1
|
The Inflammatory Effects of Dietary Lipids Regulate Growth of Parasites during Visceral Leishmaniasis. mSphere 2021; 6:e0042321. [PMID: 34259561 PMCID: PMC8386445 DOI: 10.1128/msphere.00423-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Visceral leishmaniasis is a potentially fatal disease caused by the protozoon Leishmania donovani or L. infantum (Li). Although previous studies revealed that high lipid intake reduces parasite burdens in Leishmania donovani-infected mice, the specific contributions of dietary lipids to Li-associated pathogenesis are not known. To address this, we evaluated parasite growth, liver pathology, and transcriptomic signatures in Li-infected BALB/c mice fed either a control, high-fat, high-cholesterol, or high-fat–high-cholesterol diet. Using quantitative PCR (qPCR), we observed significantly reduced liver parasite burdens in mice fed the high-fat–high-cholesterol diet compared to mice fed the control diet. In contrast to the liver, parasite expansion occurred earlier in the spleens of mice fed the experimental diets. Histological examination revealed an intense inflammatory cell infiltrate in livers predominantly composed of neutrophils caused by the high-fat–high-cholesterol diet specifically. After 8 weeks of infection (12 weeks of diet), Illumina microarrays revealed significantly increased expression of transcripts belonging to immune- and angiogenesis-related pathways in livers of both uninfected and Li-infected mice fed the high-fat–high-cholesterol diet. These data suggest that increased fat and cholesterol intake prior to Li infection leads to a hepatic inflammatory environment and thus reduces the parasite burden in the liver. Defining inflammatory signatures as well as pathology in the liver may reveal opportunities to modify the therapeutic approach to Li infection. IMPORTANCE Leishmaniasis is a spectrum of diseases caused by Leishmania species protozoa that is most common in warm climates, coinciding with impoverished regions. Visceral leishmaniasis is a potentially fatal disease in which parasites infect reticuloendothelial organs and cause progressive wasting and immunocompromise. The distribution and demographics of visceral leishmaniasis have changed over recent years, coinciding with modernizing societies and the increased availability of Western diets rich in lipid content. We report here that increased dietary fat and cholesterol intake affected disease pathogenesis by increasing inflammation and reducing localized parasite burdens in the liver. These diet-induced changes in disease pathogenesis might explain in part the changing epidemiology of visceral leishmaniasis. A relationship between diet and inflammatory responses may occur in leishmaniasis and other microbial or immune-mediated diseases, possibly revealing opportunities to modify the therapeutic approach to microbial infections.
Collapse
|
2
|
Qu Z, Jin X, Wang Y, Yang Y, Yang Li, Bai X, Yang Y, Xu N, Wang X, Liu M. Effect of recombinant serine protease from newborn larval stage of Trichinella spiralis on 2,4,6-trinitrobenzene sulfonic acid-induced experimental colitis in mice. Acta Trop 2020; 211:105553. [PMID: 32562622 DOI: 10.1016/j.actatropica.2020.105553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/25/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex immune-mediated disease of gastrointestinal tract that is mainly driven by Th1/Th17 immune response. "Helminth therapy" has emerged, and helminth-derived immunoregulatory molecules are being used as safe and new therapeutic antigens for IBD. Recombinant serine protease (SP) from newborn Trichinella spiralis (T. spiralis) larvae (NBL) was expressed and purified. BALB/c mice were immunized with NBL-SP at 100 µg three times at an interval of 5 days. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) administration. The disease activity index (DAI) and macroscopic and microscopic scores of the colon were assessed to identify the effect of NBL-SP on experimental colitis. Cytokine production in the serum was analysed by meso scale discovery (MSD). Cytokine production in the colon was detected by ELISA. CD4+T cell differentiation was measured by flow cytometry. NBL-SP alleviated TNBS-induced colitis in mice. The DAI, macroscopic and microscopic scores and colon length all showed a positive intervention effect of NBL-SP on experimental colitis. NBL-SP can weaken the increase in IFN-γ, TNF-α and IL-17 production as well as CD4+ IFN-γ+T cell and CD4+IL-17+T cell populations induced by colitis. Furthermore, the levels of Th2-related cytokines (IL-4, IL-5) and regulatory cytokines (IL-10, TGF-β) were elevated meanwhile the ratio of regulatory T cells (Tregs) and CD4+ IL-4 + T cells were increased by NBL-SP. NBL-SP of T. spiralis had a potential protective effect against IBD. NBL-SP skewed the Th1 and Th17-mediated response towards the Th2 and Treg response.
