1
|
Kim JY, Yi MH, Yong TS. Allergen-like Molecules from Parasites. Curr Protein Pept Sci 2020; 21:186-202. [DOI: 10.2174/1389203720666190708154300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/02/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023]
Abstract
Parasite infections modulate immunologic responses, and the loss of parasite infections in the
last two to three decades might explain the increased prevalence of allergic diseases in developed countries.
However, parasites can enhance allergic responses. Parasites contain or release allergen-like molecules
that induce the specific immunoglobulin, IgE, and trigger type-2 immune responses. Some parasites
and their proteins, such as Anisakis and Echinococcus granulosus allergens, act as typical allergens.
A number of IgE-binding proteins of various helminthic parasites are cross-reactive to other environmental
allergens, which cause allergic symptoms or hamper accurate diagnosis of allergic diseases. The
cross-reactivity is based on the fact that parasite proteins are structurally homologous to common environmental
allergens. In addition, IgE-binding proteins of parasites might be useful for developing vaccines
to prevent host re-infection. This review discusses the functions of the IgE-biding proteins of parasites.
Collapse
Affiliation(s)
- Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
2
|
González-Fernández J, Alguacil-Guillén M, Cuéllar C, Daschner A. Possible Allergenic Role of Tropomyosin in Patients with Adverse Reactions after Fish Intake. Immunol Invest 2018; 47:416-429. [PMID: 29578823 DOI: 10.1080/08820139.2018.1451882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In a recent case report, patient's anti-fish tropomyosin IgE was associated with gastrointestinal symptoms. We aimed to demonstrate on a wider scale that the panallergen tropomyosin should not be limited to invertebrate species and that clinically relevant reactions could be elicited by vertebrate tropomyosin. On the whole, 19 patients with adverse reactions after fish intake and showing negative skin tests with commercial fish extracts were included. Fish tropomyosin was recognized by 10/19 patients' IgE by immunoblotting. All patients with gastrointestinal complaints after fish intake (6/6) showed an IgE band matching with tropomyosin. Cod, albacore, and swordfish tropomyosins were recognized by most patients although 3/10 patients did not claim adverse reactions to these fish species. Immunoblotting with a battery of antigens from different fish species have a high yield of positivity at a band matching with tropomyosin molecular weight, even if they have not been claimed to be causative agents of symptoms. Tropomyosin is therefore a good candidate to be investigated as a clinically relevant fish allergen in patients who report adverse reactions after fish intake.
Collapse
Affiliation(s)
- Juan González-Fernández
- a Departamento de Microbiología y Parasitología, Facultad de Farmacia , Universidad Complutense de Madrid (UCM) , Madrid , Spain
| | - Marina Alguacil-Guillén
- a Departamento de Microbiología y Parasitología, Facultad de Farmacia , Universidad Complutense de Madrid (UCM) , Madrid , Spain
| | - Carmen Cuéllar
- a Departamento de Microbiología y Parasitología, Facultad de Farmacia , Universidad Complutense de Madrid (UCM) , Madrid , Spain
| | - Alvaro Daschner
- b Servicio de Alergia. Instituto de Investigación Sanitaria - Hospital Universitario de La Princesa , Madrid , Spain
| |
Collapse
|
3
|
Mattison CP, Khurana T, Tarver MR, Florane CB, Grimm CC, Pakala SB, Cottone CB, Riegel C, Bren-Mattison Y, Slater JE. Cross-reaction between Formosan termite (Coptotermes formosanus) proteins and cockroach allergens. PLoS One 2017; 12:e0182260. [PMID: 28767688 PMCID: PMC5540505 DOI: 10.1371/journal.pone.0182260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/14/2017] [Indexed: 11/30/2022] Open
Abstract
Cockroach allergens can lead to serious allergy and asthma symptoms. Termites are evolutionarily related to cockroaches, cohabitate in human dwellings, and represent an increasing pest problem in the United States. The Formosan subterranean termite (Coptotermes formosanus) is one of the most common species in the southern United States. Several assays were used to determine if C. formosanus termite proteins cross-react with cockroach allergens. Expressed sequence tag and genomic sequencing results were searched for homology to cockroach allergens using BLAST 2.2.21 software. Whole termite extracts were analyzed by mass-spectrometry, immunoassay with IgG and scFv antibodies to cockroach allergens, and human IgE from serum samples of cockroach allergic patients. Expressed sequence tag and genomic sequencing results indicate greater than 60% similarity between predicted termite proteins and German and American cockroach allergens, including Bla g 2/Per a 2, Bla g 3/Per a 3, Bla g 5, Bla g 6/Per a 6, Bla g 7/Per a 7, Bla g 8, Per a 9, and Per a 10. Peptides from whole termite extract were matched to those of the tropomyosin (Bla g 7), arginine kinase (Per a 9), and myosin (Bla g 8) cockroach allergens by mass-spectrometry. Immunoblot and ELISA testing revealed cross-reaction between several proteins with IgG and IgE antibodies to cockroach allergens. Several termite proteins, including the hemocyanin and tropomyosin orthologs of Blag 3 and Bla g 7, were shown to crossreact with cockroach allergens. This work presents support for the hypothesis that termite proteins may act as allergens and the findings could be applied to future allergen characterization, epitope analysis, and clinical studies.
