1
|
Viana JL, da Silva JS, de Mattos GC, Pinto MCC, Dutra LDS, Carvalho LLDA, Pinto JCCDS, Pinheiro VCS, Roque RA. Microencapsulation of Bacillus thuringiensis strains for the control of Aedes aegypti. Exp Parasitol 2023; 255:108654. [PMID: 37956783 DOI: 10.1016/j.exppara.2023.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
In this study, we investigated the microencapsulation of two strains of the entomopathogenic bacteria Bacillus thuringiensis (B. thuringiensis) (BtMA-750 and BtMA-1114), which are biopesticides of high toxicity for the mosquito vector Aedes aegypti. The encapsulation of different concentrations of microorganisms in starch microparticles was evaluated, and the inverse suspension polymerization technique was explored. It was possible to observe that the higher amounts of the biopesticide caused a slight decrease in the diameter of the particles; however, even when encapsulated, the biopesticide still presents an average diameter that is able to be consumed by the larvae of Aedes aegypti. Furthermore, it was noticed that the presence of both of the B. thuringiensis strains did not affect the thermal stability of the particles. The microencapsulated bacterial strains presented a high number of viable spores and preserved the expression of proteins with molecular masses corresponding to the insecticidal toxins Cry and Cyt, indicating that the encapsulation process was conducted satisfactorily. Finally, the encapsulated strains were tested against Ae. aegypti larvae and maintained 100% larval mortality even after 35 days. Therefore, microencapsulation of B. thuringiensis not only guarantees the bacterial activity, but also prolongs the action of the biopesticide. Collectively, such findings highlight the great potential of the new biopesticides, which may help to reduce the population indices of the mosquito vector Ae. aegypti via a sustainable and environment-friendly route.
Collapse
Affiliation(s)
- Juliete L Viana
- Universidade do Estado do Amazonas - UEA, Programa de Pós-graduação em Biodiversidade e Biotecnologia da Rede BIONORTE - PPG BIONORTE, Av. Carvalho Leal, 1777, Ed. Anexo, 4° andar, Cachoeirinha, Manaus, CEP 69065001, AM, Brazil.
| | - Joelma S da Silva
- Curso Ciências Naturais, Campus VII, Universidade Federal do Maranhão, Avenida Dr. José Anselmo, 2008, São Sebastião, Codó, CEP 65400-000, MA, Brazil
| | - Gabriela C de Mattos
- Programa de Engenharia Química/COPPE - Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP 21941-598, RJ, Brazil
| | - Martina C C Pinto
- Programa de Engenharia Química/COPPE - Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP 21941-598, RJ, Brazil
| | - Luciana da S Dutra
- Programa de Engenharia Química/COPPE - Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP 21941-598, RJ, Brazil
| | - Larissa L de A Carvalho
- Programa de Engenharia Química/COPPE - Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP 21941-598, RJ, Brazil
| | - José Carlos C da S Pinto
- Programa de Engenharia Química/COPPE - Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP 21941-598, RJ, Brazil
| | - Valéria Cristina S Pinheiro
- Laboratório de Entomologia Médica, Departamento de Química e Biologia, Universidade Estadual do Maranhão Campus Caxias, Praça Duque de Caxias, s/n, Morro do Alecrim, Caxias, CEP 65604-380, MA, Brazil
| | - Rosemary A Roque
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Controle Biológico e Biotecnologia da Malária e Dengue, Manaus, CEP 69060-001, AM, Brazil
| |
Collapse
|
2
|
Santos SRN, Silva JSD, Souza MO, Souza HA, Pinheiro VCS. Relations between soil attributes and the abundance of Bacillus thurigiensis in the Cerrado of Maranhão state, Brazil. BRAZ J BIOL 2022; 82:e261840. [PMID: 35894350 DOI: 10.1590/1519-6984.261840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
The influence of abiotic factors on the abundance of microorganism populations in soil has been sparsely studied, especially regarding Bacillus thuringiensis (Bt) bacteria. Therefore, this research was aimed at analyzing the relationship between the chemical and textural characteristics of the soil of the Cerrado (savanna) of Maranhão State on the abundance of Bacillus thuringiensis. Soil samples were collected in different municipalities in eastern Maranhão: São Mateus do Maranhão, Alto Alegre, Coroatá, Timbiras and Codó. The soil samples were obtained in the 0-0.1 m layer for soil fertility and texture analysis. Then, in the same area for the isolation of Bt, 1 g of soil was collected. The colonies obtained in the isolation that featured morphological characteristics of Bacillus spp. were visualized under phase contrast microscopy. Principal component analysis, clustering and correlations were peformed. Results: The sand content correlated positively with the Bacillus thuringiensis index (iBt). The cluster analysis allowed for verifying that the soils not showed iBt in function of high concentrations of aluminum (Al) and potential acidity (H+Al). Considering as these attributes (Al and H+Al) alter the availability of P in the soil, the abundance of Bacillus thuringiensis may have been impaired by the deficiency of this element in the environment. Conclusion: Bt has correlations with soil texture, and high concentrations of aluminum and potential acidity in the soil influencing the permanence of Bacillus thuringiensis in Maranhão eastern Cerrado.
