surgical pathology and detected by US is 0.39 (p < 0.001). The AUC of conventional axilla US to determine the status of axilla level III LNs after NAT was 0.67, with a sensitivity of 51.52%, a specificity of 74.36%. The breast SWE displayed moderate performance for detecting residual metastasis in axilla level III following NAT, with an AUC of 0.79, sensitivity of 84.85%, and specificity of 74.36%. Compared to axilla US and breast SWE alone, the combination of axilla US with breast SWE achieved a stronger discriminatory ability (AUC, 0.86 vs 0.67 vs 0.79, p < 0.05, Delong's test) and precise calibration (X2 = 13.90, p = 0.085, HL test), with an improved sensitivity of 93.94% and a comparable specificity of 75.64%%. CONCLUSIONS SWE outperformed conventional US in identifying the axilla levels with nodal metastasis following NAT in patients with initially diagnosed positive axilla. Furthermore, combining breast SWE with axilla US showed good diagnostic performance for detecting residual metastasis in axilla level III after NAT.
Collapse
Affiliation(s)
- Jia-Xin Huang
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Feng-Tao Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, People's Republic of China
| | - Yu-Ting Tan
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, People's Republic of China
| | - Xue-Yan Wang
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jia-Hui Huang
- Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, 510000, People's Republic of China
| | - Shi-Yang Lin
- Department of Medical Ultrasound, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, People's Republic of China
| | - Gui-Ling Huang
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yu-Ting Zhang
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiao-Qing Pei
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
3
|
Liu YX, Liu QH, Hu QH, Shi JY, Liu GL, Liu H, Shu SC. Ultrasound-Based Deep Learning Radiomics Nomogram for Tumor and Axillary Lymph Node Status Prediction After Neoadjuvant Chemotherapy. Acad Radiol 2025; 32:12-23. [PMID: 39183131 DOI: 10.1016/j.acra.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024]
Abstract
RATIONALE AND OBJECTIVES This study aims to explore the feasibility of the deep learning radiomics nomogram (DLRN) for predicting tumor status and axillary lymph node metastasis (ALNM) after neoadjuvant chemotherapy (NAC) in patients with breast cancer. Additionally, we employ a Cox regression model for survival analysis to validate the effectiveness of the fusion algorithm. MATERIALS AND METHODS A total of 243 patients who underwent NAC were retrospectively included between October 2014 and July 2022. The DLRN integrated clinical characteristics as well as radiomics and deep transfer learning features extracted from ultrasound (US) images. The diagnostic performance of DLRN was evaluated by constructing ROC curves, and the clinical usefulness of models was assessed using decision curve analysis (DCA). A survival model was developed to validate the effectiveness of the fusion algorithm. RESULTS In the training cohort, the DLRN yielded area under the receiver operating characteristic curve values of 0.984 and 0.985 for the tumor and LNM, while 0.892 and 0.870, respectively, in the test cohort. The consistency indices (C-index) of the nomogram were 0.761 and 0.731, respectively, in the training and test cohorts. The Kaplan-Meier survival curves showed that patients in the high-risk group had significantly poorer overall survival than patients in the low-risk group (P < 0.05). CONCLUSION The US-based DLRN model could hold promise as clinical guidance for predicting the status of tumors and LNM after NAC in patients with breast cancer. This fusion model can also predict the prognosis of patients, which could help clinicians make better clinical decisions.
Collapse
Affiliation(s)
- Yue-Xia Liu
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Hua Liu
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan-Hui Hu
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Yao Shi
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gui-Lian Liu
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Liu
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sheng-Chun Shu
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
La Rocca LR, Caruso M, Stanzione A, Rocco N, Pellegrino T, Russo D, Salatiello M, de Giorgio A, Pastore R, Maurea S, Brunetti A, Cuocolo R, Romeo V. Machine learning-based discrimination of benign and malignant breast lesions on US: The contribution of shear-wave elastography. Eur J Radiol 2024; 181:111795. [PMID: 39442348 DOI: 10.1016/j.ejrad.2024.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE To build and validate a combined radiomics and machine learning (ML) approach using B-mode US and SWE images to differentiate benign from malignant solid breast lesions (BLs) and compare its performance with that of an expert radiologist. METHODS Patients with at least one BI-RADS 2-6 BL who performed breast US integrated with SWE were retrospectively included. B-mode US and SWE images were manually segmented to extract radiomics features. A multi-step feature selection process was performed and a predictive model built using the Logistic Regression algorithm. The diagnostic accuracy was evaluated with the AUC and Matthews Correlation Coefficient (MCC) metrics. The performance of the ML classifier was compared to that of an expert radiologist. RESULTS 427 Bls were included and divided into a training (286 BLs, of which 127 benign and 159 malignant) and a test set (141 BLs, of which 59 benign and 82 malignant). Of 1098 features extracted from B-mode US and SWE images, 13 were finally selected. The ML classifier showed an AUC of 0.768 and 0.746, and an MCC of 0.403 and 0.423 in the training and test sets, respectively. The performance was higher than that of the expert radiologist assessing only B-mode US images, but significantly lower when SWE images were also provided. CONCLUSION A ML approach based on B-mode US and SWE images may represent a potential tool in the characterization of BLs. SWE still gives its most relevant contribution in the clinical setting rather than included in a radiomics pipeline.
