1
|
Reguera RM, Elmahallawy EK, García-Estrada C, Carbajo-Andrés R, Balaña-Fouce R. DNA Topoisomerases of Leishmania Parasites; Druggable Targets for Drug Discovery. Curr Med Chem 2019; 26:5900-5923. [DOI: 10.2174/0929867325666180518074959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
DNA topoisomerases (Top) are a group of isomerase enzymes responsible for controlling the topological problems caused by DNA double helix in the cell during the processes of replication, transcription and recombination. Interestingly, these enzymes have been known since long to be key molecular machines in several cellular processes through overwinding or underwinding of DNA in all living organisms. Leishmania, a trypanosomatid parasite responsible for causing fatal diseases mostly in impoverished populations of low-income countries, has a set of six classes of Top enzymes. These are placed in the nucleus and the single mitochondrion and can be deadly targets of suitable drugs. Given the fact that there are clear differences in structure and expression between parasite and host enzymes, numerous studies have reported the therapeutic potential of Top inhibitors as antileishmanial drugs. In this regard, numerous compounds have been described as Top type IB and Top type II inhibitors in Leishmania parasites, such as camptothecin derivatives, indenoisoquinolines, indeno-1,5- naphthyridines, fluoroquinolones, anthracyclines and podophyllotoxins. The aim of this review is to highlight several facts about Top and Top inhibitors as potential antileishmanial drugs, which may represent a promising strategy for the control of this disease of public health importance.
Collapse
Affiliation(s)
- Rosa M. Reguera
- Department of Biomedical Sciences, University of Leon (ULE), Leon, Spain
| | | | | | | | | |
Collapse
|
2
|
Holota S, Kryshchyshyn A, Derkach H, Trufin Y, Demchuk I, Gzella A, Grellier P, Lesyk R. Synthesis of 5-enamine-4-thiazolidinone derivatives with trypanocidal and anticancer activity. Bioorg Chem 2019; 86:126-136. [PMID: 30690336 DOI: 10.1016/j.bioorg.2019.01.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/20/2018] [Accepted: 01/20/2019] [Indexed: 11/29/2022]
Abstract
A series of novel 2-(5-aminomethylene-4-oxo-2-thioxothiazolidin-3-yl)-3-phenylpropionic acid ethyl esters has been synthesized. Target compounds were evaluated for their trypanocidal activity towards Trypanosoma brucei brucei and Trypanosoma brucei gambiense. Several hit-compounds (8, 10, 12) inhibited growth of the parasites at sub-micromolar concentrations (IC50 0.027-1.936 µM) and showed significant selectivity indices (SI = 108-1396.2) being non-toxic towards the human primary fibroblasts. The screening of anticancer activity in vitro within NCI DTP protocol allowed to identify active 2-(5-{[5-(2,4-dichlorobenzyl)-thiazol-2-ylamino]-methylene}-4-oxo-2-thioxothiazolidin-3-yl)-3-phenylpropionic acid ethyl ester 14 that demonstrated inhibition against all 59 human tumor cell lines with the average GI50 value of 2.57 μM. It was established that the activity type (antitrypanosomal or anticancer) as well as its level depends on the character of enamine fragment in the C5 position of thiazolidinone core.
Collapse
Affiliation(s)
- Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine; Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Eastern European National University, Volya Avenue 13, 43025 Lutsk, Ukraine
| | - Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine
| | - Halyna Derkach
- Department of Chemistry, Ivano-Frankivsk National Medical University, 2 Halytska, Ivano-Frankivsk 76018, Ukraine
| | - Yaroslava Trufin
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine
| | - Inna Demchuk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team APE, CP 52, 57 Rue Cuvier, Paris 75005, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
3
|
Kryshchyshyn A, Kaminskyy D, Nektegayev I, Grellier P, Lesyk R. Isothiochromenothiazoles-A Class of Fused Thiazolidinone Derivatives with Established Anticancer Activity That Inhibits Growth of Trypanosoma brucei brucei. Sci Pharm 2018; 86:scipharm86040047. [PMID: 30347722 DOI: 10.3390/scipharm86040047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
Recently, thiazolidinone derivatives have been widely studied as antiparasitic agents. Previous investigations showed that fused 4-thiazolidinone derivatives (especially thiopyranothiazoles) retain pharmacological activity of their synthetic precursors-simple 5-ene-4-thiazolidinones. A series of isothiochromeno[4a,4-d][1,3] thiazoles was investigated in an in vitro assay towards bloodstream forms of Trypanosoma brucei brucei. All compounds inhibited parasite growth at concentrations in the micromolar range. The established low acute toxicity of this class of compounds along with a good trypanocidal profile indicates that isothiochromenothiazole derivatives may be promising for designing new antitrypanosomal drugs.
Collapse
Affiliation(s)
- Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| | - Igor Nektegayev
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| | - Philippe Grellier
- UMR 7245 CNRS MCAM, Muséum National d'Histoire Naturelle, Sorbonne Universités, CP 52, 57 rue Cuvier, Paris 75005, France.