Collapse
Affiliation(s)
- S R N Santos
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Biodiversidade, Ambiente e Saúde, Caxias, MA, Brasil
| | - J Soares-da Silva
- Universidade Federal do Maranhão - UFMA, Centro de Ciências de Codó, Codó, MA, Brasil
| | - M Oda Souza
- Universidade Estadual do Piauí, Centro de Ciências Agrárias, Teresina, PI, Brasil
| | - H A Souza
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Meio-Norte, Teresina, PI, Brasil
| | - V C S Pinheiro
- Universidade Estadual do Maranhão, Departamento de Química e Biologia, Caxias, MA, Brasil
| |
Collapse
|
3
|
Isolation, molecular characterization and pathogenicity of native Bacillus thuringiensis, from Ethiopia, against the tomato leafminer, Tuta absoluta: Detection of a new high lethal phylogenetic group. Microbiol Res 2021; 250:126802. [PMID: 34174672 DOI: 10.1016/j.micres.2021.126802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022]
Abstract
Tuta absoluta (tomato leafminer) is one of the devastating agricultural pest that attack mainly tomatoes. The continuous use of chemical pesticides is not affordable and poses a collateral damage to human and environmental health. This requires integrated pest management to reduce chemical pesticides. B. thuringiensis is a cosmopolitan, antagonistic soil bacterium used to control agricultural pests. In this study, effective Bt strains were screened from different sample sources based on their lepidopteran specific cry genes and larvicidal efficacy against tomato leafminer, T. absoluta under laboratory conditions. Of the 182 bacterial isolates, 55 (30 %) of isolates harbored parasporal protein crystals. Out of these, 34 (62 %) isolates possess one or more lepidopteran specific cry genes: 20 % of isolates positive for cry2, 18.2 % for cry9, 3.6 % for cry1, 16.4 % for cry2 + cry9, 1.8 % for cry1 + cry9, and 1.8 % for cry1 + cry2 + cry9. However, 21 (38.2 %) isolates did not show any lepidopteran specific cry genes. Isolates positive for cry genes showed 36.7-75 % and 46.7-98.3 % mortality against second and third instar larvae of the T. absoluta at the concentration of 108 colony forming units (CFUs) ml-1. Cry1 and cry1 plus other cry gene positive isolates were relatively more pathogenic against T. absoluta. However, third instar larvae of the T. absoluta was more susceptible than second instar larvae. Two of the isolates, AAUF6 and AAUMF9 were effective and scored LT50 values of 2.3 and 2.7 days and LC50 values of 3.4 × 103 and 4.15 × 103 CFUs ml-1 against the third instar larvae, respectively. The phylogenetic studies showed some congruence of groups with cry gene profiles and lethality level of isolates and very interestingly, we have detected a putative new phylogenetic group of Bt from Ethiopia.