Collapse
Affiliation(s)
- Ludovica Rita La Rocca
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Martina Caruso
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Nicola Rocco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Daniela Russo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Salatiello
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Roberta Pastore
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Renato Cuocolo
- University of Salerno, Department of Medicine, Surgery and Dentistry, Baronissi, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Huang JX, Lu Y, Tan YT, Liu FT, Li YL, Wang XY, Huang JH, Lin SY, Huang GL, Zhang YT, Pei XQ. Elastography-based AI model can predict axillary status after neoadjuvant chemotherapy in breast cancer with nodal involvement: A prospective, multicenter, diagnostic study. Int J Surg 2024; 111:01279778-990000000-01965. [PMID: 39724577 PMCID: PMC11745675 DOI: 10.1097/js9.0000000000002105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/18/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE To develop a model for accurate prediction of axillary lymph node (LN) status after neoadjuvant chemotherapy (NAC) in breast cancer patients with nodal involvement. METHODS Between October 2018 and February 2024, 671 breast cancer patients with biopsy-proven LN metastasis who received NAC followed by axillary LN dissection were enrolled in this prospective, multicenter study. Preoperative ultrasound (US) images, including B-mode ultrasound (BUS) and shear wave elastography (SWE), were obtained. The included patients were randomly divided at a ratio of 8:2 into a training set and an independent test set, with five-fold cross-validation applied to training set. We first identified clinicopathological characteristics and conventional US features significantly associated with the axillary LN response and developed corresponding prediction models. We then constructed deep learning radiomics (DLR) models based on BUS and SWE data. Models performances were compared, and a combination model was developed using significant clinicopathological data and interpreted US features with the SWE-based DLR model. Discrimination, calibration and clinical utility of this model were analyzed using receiver operating characteristic curve, calibration curve and decision curve, respectively. RESULTS Axillary pathologic complete response (pCR) was achieved in 52.41% of patients. In the test cohort, the clinicopathologic model had an accuracy of 71.30%, while radiologists' diagnoses ranged from 64.26% to 71.11%, indicating limited to moderate predictive ability for the axillary response to NAC. The SWE-based DLR model, with an accuracy of 80.81%, significantly outperformed the BUS-based DLR model, which scored 59.57%. The combination DLR model boasted an accuracy of 88.70% and a false-negative rate of 8.82%. It demonstrated strong discriminatory ability (AUC, 0.95), precise calibration (p value obtained by Hosmer-Lemeshow goodness-of-fit test, 0.68), and practical clinical utility (probability threshold, 2.5-97.5%). CONCLUSIONS The combination SWE-based DLR model can predict the axillary status after NAC in patients with node-positive breast cancer, and thus, may inform clinical decision-making to help avoid unnecessary axillary LN dissection.