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| |
Collapse
|
4
|
Kryshchyshyn AP, Atamanyuk DV, Kaminskyy DV, Grellier P, Lesyk RB. Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety. ACTA ACUST UNITED AC 2017. [DOI: 10.7124/bc.00094f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Ph. Grellier
- National Museum of Natural History, UMR 7245 CNRS MCAM, Sorbonne UniversitГ©s
| | - R. B. Lesyk
- Danylo Halytsky Lviv National Medical University
| |
Collapse
|
5
|
Front-line glioblastoma chemotherapeutic temozolomide is toxic to Trypanosoma brucei and potently enhances melarsoprol and eflornithine. Exp Parasitol 2017; 178:45-50. [PMID: 28552794 DOI: 10.1016/j.exppara.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/11/2017] [Accepted: 05/22/2017] [Indexed: 11/22/2022]
Abstract
Sleeping sickness is an infectious disease that is caused by the protozoan parasite Trypanosoma brucei. The second stage of the disease is characterised by the parasites entering the brain. It is therefore important that sleeping sickness therapies are able to cross the blood-brain barrier. At present, only three medications for chemotherapy of the second stage of the disease are available. As these trypanocides have serious side effects and are difficult to administer, new and safe anti-trypanosomal brain-penetrating drugs are needed. For these reasons, the anti-glioblastoma drug temozolomide was tested in vitro for activity against bloodstream forms of T. brucei. The concentration of the drug required to reduce the growth rate of the parasites by 50% was 29.1 μM and to kill all trypanosomes was 125 μM. Importantly, temozolomide did not affect the growth of human HL-60 cells up to a concentration of 300 μM. Cell cycle analysis revealed that temozolomide induced DNA damage and subsequent cell cycle arrest in trypanosomes exposed to the compound. As drug combination regimes often achieve greater therapeutic efficacy than monotherapies, the interactions of temozolomide with the trypanocides eflornithine and melarsoprol, respectively, was determined. Both combinations were found to produce an additive effect. In conclusion, these results together with well-established pharmacokinetic data provide the basis for in vivo studies and potentially for clinical trials of temozolomide in the treatment of T. brucei infections and a rationale for its use in combination therapy, particularly with eflornithine or melarsoprol.
Collapse
|
6
|
Uzcanga G, Lara E, Gutiérrez F, Beaty D, Beske T, Teran R, Navarro JC, Pasero P, Benítez W, Poveda A. Nuclear DNA replication and repair in parasites of the genus Leishmania: Exploiting differences to develop innovative therapeutic approaches. Crit Rev Microbiol 2016; 43:156-177. [PMID: 27960617 DOI: 10.1080/1040841x.2016.1188758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leishmaniasis is a common tropical disease that affects mainly poor people in underdeveloped and developing countries. This largely neglected infection is caused by Leishmania spp, a parasite from the Trypanosomatidae family. This parasitic disease has different clinical manifestations, ranging from localized cutaneous to more harmful visceral forms. The main limitations of the current treatments are their high cost, toxicity, lack of specificity, and long duration. Efforts to improve treatments are necessary to deal with this infectious disease. Many approved drugs to combat diseases as diverse as cancer, bacterial, or viral infections take advantage of specific features of the causing agent or of the disease. Recent evidence indicates that the specific characteristics of the Trypanosomatidae replication and repair machineries could be used as possible targets for the development of new treatments. Here, we review in detail the molecular mechanisms of DNA replication and repair regulation in trypanosomatids of the genus Leishmania and the drugs that could be useful against this disease.
Collapse
Affiliation(s)
- Graciela Uzcanga
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,b Programa Prometeo , SENESCYT, Whymper E7-37 y Alpallana, Quito , Ecuador.,c Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK Calle Alberto Einstein sn y 5ta transversal , Quito , Ecuador.,d Fundación Instituto de Estudios Avanzados-IDEA , Caracas , Venezuela
| | - Eliana Lara
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,e Institute of Human Genetics , CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer , Montpellier cedex 5 , France
| | - Fernanda Gutiérrez
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Doyle Beaty
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Timo Beske
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Rommy Teran
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Juan-Carlos Navarro
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,f Universidad Central de Venezuela, Instituto de Zoología y Ecología Tropical , Caracas , Venezuela.,g Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK, Calle Alberto Einstein sn y 5ta transversal , Quito , Ecuador
| | - Philippe Pasero
- e Institute of Human Genetics , CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer , Montpellier cedex 5 , France
| | - Washington Benítez
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Ana Poveda
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| |
Collapse
|
7
|
Liu YQ, Li WQ, Morris-Natschke SL, Qian K, Yang L, Zhu GX, Wu XB, Chen AL, Zhang SY, Nan X, Lee KH. Perspectives on biologically active camptothecin derivatives. Med Res Rev 2015; 35:753-89. [PMID: 25808858 DOI: 10.1002/med.21342] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Camptothecins (CPTs) are cytotoxic natural alkaloids that specifically target DNA topoisomerase I. Research on CPTs has undergone a significant evolution from the initial discovery of CPT in the late 1960s through the study of synthetic small-molecule derivatives to investigation of macromolecular constructs and formulations. Over the past years, intensive medicinal chemistry efforts have generated numerous CPT derivatives. Three derivatives, topotecan, irinotecan, and belotecan, are currently prescribed as anticancer drugs, and several related compounds are now in clinical trials. Interest in other biological effects, besides anticancer activity, of CPTs is also growing exponentially, as indicated by the large number of publications on the subject during the last decades. Therefore, the main focus of the present review is to provide an ample but condensed overview on various biological activities of CPT derivatives, in addition to continued up-to-date coverage of anticancer effects.