Collapse
|
4
|
Vieira-Neta MRA, Soares-da-Silva J, Viana JL, Silva MC, Tadei WP, Pinheiro VCS. Strain of Bacillus thuringiensis from Restinga, toxic to Aedes (Stegomyia) aegypti (Linnaeus) (Diptera, Culicidae). BRAZ J BIOL 2020; 81:872-880. [PMID: 33053121 DOI: 10.1590/1519-6984.228790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022] Open
Abstract
Bacillus thuringiensis is the most commonly used entomopathogen in the control of Aedes aegypti, which is a vector for different etiological agents that cause serious infections in humans. Several studies aim to isolate strains of this bacterium from different environments, with the perspective of selecting isolates with larvicidal activity for mosquitoes. Aiming at the insecticidal action of B. thuringiensis, the present study aimed to prospect B. thuringiensis of restinga and mangrove soils from the state of Maranhão, Brazil, with toxic potential for use in the biological control of Ae. aegypti. Bioassays were performed to determine the entomopathogenic activity of the bacilli against Ae. aegypti and lethal concentrations (LC50 and CL90) were estimated after the tests. Polymerase Chain Reaction and SDS-PAGE techniques were performed to verify the gene and protein content of the isolates, respectively. The soil of the mangrove and restinga ecosystems showed potential for obtaining B. thuringiensis. This isolate, in addition to having proteins with molecular mass similar to the toxins Cry and Cyt, also presented several diptera-specific genes cry and cyt, demonstrating that it has high potential to be used in the biological control of Ae. aegypti.
Collapse
Affiliation(s)
- M R A Vieira-Neta
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Biodiversidade, Ambiente e Saúde - PPGBAS, Caxias, MA, Brasil
| | - J Soares-da-Silva
- Universidade Federal do Maranhão - UFMA, Coordenação de Ciências Naturais/Biologia, Codó, MA, Brasil
| | - J L Viana
- Universidade do Estado do Amazonas - UEA, Programa de Pós-graduação em Biodiversidade e Biotecnologia da Rede BIONORTE - PPG BIONORTE, Manaus, AM, Brasil
| | - M C Silva
- Universidade Estadual do Maranhão - UEMA, Centro de Estudos Superiores de Caxias - CESC, Departamento de Química e Biologia, Caxias, MA, Brasil
| | - W P Tadei
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Malária e Dengue, Programa de Pós-graduação em Entomologia, Manaus, AM, Brasil
| | - V C S Pinheiro
- Universidade Estadual do Maranhão - UEMA, Centro de Estudos Superiores de Caxias - CESC, Departamento de Química e Biologia, Laboratório de Entomologia Médica - LABEM, Caxias, MA, Brasil
| |
Collapse
|
5
|
Soares-da-Silva J, Queirós SG, de Aguiar JS, Viana JL, Neta MDR, da Silva MC, Pinheiro VC, Polanczyk RA, Carvalho-Zilse GA, Tadei WP. Molecular characterization of the gene profile of Bacillus thuringiensis Berliner isolated from Brazilian ecosystems and showing pathogenic activity against mosquito larvae of medical importance. Acta Trop 2017; 176:197-205. [PMID: 28823909 DOI: 10.1016/j.actatropica.2017.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022]
Abstract
The occurrence of Aedes aegypti, Culex quinquefasciatus, and mosquitoes of the genus Anopheles potentiate the spread of several diseases, such as dengue, Zika, chikungunya, urban yellow fever, filariasis, and malaria, a situation currently existing in Brazil and in Latin America. Control of the disease vectors is the most effective tool for containing the transmission of the pathogens causing these diseases, and the bacterium Bacillus thuringiensis var. israelensis has been widely used and has shown efficacy over many years. However, new B. thuringiensis (Bt) strains with different gene combinations should be sought for use as an alternative to Bti and to prevent the resistant insects selected. Aiming to identify diversity in the Bt in different Brazilian ecosystems and to assess the pathogenicity of this bacterium to larvae of Ae. aegypti, C. quinquefasciatus, and Anopheles darlingi, Bt strains were