1
|
Piyasiri SB, Senanayake S, Smaranayake N, Doh S, Iniguez E, Valenzuela JG, Kamhawi S, Karunaweera ND. Salivary antigens rPagSP02 and rPagSP06 are a reliable composite biomarker for evaluating exposure to Phlebotomus argentipes in Sri Lanka. Sci Rep 2024; 14:25863. [PMID: 39468289 PMCID: PMC11519893 DOI: 10.1038/s41598-024-77666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
Phlebotomus argentipes is the established vector of leishmaniasis in the Indian sub-continent. Antibodies to sand fly salivary antigens are biomarkers for vector-host exposure in leishmaniasis-endemic regions. Ph. argentipes transmits Leishmania donovani in Sri Lanka, primarily causing cutaneous leishmaniasis (CL). Our study compared the performance of salivary gland homogenate (SGH) from a lab-reared local strain of Ph. argentipes females to a composite recombinant salivary biomarker (rPagSP02 + rPagSP06) in a CL-endemic population. Sera from 546 healthy individuals, 30 CL patients, and 15 non-endemic individuals were collected. Western blot analysis of Ph. argentipes SGH identified immunogenic bands between 15 kDa and 67 kDa, with bands of predicted molecular weight ∼of 15 kDa (SP02) and ∼28-30 kDa (SP06) as the major antibody targets. Indirect ELISAs using SGH or rPagSP02 + rPagSP06 antigens showed high sensitivity (96.7%) and specificity (100%), detecting comparable seropositivity in endemic populations. rPagSP02 + rPagSP06 exhibited enhanced discriminatory ability, supported by a strong positive correlation (r = 0.869) with SGH. Our findings indicate that the composite rPagSP02 + rPagSP06 salivary biomarker effectively identifies Ph. argentipes exposure in individuals living in Sri Lanka, showing promising potential for use in surveillance. These findings should be further validated to confirm the epidemiological applications in leishmaniasis-endemic regions.
Collapse
Affiliation(s)
- Sachee Bhanu Piyasiri
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Sanath Senanayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Nilakshi Smaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Serena Doh
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | - Eva Iniguez
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | - Jesus Gilberto Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | | |
Collapse
|
2
|
Piyasiri SB, Senanayake S, Samaranayake N, Doh S, Iniguez E, Kamhawi S, Karunaweera ND. rPagSP02+rPagSP06 recombinant salivary antigen is a reliable biomarker for evaluating exposure to Phlebotomus argentipes in Sri Lanka. RESEARCH SQUARE 2024:rs.3.rs-4633976. [PMID: 39070615 PMCID: PMC11276025 DOI: 10.21203/rs.3.rs-4633976/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Phlebotomus argentipes is the established vector of leishmaniasis in the Indian sub-continent. Antibodies to sand fly salivary antigens are biomarkers for vector-host exposure in leishmaniasis-endemic regions. Ph. argentipes transmits Leishmania donovani in Sri Lanka, primarily causing cutaneous leishmaniasis (CL). Our study compared the performance of salivary gland homogenate (SGH) from a lab-reared local strain of Ph. argentipes females to a composite recombinant salivary biomarker (rPagSP02 + rPagSP06) in a CL-endemic population. Sera from 546 healthy individuals, 30 CL patients, and 15 non-endemic individuals were collected. Western blot analysis of Ph. argentipes SGH identified immunogenic bands between 15 kDa and 67 kDa, with bands of predicted molecular weight õf 15 kDa (SP02) and ~28-30 kDa (SP06) as the major antibody targets. Indirect ELISAs using SGH or rPagSP02 + rPagSP06 antigens showed high sensitivity (96.7%) and specificity (100%), detecting comparable seropositivity in endemic populations. rPagSP02 + rPagSP06 exhibited enhanced discriminatory ability, supported by a strong positive correlation (r = 0.869) with SGH. Our findings indicate that the composite rPagSP02 + rPagSP06 salivary biomarker effectively identifies Ph. argentipes exposure in individuals living in Sri Lanka, showing promising potential for use in surveillance. These findings should be further validated to confirm the epidemiological applications in leishmaniasis-endemic regions.
Collapse
Affiliation(s)
- Sachee Bhanu Piyasiri
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Sanath Senanayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | | | | | | | | |
Collapse
|
3
|
Sumova P, Sanjoba C, Willen L, Polanska N, Matsumoto Y, Noiri E, Paul SK, Ozbel Y, Volf P. PpSP32-like protein as a marker of human exposure to Phlebotomus argentipes in Leishmania donovani foci in Bangladesh. Int J Parasitol 2021; 51:1059-1068. [PMID: 34273394 PMCID: PMC8575019 DOI: 10.1016/j.ijpara.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
Phlebotomus argentipes is a sole vector of Leishmania donovani in the Indian subcontinent. 40% of humans in the study area have IgG antibodies against P. argentipes saliva. A correlation was found between IgG responses against P. argentipes saliva and rPagSP06. rPagSP06 is a valid antigen to measure human exposure to P. argentipes.