Collapse
Affiliation(s)
- Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.,Provincial Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Wen-Qun Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599
| | - Keduo Qian
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599
| | - Liu Yang
- Environmental and Municipal Engineering School, Lanzhou Jiaotong University, Lanzhou, 730000, P. R. China
| | - Gao-Xiang Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiao-Bing Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - An-Liang Chen
- Provincial Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Shao-Yong Zhang
- Provincial Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Xiang Nan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599.,Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40447, Taiwan
| |
Collapse
|
8
|
Trypanotoxic activity of thiosemicarbazone iron chelators. Exp Parasitol 2015; 150:7-12. [PMID: 25595343 DOI: 10.1016/j.exppara.2015.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/11/2014] [Accepted: 01/07/2015] [Indexed: 11/20/2022]
Abstract
Only a few drugs are available for treating sleeping sickness and nagana disease; parasitic infections caused by protozoans of the genus Trypanosoma in sub-Saharan Africa. There is an urgent need for the development of new medicines for chemotherapy of these devastating diseases. In this study, three newly designed thiosemicarbazone iron chelators, TSC24, Dp44mT and 3-AP, were tested for in vitro activity against bloodstream forms of Trypanosoma brucei and human leukaemia HL-60 cells. In addition to their iron chelating properties, TSC24 and Dp44mT inhibit topoisomerase IIα while 3-AP inactivates ribonucleotide reductase. All three compounds exhibited anti-trypanosomal activity, with minimum inhibitory concentration (MIC) values ranging between 1 and 100 µM and 50% growth inhibition (GI50) values of around 250 nM. Although the compounds did not kill HL-60 cells (MIC values >100 µM), TSC24 and Dp44mT displayed considerable cytotoxicity based on their GI50 values. Iron supplementation partly reversed the trypanotoxic and cytotoxic activity of TSC24 and Dp44mT but not of 3-AP. This finding suggests possible synergy between the iron chelating and topoisomerase IIα inhibiting activity of the compounds. However, further investigation using separate agents, the iron chelator deferoxamine and the topoisomerase II inhibitor epirubicin, did not support any synergy for the interaction of iron chelation and topoisomerase II inhibition. Furthermore, TSC24 was shown to induce DNA degradation in bloodstream forms of T. brucei indicating that the mechanism of trypanotoxic activity of the compound is topoisomerase II independent. In conclusion, the data support further investigation of thiosemicarbazone iron chelators with dual activity as lead compounds for anti-trypanosomal drug development.
Collapse
|
9
|
Balaña-Fouce R, Alvarez-Velilla R, Fernández-Prada C, García-Estrada C, Reguera RM. Trypanosomatids topoisomerase re-visited. New structural findings and role in drug discovery. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:326-37. [PMID: 25516844 PMCID: PMC4266802 DOI: 10.1016/j.ijpddr.2014.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is an urgent need of new treatments against trypanosomatids-borne diseases. DNA topoisomerases are pointed as potential drug targets against unicellular parasites. Trypanosomatids have a full set of DNA topoisomerases in both nucleus and kinetoplast. TopII and TopIII are located in the kinetoplast and fully involved in kDNA replication. Tritryps TopIB differ in structure from mammalian’s pointing to an attractive target.
The Trypanosomatidae family, composed of unicellular parasites, causes severe vector-borne diseases that afflict human populations worldwide. Chagas disease, sleeping sickness, as well as different sorts of leishmaniases are amongst the most important infectious diseases produced by Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively. All these infections are closely related to weak health care services in low-income populations of less developed and least economically developed countries. Search for new therapeutic targets in order to hit these pathogens is of paramount priority, as no effective vaccine is currently in use against any of these parasites. Furthermore, present-day chemotherapy comprises old-fashioned drugs full of important side effects. Besides, they are prone to produce tolerance and resistance as a consequence of their continuous use for decades. DNA topoisomerases (Top) are ubiquitous enzymes responsible for solving the torsional tensions caused during replication and transcription processes, as well as in maintaining genomic stability during DNA recombination. As the inhibition of these enzymes produces cell arrest and triggers cell death, Top inhibitors are among the most effective and most widely used drugs in both cancer and antibacterial therapies. Top relaxation and decatenation activities, which are based on a common nicking–closing cycle involving one or both DNA strands, have been pointed as a promising drug target. Specific inhibitors that bind to the interface of DNA-Top complexes can stabilize Top-mediated transient DNA breaks. In addition, important structural differences have been found between Tops from the Trypanosomatidae family members and Tops from the host. Such dissimilarities make these proteins very interesting for drug design and molecular intervention. The present review is a critical update of the last findings regarding trypanosomatid’s Tops, their new structural features, their involvement both in the physiology and virulence of these parasites, as well as their use as promising targets for drug discovery.