Collapse
Affiliation(s)
- Jia-Xin Huang
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yao Lu
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yu-Ting Tan
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Feng-Tao Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yi-Liang Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xue-Yan Wang
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Jia-Hui Huang
- Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, People’s Republic of China
| | - Shi-Yang Lin
- Department of Medical Ultrasound, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Gui-Ling Huang
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yu-Ting Zhang
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Xiao-Qing Pei
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Huang JX, Wu L, Wang XY, Lin SY, Xu YF, Wei MJ, Pei XQ. Delta Radiomics Based on Longitudinal Dual-modal Ultrasound Can Early Predict Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Acad Radiol 2024; 31:1738-1747. [PMID: 38057180 DOI: 10.1016/j.acra.2023.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
RATIONALE AND OBJECTIVES To develop a monitoring model using radiomics analysis based on longitudinal B-mode ultrasound (BUS) and shear wave elastography (SWE) to early predict pathological response to neoadjuvant chemotherapy (NAC) in breast cancer patients. MATERIALS AND METHODS In this prospective study, 112 breast cancer patients who received NAC between September 2016 and March 2022 were included. The BUS and SWE data of breast cancer were obtained prior to treatment as well as after two and four cycles of NAC. Radiomics features were extracted followed by measuring the changes in radiomics features compared to baseline after the second and fourth cycles of NAC (△R [C2], △R [C4]), respectively. The delta radiomics signatures were established using a support vector machine classifier. RESULTS The area under receiver operating characteristic curve (AUC) values of △RBUS (C2) and △RBUS (C4) for predicting the response to NAC were 0.83 and 0.84, while those of △RSWE (C2) and △RSWE (C4) were 0.88 and 0.90, respectively. △RSWE exhibited significantly superior performance to △RBUS for predicting NAC response (Delong test, p < 0.01). No significant differences were observed in the performances between △R (C2) and △R (C4) based on BUS or SWE data. The longitudinal dual-modal ultrasound radiomics (LDUR) model had an excellent discrimination, good calibration and clinical usefulness, with the AUC, sensitivity and specificity of 0.97, 95.52% and 91.11%, respectively. CONCLUSION The LDUR model achieved excellent performance in predicting the pathological response to chemotherapy during the early stages of NAC for breast cancer.
Collapse
Affiliation(s)
- Jia-Xin Huang
- Department of Medical Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China (J.-X.H., X.-Y.W., Y.-F.X., M.-J.W., X.-Q.P.)
| | - Lei Wu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, and Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China (L.W.)
| | - Xue-Yan Wang
- Department of Medical Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China (J.-X.H., X.-Y.W., Y.-F.X., M.-J.W., X.-Q.P.)
| | - Shi-Yang Lin
- Department of Medical Ultrasound, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (S.-Y.L.)
| | - Yan-Fen Xu
- Department of Medical Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China (J.-X.H., X.-Y.W., Y.-F.X., M.-J.W., X.-Q.P.)
| | - Ming-Jie Wei
- Department of Medical Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China (J.-X.H., X.-Y.W., Y.-F.X., M.-J.W., X.-Q.P.)
| | - Xiao-Qing Pei
- Department of Medical Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China (J.-X.H., X.-Y.W., Y.-F.X., M.-J.W., X.-Q.P.).
| |
Collapse
|
7
|
Kim MJ, Eun NL, Ahn SG, Kim JH, Youk JH, Son EJ, Jeong J, Cha YJ, Bae SJ. Elasticity Values as a Predictive Modality for Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers (Basel) 2024; 16:377. [PMID: 38254866 PMCID: PMC10814692 DOI: 10.3390/cancers16020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Shear-wave elastography (SWE) is an effective tool in discriminating malignant lesions of breast and axillary lymph node metastasis in patients with breast cancer. However, the association between the baseline elasticity value of breast cancer and the treatment response of neoadjuvant chemotherapy is yet to be elucidated. Baseline SWE measured mean stiffness (E-mean) and maximum stiffness (E-max) in 830 patients who underwent neoadjuvant chemotherapy and surgery from January 2012 to December 2022. Association of elasticity values with breast pCR (defined as ypTis/T0), pCR (defined as ypTis/T0, N0), and tumor-infiltrating lymphocytes (TILs) was analyzed. Of 830 patients, 356 (42.9%) achieved breast pCR, and 324 (39.0%) achieved pCR. The patients with low elasticity values had higher breast pCR and pCR rates than those with high elasticity values. A low E-mean (adjusted odds ratio (OR): 0.620; 95% confidence interval (CI): 0.437 to 0.878; p = 0.007) and low E-max (adjusted OR: 0.701; 95% CI: 0.494 to 0.996; p = 0.047) were independent predictive factors for breast pCR. Low elasticity values were significantly correlated with high TILs. Pretreatment elasticity values measured using SWE were significantly associated with treatment response and inversely correlated with TILs, particularly in HR+HER2- breast cancer and TNBC.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (M.J.K.); (S.G.A.); (J.J.)
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Na Lae Eun
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (N.L.E.); (J.H.Y.); (E.J.S.)
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (M.J.K.); (S.G.A.); (J.J.)
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Jee Hung Kim
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Ji Hyun Youk
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (N.L.E.); (J.H.Y.); (E.J.S.)
| | - Eun Ju Son
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (N.L.E.); (J.H.Y.); (E.J.S.)
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (M.J.K.); (S.G.A.); (J.J.)
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Yoon Jin Cha
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (M.J.K.); (S.G.A.); (J.J.)
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| |
Collapse
|