Phlebotomus argentipes is a predominant vector of Leishmania donovani, the protozoan parasite causing visceral leishmaniasis in the Indian subcontinent. In hosts bitten by P. argentipes, sand fly saliva elicits the production of specific anti-salivary protein antibodies. Here, we have utilised these antibodies as markers of human exposure to P. argentipes in a visceral leishmaniasis endemic area in Pabna district, Bangladesh. The use of whole salivary gland homogenate as an antigen to detect these antibodies has several limitations, therefore it is being superseded by the use of specific recombinant salivary proteins. We have identified three major P. argentipes salivary antigenic proteins recognised by sera of bitten humans, expressed them in a recombinant form (rPagSP04, rPagSP05 and rPagSP06) and tested their applicability in ELISA and immunoblot. One of them, PpSP32-like protein rPagSP06, was identified as the most promising antigen, showing highest resemblance and correlation with the IgG response to P. argentipes salivary gland homogenate. Furthermore, we have validated the applicability of rPagSP06 in a large cohort of 585 individuals and obtained a high correlation coefficient for anti-rPagSP06 and anti-P. argentipes saliva IgG responses. The anti-rPagSP06 and anti-P. argentipes salivary gland homogenate IgG responses followed a similar right-skewed distribution. This is the first report of screening human sera for anti-P. argentipes saliva antibodies using recombinant salivary protein. The rPagSP06 was proven to be a valid antigen for screening human sera for exposure to P. argentipes bites in a visceral leishmaniasis endemic area.
Collapse
Affiliation(s)
- Petra Sumova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic.
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Laura Willen
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic
| | - Nikola Polanska
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic
| | - Yoshitsugu Matsumoto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Eisei Noiri
- Hemodialysis and Apheresis, Nephrology 107 Lab, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shyamal Kumar Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2206, Bangladesh
| | - Yusuf Ozbel
- Department of Parasitology, Faculty of Medicine, Ege University, 35100 Bornova, Izmir, Turkey
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic
| |
Collapse
|
4
|
RNA-sequencing of the Nyssomyia neivai sialome: a sand fly-vector from a Brazilian endemic area for tegumentary leishmaniasis and pemphigus foliaceus. Sci Rep 2020; 10:17664. [PMID: 33077743 PMCID: PMC7572365 DOI: 10.1038/s41598-020-74343-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis encompasses a spectrum of diseases caused by a protozoan belonging to the genus Leishmania. The parasite is transmitted by the bite of sand flies, which inoculate the promastigote forms into the host’s skin while acquiring a blood meal. Nyssomyia neivai is one of the main vectors of tegumentary leishmaniasis (TL) in Brazil. Southeastern Brazil is an endemic region for TL but also overlaps with an endemic focus for pemphigus foliaceus (PF), also known as Fogo Selvagem. Salivary proteins of sand flies, specifically maxadilan and LJM11, have been related to pemphigus etiopathogenesis in the New World, being proposed as an environmental trigger for autoimmunity. We present a comprehensive description of the salivary transcriptome of the N. neivai, using deep sequencing achieved by the Illumina protocol. In addition, we highlight the abundances of several N. neivai salivary proteins and use phylogenetic analysis to compare with Old- and New-World sand fly salivary proteins. The collection of protein sequences associated with the salivary glands of N. neivai can be useful for monitoring vector control strategies as biomarkers of N. neivai, as well as driving vector-vaccine design for leishmaniasis. Additionally, this catalog will serve as reference to screen for possible antigenic peptide candidates triggering anti-Desmoglein-1 autoantibodies.