Collapse
|
3
|
Pereira L, Abbehusen M, Teixeira C, Cunha J, Nascimento IP, Fukutani K, dos-Santos W, Barral A, de Oliveira CI, Barral-Netto M, Soto M, Brodskyn CI. Vaccination with Leishmania infantum acidic ribosomal P0 but not with nucleosomal histones proteins controls Leishmania infantum infection in hamsters. PLoS Negl Trop Dis 2015; 9:e0003490. [PMID: 25642946 PMCID: PMC4313940 DOI: 10.1371/journal.pntd.0003490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
Background Several intracellular Leishmania antigens have been identified in order to find a potential vaccine capable of conferring long lasting protection against Leishmania infection. Histones and Acid Ribosomal proteins are already known to induce an effective immune response and have successfully been tested in the cutaneous leishmaniasis mouse model. Here, we investigate the protective ability of L. infantum nucleosomal histones (HIS) and ribosomal acidic protein P0 (LiP0) against L. infantum infection in the hamster model of visceral leishmaniasis using two different strategies: homologous (plasmid DNA only) or heterologous immunization (plasmid DNA plus recombinant protein and adjuvant). Methodology/Principal Findings Immunization with both antigens using the heterologous strategy presented a high antibody production level while the homologous strategy immunized group showed predominantly a cellular immune response with parasite load reduction. The pcDNA-LiP0 immunized group showed increased expression ratio of IFN-γ/IL-10 and IFN-γ/TGF-β in the lymph nodes before challenge. Two months after infection hamsters immunized with the empty plasmid presented a pro-inflammatory immune response in the early stages of infection with increased expression ratio of IFN-γ/IL-10 and IFN-γ/TGF-β, whereas hamsters immunized with pcDNA-HIS presented an increase only in the ratio IFN-γ/ TGF-β. On the other hand, hamsters immunized with LiP0 did not present any increase in the IFN-γ/TGF-β and IFN-γ/IL-10 ratio independently of the immunization strategy used. Conversely, five months after infection, hamsters immunized with HIS maintained a pro-inflammatory immune response (ratio IFN-γ/ IL-10) while pcDNA-LiP0 immunized hamsters continued showing a balanced cytokine profile of pro and anti-inflammatory cytokines. Moreover we observed a significant reduction in parasite load in the spleen, liver and lymph node in this group compared with controls. Conclusions/Significance Our results suggest that vaccination with L. infantum LiP0 antigen administered in a DNA formulation could be considered a potential component in a vaccine formulation against visceral leishmaniasis. Visceral leishmaniasis caused by Leishmania infantum is the most severe form of leishmaniasis. The disease is fatal if not treated and there is no vaccine available for human use. In the search for potential antigens, the protective ability of conserved parasite protein families such as L. infantum histones (HIS) and acidic ribosomal (LiP0) antigens were successfully tested in the mouse model of cutaneous leishmaniasis. Here, we evaluate HIS and LiP0 antigens using two different immunization strategies in the hamster model of visceral leishmaniasis. Hamsters are highly susceptible to L. infantum infection and we demonstrate that immunization with LiP0, but not HIS, protects against the fatal outcome of visceral leishmaniasis. Immunization with LiP0 was able to induce an increased expression of IFN-γ in detriment of IL-10 and TGF-β in the draining lymph node before infection creating an inhospitable environment for parasite growth. Following challenge, a reduced parasite load in the lymph node, spleen and liver of LiP0 immunized hamsters was detected five months after challenge. These findings suggest that LiP0 used in a DNA formulation could be considered a potential component in a vaccine formulation against visceral leishmaniasis.
Collapse
Affiliation(s)
- Lais Pereira
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
| | | | | | - Jurema Cunha
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
| | | | | | | | - Aldina Barral
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Bahia, Brazil
- Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Camila Indiani de Oliveira
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
- Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Bahia, Brazil
- Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Manoel Soto
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Madrid, Spain
| | - Cláudia Ida Brodskyn
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
- Instituto de Investigação em Imunologia, São Paulo, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Bahia, Brazil
- * E-mail:
| |
Collapse
|
4
|
Daoudaki M, Diakou A, Frydas S, Fouzas I, Karagounp E, Vavatsi N, Haralabidis S. Vaccination with Trichinella Spirallis Antigens Increases CD8+ Peripheral T Cells and Enhances the TH2 Immune Response in Leishmania Infantum Challenged MICE. Int J Immunopathol Pharmacol 2009; 22:169-74. [DOI: 10.1177/039463200902200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study we investigate the effect of Trichinella spiralis vaccination on immune responses elicited in BALB/c mice challenged subcutaneously with 0.5 ×106 of Leishmania infantum promastigotes. Secretion of specific anti- L. infantum antibodies and changes in the number of CD4+, CD8+ T cell and CD19+ B cells in the peripheral blood were tested for the evaluation of immune responses. Immunization with low amounts of T. spiralis antigens induced depression in anti- Leishmania specific antibodies of the IgG1 isotype, while no changes in the number of CD4+ and CD8+ T cell subpopulations or CD19+ B cells were observed. In contrast, high amounts of T. spiralis antigens induced an enhancement in anti- Leishmania specific antibodies of total IgG and IgGl isotype, increase of CD8+ T cell number and activation of CD19+ B cells, indicated by the co-expression of CD69 marker. Our results suggest that immunization with a certain dose of T. spiralis antigens in experimentally challenged mice with L. infantum leads to an increase of peripheral CD8+ T cells which are responsible for the control of L. infantum infection, although a simultaneous enhancement in Th2-type of immune response is also observed.
Collapse
Affiliation(s)
| | - A. Diakou
- Laboratory of Parasitology and Parasitic Diseases, Veterinary Faculty, Aristotle University, Thessaloniki
| | - S. Frydas
- Laboratory of Parasitology and Parasitic Diseases, Veterinary Faculty, Aristotle University, Thessaloniki
| | | | - E. Karagounp
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - S. Haralabidis
- Laboratory of Parasitology and Parasitic Diseases, Veterinary Faculty, Aristotle University, Thessaloniki
| |
Collapse
|