Collapse
Affiliation(s)
- Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Raquel Alvarez-Velilla
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
10
|
Lacombe OK, Zuma AA, da Silva CC, de Souza W, Motta MCM. Effects of camptothecin derivatives and topoisomerase dual inhibitors on Trypanosoma cruzi growth and ultrastructure. J Negat Results Biomed 2014; 13:11. [PMID: 24917086 PMCID: PMC4066697 DOI: 10.1186/1477-5751-13-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/22/2014] [Indexed: 12/02/2022] Open
Abstract
Background Trypanosoma cruzi is the etiological agent of Chagas’ disease that is an endemic disease in Latin America and affects about 8 million people. This parasite belongs to the Trypanosomatidae family which contains a single mitochondrion with an enlarged region, named kinetoplast that harbors the mitochondrial DNA (kDNA). The kinetoplast and the nucleus present a great variety of essential enzymes involved in DNA replication and topology, including DNA topoisomerases. Such enzymes are considered to be promising molecular targets for cancer treatment and for antiparasitic chemotherapy. In this work, the proliferation and ultrastructure of T. cruzi epimastigotes were evaluated after treatment with eukaryotic topoisomerase I inhibitors, such as topotecan and irinotecan, as well as with dual inhibitors (compounds that block eukaryotic topoisomerase I and topoisomerase II activities), such as baicalein, luteolin and evodiamine. Previous studies have shown that such inhibitors were able to block the growth of tumor cells, however most of them have never been tested on trypanosomatids. Results Considering the effects of topoisomerase I inhibitors, our results showed that topotecan decreased cell proliferation and caused unpacking of nuclear heterochromatin, however none of these alterations were observed after treatment with irinotecan. The dual inhibitors baicalein and evodiamine decreased cell growth; however the nuclear and kinetoplast ultrastructures were not affected. Conclusions Taken together, our data showed that camptothecin is more efficient than its derivatives in decreasing T. cruzi proliferation. Furthermore, we conclude that drugs pertaining to a certain class of topoisomerase inhibitors may present different efficiencies as chemotherapeutical agents.
Collapse
Affiliation(s)
| | | | | | | | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Drug discovery and human African trypanosomiasis: a disease less neglected? Future Med Chem 2014; 5:1801-41. [PMID: 24144414 DOI: 10.4155/fmc.13.162] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human African trypanosomiasis (HAT) has been neglected for a long time. The most recent drug to treat this disease, eflornithine, was approved by the US FDA in 2000. Current treatments exhibit numerous problematic side effects and are often ineffective against the debilitating CNS resident stage of the disease. Fortunately, several partnerships and initiatives have been formed over the last 20 years in an effort to eradicate HAT, along with a number of other neglected diseases. This has led to an increasing number of foundations and research institutions that are currently working on the development of new drugs for HAT and tools with which to diagnose and treat patients. New biochemical pathways as therapeutic targets are emerging, accompanied by increasing numbers of new antitrypanosomal compound classes. The future looks promising that this collaborative approach will facilitate eagerly awaited breakthroughs in the treatment of HAT.
Collapse
|
12
|
Babokhov P, Sanyaolu AO, Oyibo WA, Fagbenro-Beyioku AF, Iriemenam NC. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathog Glob Health 2014; 107:242-52. [PMID: 23916333 DOI: 10.1179/2047773213y.0000000105] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the recent advances in drug research, finding a safe, effective, and easy to use chemotherapy for human African trypanosomiasis (HAT) remains a challenging task. The four current anti-trypanosomiasis drugs have major disadvantages that limit more widespread use of these drugs in the endemic regions of sub-Saharan Africa. Pentamidine and suramin are limited by their effectiveness against the only first stage of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, respectively. In addition, melarsoprol and eflornithine (two second stage drugs) each have disadvantages of their own. The former is toxic and has increasing treatment failures while the latter is expensive, laborious to administer, and lacks efficacy against T. b. rhodesiense. Furthermore, melarsoprol's toxicity and decreasing efficacy are glaring problems and phasing out the drug as a frontline treatment against T. b. gambiense is now possible with the emergence of competent, safe combination chemotherapies such as nifurtimox-eflornithine combination treatment (NECT). The future of eflornithine, on the other hand, is more promising. The drug is useful in the context of combination chemotherapy and potential orally administered analogues. Due to the limits of monotherapies, greater emphasis should be placed on the research and development of combination chemotherapies, based on the successful clinical tests with NECT and its current use as a frontline anti-trypanosomiasis treatment. This review discussed the current and future chemotherapy strategies for the treatment of HAT.
Collapse
|
13
|
Independence from Kinetoplast DNA maintenance and expression is associated with multidrug resistance in Trypanosoma brucei in vitro. Antimicrob Agents Chemother 2014; 58:2925-8. [PMID: 24550326 PMCID: PMC3993240 DOI: 10.1128/aac.00122-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is well known that several antitrypanosomatid drugs accumulate in the parasite's mitochondrion, where they often bind to the organellar DNA, the kinetoplast. To what extent this property relates to the mode of action of these compounds has remained largely unquantified. Here we show that single point mutations that remove the dependence of laboratory strains of the sleeping sickness parasite Trypanosoma brucei on a functional kinetoplast result in significant resistance to the diamidine and phenanthridine drug classes.
Collapse
|
14
|
Smirlis D, Soares MBP. Selection of molecular targets for drug development against trypanosomatids. Subcell Biochem 2014; 74:43-76. [PMID: 24264240 DOI: 10.1007/978-94-007-7305-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of "druggability" and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the "target identification" and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design.