obtained from the Amazon, Caatinga (semi-arid region), and Cerrado (Brazilian savanna) biomes and tested in pathogenicity bioassays in third-instar larvae of Ae. aegypti under controlled conditions in the laboratory. The isolates with larvicidal activity to larvae of Ae. aegypti were used in bioassays with the larvae of C. quinquefasciatus and An. darlingi and characterized according to the presence of 14 cry genes (cry1, cry2, cry4, cry10, cry11, cry24, cry32, cry44Aa, cry1Ab, cry4Aa, cry4Ba, cry10Aa, cry11Aa, and cry11Ba), six cyt genes (cyt1, cyt2, cyt1Aa, cyt1Ab, cyt2Aa and cyt2Ba), and the chi gene. Four hundred strains of Bt were isolated: 244 from insects, 85 from Amazon soil, and 71 from the Caatinga biome. These strains, in addition to the 153 strains isolated from Cerrado soil and obtained from the Entomopathogenic Bacillus Bank of Maranhão, were tested in bioassays with Ae. aegypti larvae. A total of 37 (6.7%) strains showed larvicidal activity, with positive amplification of the cry, cyt, and chi genes. The most frequently amplified genes were cry4Aa and cry4Ba, both occurring in 59.4% in these strains, followed by cyt1Aa and cyt2Aa, with 56.7% and 48% occurrence, respectively. Twelve (2.2%) strains that presented 100% mortality within 24h were used in bioassays to estimate the median lethal concentration (LC50) for Ae. aegypti larvae. Two strains (BtMA-690 and BtMA-1114) showed toxicity equal to that of the Bti standard strain, and the same LC50 value (0.003mg/L) was recorded for the three bacteria after 48h of exposure. Detection of the presence of the Bt strains that showed pathogenicity for mosquito larvae in the three biomes studied was possible. Therefore, these strains are promising for the control of insect vectors, particularly the BtMA-1114 strain, which presents a gene profile different from that of Bti but with the same toxic effect.
Collapse
|
6
|
Genome Sequence of the Mosquitocidal Bacillus thuringiensis Strain BR58, a Biopesticide Product Effective against the Coffee Berry Borer (Hypothenemus hampei). GENOME ANNOUNCEMENTS 2015; 3:3/6/e01232-15. [PMID: 26659669 PMCID: PMC4675934 DOI: 10.1128/genomea.01232-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus thuringiensis is an important microbial control agent against insect pests. The draft genome sequence of the Brazilian strain BR58 described here contains the insecticidal genes cry4A, cry4B, cry10A, cry11A, cry60A, cry60B, and cyt1A, which show toxicity to both Aedes aegypti and Hypothenemus hampei larvae.
Collapse
|
7
|
Characterisation of novel Bacillus thuringiensis isolates against Aedes aegypti (Diptera: Culicidae) and Ceratitis capitata (Diptera: Tephridae). J Invertebr Pathol 2014; 124:90-7. [PMID: 25433312 DOI: 10.1016/j.jip.2014.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 11/20/2022]
Abstract
Bacillus thuringiensis is successfully used in pest management strategies as an eco-friendly bioinsecticide. Isolation and identification of new strains with a wide variety of target pests is an ever growing field. In this paper, new B. thuringiensis isolates were investigated to search for original strains active against diptera and able to produce novel toxins that could be used as an alternative for the commercial H14 strain. Biochemical and molecular characterization revealed a remarkable diversity among the studied strains. Using the PCR method, cry4C/Da1, cry30Ea, cry39A, cry40 and cry54 genes were detected in four isolates. Three strains, BLB355, BLB196 and BUPM109, showed feeble activities against Aedes aegypti larvae. Interestingly, spore-crystal mixtures of BLB361, BLB30 and BLB237 were found to be active against Ceratitis capitata with an LC50 value of about 65.375, 51.735 and 42.972 μg cm(-2), respectively. All the studied strains exhibited important mortality levels using culture supernatants against C. capitata larvae. This suggests that these strains produce a wide range of soluble factors active against C. capitata larvae.
Collapse
|