Collapse
Affiliation(s)
- Christopher P. Mattison
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Taruna Khurana
- Division of Vaccines and Related Products Applications, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Matthew R. Tarver
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Christopher B. Florane
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Casey C. Grimm
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Suman B. Pakala
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Carrie B. Cottone
- New Orleans Mosquito, Termite and Rodent Control Board, New Orleans, Louisiana, United States of America
| | - Claudia Riegel
- New Orleans Mosquito, Termite and Rodent Control Board, New Orleans, Louisiana, United States of America
| | | | - Jay E. Slater
- Division of Bacterial, Parasitic and Allergenic Products, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
4
|
Allergenicity of vertebrate tropomyosins: Challenging an immunological dogma. Allergol Immunopathol (Madr) 2017; 45:297-304. [PMID: 27789064 DOI: 10.1016/j.aller.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022]
Abstract
With the exception of tilapia tropomyosin, other anecdotic reports of tropomyosin recognition of vertebrate origin are generally not accompanied by clinical significance and a dogmatic idea is generally accepted about the inexistence of allergenicity of vertebrate tropomyosins, based mainly on sequence similarity evaluations with human tropomyosins. Recently, a specific work-up of a tropomyosin sensitised patient with seafood allergy, demonstrated that the IgE-recognition of tropomyosin from different fish species can be clinically relevant. We hypothesise that some vertebrate tropomyosins could be relevant allergens. The hypothesis is based on the molecular evolution of the proteins and it was tested by in silico methods. Fish, which are primitive vertebrates, could have tropomyosins similar to those of invertebrates. If the hypothesis is confirmed, tropomyosin should be included in different allergy diagnosis tools to improve the medical protocols and management of patients with digestive or cutaneous symptoms after fish intake.
Collapse
|
5
|
Koeberl M, Kamath SD, Saptarshi SR, Smout MJ, Rolland JM, O'Hehir RE, Lopata AL. Auto-induction for high yield expression of recombinant novel isoallergen tropomyosin from King prawn (Melicertus latisulcatus) for improved diagnostics and immunotherapeutics. J Immunol Methods 2014; 415:6-16. [PMID: 25450004 DOI: 10.1016/j.jim.2014.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 01/18/2023]
Abstract
Food allergies are increasing worldwide, demonstrating a considerable public health concern. Shellfish allergy is one of the major food groups causing allergic sensitization among adults and children, affecting up to 2% of the general world population. Tropomyosin (TM) is the major allergen in shellfish and frequently used in the diagnosis of allergic sensitization and the detection of cross-contaminated food. To improve and establish better and more sensitive diagnostics for allergies and immunotherapeutics, large quantities of pure allergens are required. To establish a reproducible method for the generation of pure recombinant tropomyosin we utilized in this study different Escherichia coli strains (NM522, TOP10 and BL21(DE3)RIPL). In addition, isopropyl-β-D-thiogalactoside (IPTG) induction was compared with a novel auto-induction system to allow the generation of larger quantities of recombinant allergen. We demonstrated that the B-strain of E. coli is better for the expression of TM compared to the K-strain. Moreover, a higher yield could be achieved when using the auto-induction system, with up to 62 mg/l. High yield expressed recombinant TM from King prawn (KP) was compared to recombinant TM from Black tiger prawn (Pen m 1). We demonstrated that recombinant TM from KP and known isoallergen Pen m 1 have very similar molecular and immunological characteristics. Overall, we demonstrate that auto-induction can be used to express larger quantities of recombinant allergens for the development of diagnostic, to quantify allergens as well as immunotherapeutics employing isoallergens.