Collapse
|
15
|
Evaluation of the In Vitro Efficacy of Artemisia annua, Rumex abyssinicus, and Catha edulis Forsk Extracts in Cancer and Trypanosoma brucei Cells. ISRN BIOCHEMISTRY 2013; 2013:910308. [PMID: 25937964 PMCID: PMC4392988 DOI: 10.1155/2013/910308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/13/2013] [Indexed: 11/17/2022]
Abstract
The current drugs against sleeping sickness are derived from cancer chemotherapeutic approaches. Herein, we aimed at evaluating the in vitro effect of alcoholic extracts of Artemisia annua (AMR), Rumex abyssinicus (RMA), and Catha edulis Forsk (CEF) on proliferation/viability of 1321N1 astrocytoma, MCF-7 breast cancer, THP-1 leukemia, and LNCaP, Du-145, and PC-3 prostate cancer cells and on Trypanosoma brucei cells. Proliferation of tumor cells was evaluated by WST-1 assay and viability/behaviour of T. brucei by cell counting and light microscopy. CEF was the most efficient growth inhibitor in comparison to AMR and RMA. Nevertheless, in LNCaP and THP-1 cells, all extracts significantly inhibited tumor growth at 3 μg/mL. All extracts inhibited proliferation of T. brucei cells in a concentration-dependent manner. Microscopic analysis revealed that 95% of the T. brucei cells died when exposed to 33 μg/mL CEF for 3 hrs. Similar results were obtained using 33 μg/mL AMR for 6 hrs. In case of RMA, however, higher concentrations were necessary to obtain similar effects on T. brucei. This demonstrates the antitumor efficacy of these extracts as well as their ability to dampen viability and proliferation of T. brucei, suggesting a common mechanism of action on highly proliferative cells, most probably by targeting cell metabolism.
Collapse
|
16
|
Steverding D, Sexton DW. Trypanocidal activity of salinomycin is due to sodium influx followed by cell swelling. Parasit Vectors 2013; 6:78. [PMID: 23517602 PMCID: PMC3621689 DOI: 10.1186/1756-3305-6-78] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/18/2013] [Indexed: 01/27/2023] Open
Abstract
Background The few currently available drugs for treatment of African trypanosomiasis are outdated and show problems with toxicity and resistance. Hence, there is an urgent need for the discovery and development of new anti-trypanosomal agents. Findings In this study, the ionophorous antibiotic salinomycin was investigated for its trypanocidal activity in vitro using culture-adapted bloodstream forms of Trypanosoma brucei. The concentrations of salinomycin to reduce the growth rate by 50% and to kill the parasites were 0.31 μM and 1 μM, respectively. The trypanocidal action of the ionophore was shown to be the result of an influx of Na+ resulting in an increased intracellular Na+ concentration followed by cell swelling. This mode of action differs from the mechanism for the anti-cancer activity of salinomycin reported to be by induction of apoptosis. Conclusion Here we have shown that salinomycin is an effective agent against bloodstream forms of T. brucei and might be a potential candidate for treatment of African trypanosomiasis.
Collapse
Affiliation(s)
- Dietmar Steverding
- BioMedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| | | |
Collapse
|
17
|
Caffrey CR, Steverding D. Recent initiatives and strategies to developing new drugs for tropical parasitic diseases. Expert Opin Drug Discov 2013; 3:173-86. [PMID: 23480221 DOI: 10.1517/17460441.3.2.173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Despite the toll of tropical parasitic diseases on human life in the developing world, present therapies still rely on drugs developed decades ago. In many cases, the clinical usefulness of these compounds is limited due to poor efficacy, toxicity and the constant attrition of drug resistance. The absence of a profit incentive regarding diseases afflicting the very poor has resulted in a lack of investment by the pharmaceutical industry in new chemotherapies. OBJECTIVE Given this background, this review addresses what alternative economic and scientific strategies have been implemented to procure novel drugs. METHODS The latest chemical, genetic and screening technologies to discover and develop drugs for tropical parasitic diseases are reviewed. In many cases these strategies are being implemented within the framework of public-private partnerships established to sustain dynamic drug development portfolios. Examples of public-private partnerships and their portfolios are discussed. Further, the contribution of dedicated academic screening centres to target discovery and preclinical prosecution of new small molecules is also highlighted. In every case, the latest scientific literature is cited, but also relevant press releases and website information to indicate the present vitality in the field. CONCLUSION The tools, institutions and consortia are now in place and evolving to deliver new pharmaceuticals. Short-term results have already been realised in the clinic, mainly through the provision of new formulations of existing drugs. Long-term and consistent investment will be required, however, to identify, develop and clinically validate new chemical entities.
Collapse
Affiliation(s)
- Conor R Caffrey
- University of California San Francisco, Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biosciences, Byers Hall 501E, 1700 4th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
18
|
Bitter melon extract inhibits proliferation of Trypanosoma brucei bloodstream forms in vitro. Exp Parasitol 2013; 133:353-6. [DOI: 10.1016/j.exppara.2012.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 11/18/2022]
|
19
|
Jobe M, Anwuzia-Iwegbu C, Banful A, Bosier E, Iqbal M, Jones K, Lecutier SJ, Lepper K, Redmond M, Ross-Parker A, Ward E, Wernham P, Whidden EM, Tyler KM, Steverding D. Differential in vitro activity of the DNA topoisomerase inhibitor idarubicin against Trypanosoma rangeli and Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2012; 107:946-50. [PMID: 23147154 DOI: 10.1590/s0074-02762012000700018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 08/06/2012] [Indexed: 11/21/2022] Open
Abstract
In this study the effect of eight DNA topoisomerase inhibitors on the growth Trypanosoma rangeli epimastigotes in cell culture was investigated. Among the eight compounds tested, idarubicin was the only compound that displayed promising trypanocidal activity with a half-maximal growth inhibition (GI(50)) value in the sub-micromolar range. Fluorescence-activated cell sorting analysis showed a reduction in DNA content in T. rangeli epimastigotes when treated with idarubicin. In contrast to T. rangeli, against Trypanosoma cruzi epimastigotes idarubicin was much less effective exhibiting a GI(50) value in the mid-micromolar range. This result indicates that idarubicin displays differential toxic effects in T. rangeli and T. cruzi. Compared with African trypanosomes, it seems that American trypanosomes are generally less susceptible to DNA topoisomerase inhibitors.
Collapse
Affiliation(s)
- Momodou Jobe
- BioMedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tyagi R, Kaur N, Singh B, Kishore D. Noteworthy Mechanistic Precedence in the Exclusive Formation of One Regioisomer in the Beckmann Rearrangement of Ketoximes of 4-Piperidones Annulated to Pyrazolo-indole Nucleus by Organocatalyst Derived from TCT and DMF. SYNTHETIC COMMUN 2012. [DOI: 10.1080/00397911.2011.589558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ruchi Tyagi
- a Department of Chemistry , Banasthali University , Banasthali , India
| | - Navjeet Kaur
- a Department of Chemistry , Banasthali University , Banasthali , India
| | - Bhawani Singh
- a Department of Chemistry , Banasthali University , Banasthali , India
| | - D. Kishore
- a Department of Chemistry , Banasthali University , Banasthali , India
| |
Collapse
|
21
|
Effect of topoisomerase inhibitors and DNA-binding drugs on the cell proliferation and ultrastructure of Trypanosoma cruzi. Int J Antimicrob Agents 2011; 37:449-56. [DOI: 10.1016/j.ijantimicag.2010.11.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/31/2010] [Accepted: 11/01/2010] [Indexed: 11/22/2022]
|
22
|
Zucca M, Savoia D. Current developments in the therapy of protozoan infections. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2011; 5:4-10. [PMID: 21629507 PMCID: PMC3103884 DOI: 10.2174/1874104501105010004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/25/2010] [Accepted: 06/20/2010] [Indexed: 12/03/2022]
Abstract
Protozoan parasites cause serious human and zoonotic infections, including life-threatening diseases such as malaria, African and American trypanosomiasis, and leishmaniasis. These diseases are no more common in the developed world, but together they still threaten about 40% of the world population (WHO estimates). Mortality and morbidity are high in developing countries, and the lack of vaccines makes chemotherapy the only suitable option. However, available antiparasitic drugs are hampered by more or less marked toxic side effects and by the emergence of drug resistance. As the main prevalence of parasitic diseases occurs in the poorest areas of the world, the interest of the pharmaceutical companies in the development of new drugs has been traditionally scarce. The establishment of public-private partnerships focused on tropical diseases is changing this situation, allowing the exploitation of the technological advances that took place during the past decade related to genomics, proteomics, and in silico drug discovery approaches. These techniques allowed the identification of new molecular targets that in some cases are shared by different parasites. In this review we outline the recent developments in the fields of protease and topoisomerase inhibitors, antimicrobial and cell-penetrating peptides, and RNA interference. We also report on the rapidly developing field of new vectors (micro and nano particles, mesoporous materials) that in some cases can cross host or parasite natural barriers and, by selectively delivering new or already in use drugs to the target site, minimize dosage and side effects.
Collapse
Affiliation(s)
- Mario Zucca
- Department of Clinical and Biological Sciences, University of Torino, Italy
| | | |
Collapse
|
23
|
Jacobs RT, Nare B, Phillips MA. State of the art in African trypanosome drug discovery. Curr Top Med Chem 2011; 11:1255-74. [PMID: 21401507 PMCID: PMC3101707 DOI: 10.2174/156802611795429167] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
Abstract
African sleeping sickness is endemic in sub-Saharan Africa where the WHO estimates that 60 million people are at risk for the disease. Human African trypanosomiasis (HAT) is 100% fatal if untreated and the current drug therapies have significant limitations due to toxicity and difficult treatment regimes. No new chemical agents have been approved since eflornithine in 1990. The pentamidine analog DB289, which was in late stage clinical trials for the treatment of early stage HAT recently failed due to toxicity issues. A new protocol for the treatment of late-stage T. brucei gambiense that uses combination nifurtomox/eflornithine (NECT) was recently shown to have better safety and efficacy than eflornithine alone, while being easier to administer. This breakthrough represents the only new therapy for HAT since the approval of eflornithine. A number of research programs are on going to exploit the unusual biochemical pathways in the parasite to identify new targets for target based drug discovery programs. HTS efforts are also underway to discover new chemical entities through whole organism screening approaches. A number of inhibitors with anti-trypanosomal activity have been identified by both approaches, but none of the programs are yet at the stage of identifying a preclinical candidate. This dire situation underscores the need for continued effort to identify new chemical agents for the treatment of HAT.
Collapse
Affiliation(s)
- Robert T. Jacobs
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Bakela Nare
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, Texas 75390-9041
| |
Collapse
|
24
|
Smirlis D, Duszenko M, Ruiz AJ, Scoulica E, Bastien P, Fasel N, Soteriadou K. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasit Vectors 2010; 3:107. [PMID: 21083891 PMCID: PMC3136144 DOI: 10.1186/1756-3305-3-107] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/17/2010] [Indexed: 11/25/2022] Open
Abstract
Apoptosis is a normal component of the development and health of multicellular organisms. However, apoptosis is now considered a prerogative of unicellular organisms, including the trypanosomatids of the genera Trypanosoma spp. and Leishmania spp., causative agents of some of the most important neglected human diseases. Trypanosomatids show typical hallmarks of apoptosis, although they lack some of the key molecules contributing to this process in metazoans, like caspase genes, Bcl-2 family genes and the TNF-related family of receptors. Despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide. The components of the apoptotic execution machinery of these parasites are slowly coming into light, by targeting essential processes and pathways with different apoptogenic agents and inhibitors. This review will be confined to the events known to drive trypanosomatid parasites to apoptosis.