Collapse
Affiliation(s)
- Martina Koeberl
- Molecular Immunology Group, James Cook University, Townsville, QLD, Australia; Centre for Biodiscovery and Molecular Discovery of Therapeutics, James Cook University, Townsville, QLD, Australia; Comparative Genomic Centre, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Sandip D Kamath
- Molecular Immunology Group, James Cook University, Townsville, QLD, Australia; Centre for Biodiscovery and Molecular Discovery of Therapeutics, James Cook University, Townsville, QLD, Australia; Comparative Genomic Centre, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Shruti R Saptarshi
- Molecular Immunology Group, James Cook University, Townsville, QLD, Australia; Centre for Biodiscovery and Molecular Discovery of Therapeutics, James Cook University, Townsville, QLD, Australia; Comparative Genomic Centre, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Michael J Smout
- Centre for Biodiscovery and Molecular Discovery of Therapeutics, James Cook University, Townsville, QLD, Australia; Queensland Tropical Health Alliance, James Cook University, Cairns, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Jennifer M Rolland
- Department of Immunology, Monash University, Melbourne, Victoria, Australia; Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Robyn E O'Hehir
- Department of Immunology, Monash University, Melbourne, Victoria, Australia; Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Andreas L Lopata
- Molecular Immunology Group, James Cook University, Townsville, QLD, Australia; Centre for Biodiscovery and Molecular Discovery of Therapeutics, James Cook University, Townsville, QLD, Australia; Comparative Genomic Centre, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
| |
Collapse
|
6
|
Zhang H, Lu Y, Ushio H, Shiomi K. Development of sandwich ELISA for detection and quantification of invertebrate major allergen tropomyosin by a monoclonal antibody. Food Chem 2014; 150:151-7. [DOI: 10.1016/j.foodchem.2013.10.154] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 09/24/2013] [Accepted: 10/26/2013] [Indexed: 11/27/2022]
|
7
|
Fitzsimmons CM, Falcone FH, Dunne DW. Helminth Allergens, Parasite-Specific IgE, and Its Protective Role in Human Immunity. Front Immunol 2014; 5:61. [PMID: 24592267 PMCID: PMC3924148 DOI: 10.3389/fimmu.2014.00061] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/03/2014] [Indexed: 12/21/2022] Open
Abstract
The Th2 immune response, culminating in eosinophilia and IgE production, is not only characteristic of allergy but also of infection by parasitic worms (helminths). Anti-parasite IgE has been associated with immunity against a range of helminth infections and many believe that IgE and its receptors evolved to help counter metazoan parasites. Allergens (IgE-antigens) are present in only a small minority of protein families and known IgE targets in helminths belong to these same families (e.g., EF-hand proteins, tropomyosin, and PR-1 proteins). During some helminth infection, especially with the well adapted hookworm, the Th2 response is moderated by parasite-expressed molecules. This has been associated with reduced allergy in helminth endemic areas and worm infection or products have been proposed as treatments for allergic conditions. However, some infections (especially Ascaris) are associated with increased allergy and this has been linked to cross-reactivity between worm proteins (e.g., tropomyosins) and highly similar molecules in dust-mites and insects. The overlap between allergy and helminth infection is best illustrated in Anisakis simplex, a nematode that when consumed in under-cooked fish can be both an infective helminth and a food allergen. Nearly 20 molecular allergens have been isolated from this species, including tropomyosin (Ani s 3) and the EF-hand protein, Ani s troponin. In this review, we highlight aspects of the biology and biochemistry of helminths that may have influenced the evolution of the IgE response. We compare dominant IgE-antigens in worms with clinically important environmental allergens and suggest that arrays of such molecules will provide important information on anti-worm immunity as well as allergy.
Collapse
|
8
|
Soblik H, Younis AE, Mitreva M, Renard BY, Kirchner M, Geisinger F, Steen H, Brattig NW. Life cycle stage-resolved proteomic analysis of the excretome/secretome from Strongyloides ratti--identification of stage-specific proteases. Mol Cell Proteomics 2011; 10:M111.010157. [PMID: 21964353 PMCID: PMC3237078 DOI: 10.1074/mcp.m111.010157] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A wide range of biomolecules, including proteins, are excreted and secreted from helminths and contribute to the parasite's successful establishment, survival, and reproduction in an adverse habitat. Excretory and secretory proteins (ESP) are active at the interface between parasite and host and comprise potential targets for intervention. The intestinal nematode Strongyloides spp. exhibits an exceptional developmental plasticity in its life cycle characterized by parasitic and free-living generations. We investigated ESP from infective larvae, parasitic females, and free-living stages of the rat parasite Strongyloides ratti, which is genetically very similar to the human pathogen, Strongyloides stercoralis. Proteomic analysis of ESP revealed 586 proteins, with the largest number of stage-specific ESP found in infective larvae (196), followed by parasitic females (79) and free-living stages (35). One hundred and forty proteins were identified in all studied stages, including anti-oxidative enzymes, heat shock proteins, and carbohydrate-binding proteins. The stage-selective ESP of (1) infective larvae included an astacin metalloproteinase, the L3 Nie antigen, and a fatty acid retinoid-binding protein; (2) parasitic females included a prolyl oligopeptidase (prolyl serine carboxypeptidase), small heat shock proteins, and a secreted acidic protein; (3) free-living stages included a lysozyme family member, a carbohydrate-hydrolyzing enzyme, and saponin-like protein. We verified the differential expression of selected genes encoding ESP by qRT-PCR. ELISA analysis revealed the recognition of ESP by antibodies of S. ratti-infected rats. A prolyl oligopeptidase was identified as abundant parasitic female-specific ESP, and the effect of pyrrolidine-based prolyl oligopeptidase inhibitors showed concentration- and time-dependent inhibitory effects on female motility. The characterization of stage-related ESP from Strongyloides will help to further understand the interaction of this unique intestinal nematode with its host.
Collapse
Affiliation(s)
- Hanns Soblik
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|