Collapse
Affiliation(s)
- Despina Smirlis
- Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, 127 Bas, Sofias Ave,, 11521 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
25
|
Obado SO, Bot C, Echeverry MC, Bayona JC, Alvarez VE, Taylor MC, Kelly JM. Centromere-associated topoisomerase activity in bloodstream form Trypanosoma brucei. Nucleic Acids Res 2010; 39:1023-33. [PMID: 20864447 PMCID: PMC3035458 DOI: 10.1093/nar/gkq839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Topoisomerase-II accumulates at centromeres during prometaphase, where it resolves the DNA catenations that represent the last link between sister chromatids. Previously, using approaches including etoposide-mediated topoisomerase-II cleavage, we mapped centromeric domains in trypanosomes, early branching eukaryotes in which chromosome segregation is poorly understood. Here, we show that in bloodstream form Trypanosoma brucei, RNAi-mediated depletion of topoisomerase-IIα, but not topoisomerase-IIβ, results in the abolition of centromere-localized activity and is lethal. Both phenotypes can be rescued by expression of the corresponding enzyme from T. cruzi. Therefore, processes which govern centromere-specific topoisomerase-II accumulation/activation have been functionally conserved within trypanosomes, despite the long evolutionary separation of these species and differences in centromeric DNA organization. The variable carboxyl terminal region of topoisomerase-II has a major role in regulating biological function. We therefore generated T. brucei lines expressing T. cruzi topoisomerase-II truncated at the carboxyl terminus and examined activity at centromeres after the RNAi-mediated depletion of the endogenous enzyme. A region necessary for nuclear localization was delineated to six residues. In other organisms, sumoylation of topoisomerase-II has been shown to be necessary for regulated chromosome segregation. Evidence that we present here suggests that sumoylation of the T. brucei enzyme is not required for centromere-specific cleavage activity.
Collapse
Affiliation(s)
- Samson O Obado
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Steverding D, Wang X. Evaluation of anti-sleeping-sickness drugs and topoisomerase inhibitors in combination on Trypanosoma brucei. J Antimicrob Chemother 2009; 63:1293-5. [PMID: 19336455 DOI: 10.1093/jac/dkp120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Merschjohann K, Steverding D. In vitro trypanocidal activity of the anti-helminthic drug niclosamide. Exp Parasitol 2008; 118:637-40. [DOI: 10.1016/j.exppara.2007.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 11/22/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
28
|
Identification of novel antipoxviral agents: mitoxantrone inhibits vaccinia virus replication by blocking virion assembly. J Virol 2007; 81:13392-402. [PMID: 17928345 DOI: 10.1128/jvi.00770-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bioterror threat of a smallpox outbreak in an unvaccinated population has mobilized efforts to develop new antipoxviral agents. By screening a library of known drugs, we identified 13 compounds that inhibited vaccinia virus replication at noncytotoxic doses. The anticancer drug mitoxantrone is unique among the inhibitors identified in that it has no apparent impact on viral gene expression. Rather, it blocks processing of viral structural proteins and assembly of mature progeny virions. The isolation of mitoxantrone-resistant vaccinia strains underscores that a viral protein is the likely target of the drug. Whole-genome sequencing of mitoxantrone-resistant viruses pinpointed missense mutations in the N-terminal domain of vaccinia DNA ligase. Despite its favorable activity in cell culture, mitoxantrone administered intraperitoneally at the maximum tolerated dose failed to protect mice against a lethal intranasal infection with vaccinia virus.
Collapse
|
29
|
Hoet S, Pieters L, Muccioli GG, Habib-Jiwan JL, Opperdoes FR, Quetin-Leclercq J. Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds. JOURNAL OF NATURAL PRODUCTS 2007; 70:1360-3. [PMID: 17637068 DOI: 10.1021/np070038q] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fractionation of an antitrypanosomal lipophilic leaf extract from Strychnos spinosa led to the isolation of eight triterpenoids and sterols in this plant part for the first time. Two of these were found to possess in vitro antitrypanosomal activity, namely, saringosterol (14) and 24-hydroperoxy-24-vinylcholesterol (15), with IC(50) values of 7.8 +/- 1.2 and 3.2 +/- 1.2 microM, respectively. The latter compound was isolated from a plant source for the first time. A comparative study on the antitrypanosomal activity of the isolated triterpenoids and sterols and some related compounds has indicated that the presence of an oxygenated function at C-28 or an oxygenated side chain at C-17 seems to be important for the antitrypanosomal activity of triterpenoids and sterols, respectively.
Collapse
Affiliation(s)
- Sara Hoet
- Laboratoire de Pharmacognosie, Unité d'Analyse Chimique et Physico-Chimique des Médicaments et Pharmacognosie, Université Catholique de Louvain, UCL 72.30-CHAM, Avenue E. Mounier 72, B-1200 Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Balaña-Fouce R, Redondo CM, Pérez-Pertejo Y, Díaz-González R, Reguera RM. Targeting atypical trypanosomatid DNA topoisomerase I. Drug Discov Today 2006; 11:733-40. [PMID: 16846801 DOI: 10.1016/j.drudis.2006.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 04/21/2006] [Accepted: 06/16/2006] [Indexed: 11/26/2022]
Abstract
Tropical diseases produced by kinetoplastid protozoa are among humanity's costliest banes, owing to high mortality and the economic burden resulting from morbidity. Drug resistant strains of parasites, together with insecticide-resistant vectors, are contributing to their increased prevalence in the developing world. Their extension now threatens industrialized countries because of opportunistic infections in immuno-compromised individuals. Current chemotherapy is expensive, has undesirable side effects and, in many patients, is only marginally effective. Based on the clinical success of camptothecin derivatives as anticancer agents, DNA topoisomerases have been identified as targets for drug development. The substantial differences in homology between trypanosome and leishmania DNA topoisomerase IB compared with the human form provides a new lead in the study of the structural determinants that can be targeted.
Collapse
Affiliation(s)
- Rafael Balaña-Fouce
- Department of Pharmacology and Toxicology, University of León, Campus de Vegazana s/n 24071 León, Spain.
| | | | | | | | | |
Collapse
|
31
|
Merschjohann K, Steverding D. In vitro growth inhibition of bloodstream forms of Trypanosoma brucei and Trypanosoma congolense by iron chelators. KINETOPLASTID BIOLOGY AND DISEASE 2006; 5:3. [PMID: 16914038 PMCID: PMC1563472 DOI: 10.1186/1475-9292-5-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 08/16/2006] [Indexed: 12/02/2022]
Abstract
African trypanosomes exert significant morbidity and mortality in man and livestock. Only a few drugs are available for the treatment of trypanosome infections and therefore, the development of new anti-trypanosomal agents is required. Previously it has been shown that bloodstream-form trypanosomes are sensitive to the iron chelator deferoxamine. In this study the effect of 13 iron chelators on the growth of Trypanosoma brucei, T. congolense and human HL-60 cells was tested in vitro. With the exception of 2 compounds, all chelators exhibited anti-trypanosomal activities, with 50% inhibitory concentration (IC50) values ranging between 2.1 – 220 μM. However, the iron chelators also displayed cytotoxicity towards human HL-60 cells and therefore, only less favourable selectivity indices compared to commercially available drugs. Interfering with iron metabolism may be a new strategy in the treatment of trypanosome infections. More specifically, lipophilic iron-chelating agents may serve as lead compounds for novel anti-trypanosomal drug development.
Collapse
Affiliation(s)
- Karin Merschjohann
- Department of Parasitology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Dietmar Steverding
- Department of Parasitology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
32
|
Abstract
Trypanosomes are the causative agents of Chagas' disease in Central and South America and sleeping sickness in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which were developed > 30 years ago. In addition, these drugs display undesirable toxic side effects and the emergence of drug-resistant trypanosomes has been reported. Therefore, the development of new drugs in the treatment of Chagas' disease and sleeping sickness is urgently required. This article summarises the recent progress in identifying novel lead compounds for antitrypanosomal chemotherapy. Particular emphasis is placed on those agents showing promising, selective antitrypanosomal activity.
Collapse
Affiliation(s)
- Dietmar Steverding
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 TJ7, UK.
| | | |
Collapse
|
33
|
Reguera RM, Redondo CM, Gutierrez de Prado R, Pérez-Pertejo Y, Balaña-Fouce R. DNA topoisomerase I from parasitic protozoa: A potential target for chemotherapy. ACTA ACUST UNITED AC 2006; 1759:117-31. [PMID: 16757380 DOI: 10.1016/j.bbaexp.2006.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/22/2006] [Accepted: 03/30/2006] [Indexed: 11/28/2022]
Abstract
The growing occurrence of drug resistant strains of unicellular prokaryotic parasites, along with insecticide-resistant vectors, are the factors contributing to the increased prevalence of tropical diseases in underdeveloped and developing countries, where they are endemic. Malaria, cryptosporidiosis, African and American trypanosomiasis and leishmaniasis threaten human beings, both for the high mortality rates involved and the economic loss resulting from morbidity. Due to the fact that effective immunoprophylaxis is not available at present; preventive sanitary measures and pharmacological approaches are the only sources to control the undesirable effects of such diseases. Current anti-parasitic chemotherapy is expensive, has undesirable side effects or, in many patients, is only marginally effective. Under this point of view molecular biology techniques and drug discovery must walk together in order to find new targets for chemotherapy intervention. The identification of DNA topoisomerases as a promising drug target is based on the clinical success of camptothecin derivatives as anticancer agents. The recent detection of substantial differences between trypanosome and leishmania DNA topoisomerase IB with respect to their homologues in mammals has provided a new lead in the study of the structural determinants that can be effectively targeted. The present report is an up to date review of the new findings on type IB DNA topoisomerase in unicellular parasites and the role of these enzymes as targets for therapeutic agents.
Collapse
Affiliation(s)
- R M Reguera
- Dpto. Farmacología y Toxicología (INTOXCAL), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | | | | | | |
Collapse
|
34
|
Dardonville C. Recent advances in antitrypanosomal chemotherapy: patent literature 2002 – 2004. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.9.1241] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|