Collapse
|
5
|
Maryam Ghafari S, Ebrahimi S, Nateghi Rostami M, Bordbar A, Parvizi P. Comparative evaluation of salivary glands proteomes from wild Phlebotomus papatasi-proven vector of zoonotic cutaneous leishmaniasis in Iran. Vet Med Sci 2020; 7:362-369. [PMID: 32969601 PMCID: PMC8025609 DOI: 10.1002/vms3.368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/01/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Zoonotic Cutaneous Leishmaniasis is increasing in the world and Phlebotomus papatasi as a proven vector was considered in different aspects for disease control. Sandfly saliva contains proteins which provoke host immune system. These proteins are candidates for developing vaccines. OBJECTIVES The main purpose of this research was comparing evaluation of salivary glands proteomes from wild P. papatasi. Extracting these proteins and purifying of original SP15 as inducer agent in vector salivary glands from endemic leishmaniasis foci were other objectives. METHODS Adult sandflies were sampled using aspirators and funnel traps from three endemic foci in 2017-2018. Each pair of salivary glands of unfed females was dissected and proteins were extracted using thermal shocking and sonication methods. Purification was performed through RP-HPLC. All equivalent fractions were added together in order to reach sufficient protein concentration. Protein content and profile determination were examined with SDS-PAGE. RESULTS The protein concentration of whole-salivary glands of specimens was determined approximately 1.6 µg/µl (Isfahan) and 1 µg/µl (Varamin and Kashan). SDS-PAGE revealed 10 distinct bands between 10 and 63 kDa. Analysis of proteomes showed some similarities and differences in the chromatograms of different foci. SDS-PAGE of all collected fractions revealed SP15-like proteins were isolated in 24 min from Varamin, 26 to 30 min from Kashan and 29.4 min from Isfahan and were around 15 kDa. CONCLUSIONS Isolation of salivary components of Iranian wild P. papatasi is very important for finding potential proteins in vaccine development and measuring control strategy of zoonotic cutaneous leishmaniasis in Iran and this could be concluded elsewhere in the world.
Collapse
Affiliation(s)
- Seyedeh Maryam Ghafari
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sahar Ebrahimi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ali Bordbar
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Mondragon-Shem K, Wongtrakul-Kish K, Kozak RP, Yan S, Wilson IBH, Paschinger K, Rogers ME, Spencer DIR, Acosta-Serrano A. Insights into the salivary N-glycome of Lutzomyia longipalpis, vector of visceral leishmaniasis. Sci Rep 2020; 10:12903. [PMID: 32737362 PMCID: PMC7395719 DOI: 10.1038/s41598-020-69753-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/14/2020] [Indexed: 01/08/2023] Open
Abstract
During Leishmania transmission sand flies inoculate parasites and saliva into the skin of vertebrates. Saliva has anti-haemostatic and anti-inflammatory activities that evolved to facilitate bloodfeeding, but also modulate the host's immune responses. Sand fly salivary proteins have been extensively studied, but the nature and biological roles of protein-linked glycans remain overlooked. Here, we characterised the profile of N-glycans from the salivary glycoproteins of Lutzomyia longipalpis, vector of visceral leishmaniasis in the Americas. In silico predictions suggest half of Lu. longipalpis salivary proteins may be N-glycosylated. SDS-PAGE coupled to LC-MS analysis of sand fly saliva, before and after enzymatic deglycosylation, revealed several candidate glycoproteins. To determine the diversity of N-glycan structures in sand fly saliva, enzymatically released sugars were fluorescently tagged and analysed by HPLC, combined with highly sensitive LC-MS/MS, MALDI-TOF-MS, and exoglycosidase treatments. We found that the N-glycan composition of Lu. longipalpis saliva mostly consists of oligomannose sugars, with Man5GlcNAc2 being the most abundant, and a few hybrid-type species. Interestingly, some glycans appear modified with a group of 144 Da, whose identity has yet to be confirmed. Our work presents the first detailed structural analysis of sand fly salivary glycans.
Collapse
Affiliation(s)
- Karina Mondragon-Shem
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Katherine Wongtrakul-Kish
- Ludger Ltd., Culham Science Centre, Oxfordshire, OX14 3EB, UK
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, Australia
| | | | - Shi Yan
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, A-1210, Vienna, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Katharina Paschinger
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Matthew E Rogers
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
7
|
Risueño J, Spitzová T, Bernal LJ, Muñoz C, López MC, Thomas MC, Infante JJ, Volf P, Berriatua E. Longitudinal monitoring of anti-saliva antibodies as markers of repellent efficacy against Phlebotomus perniciosus and Phlebotomus papatasi in dogs. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:99-109. [PMID: 30450832 DOI: 10.1111/mve.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 06/09/2023]
Abstract
A 2-year longitudinal study of enzyme-linked immunosorbent assay (ELISA) antibodies against Phlebotomus perniciosus and Phlebotomus papatasi (Diptera: Psychodidae) sandfly saliva was performed in 32 Beagle dogs treated preventively with an imidacloprid-permethrin topical insecticide in an endemic area in Spain. Dogs were grouped into three sandfly exposure groups according to the time of inclusion in the study. Assays analysed immunoglobulin G (IgG) against salivary gland homogenates (SGH) of both species and recombinant P. papatasi rSP32 and P. perniciosus rSP03B proteins in serum. The dogs were participating in a Leishmania infantum (Kinetoplastida: Trypanosomatidae) vaccine trial and were experimentally infected with the parasite in the second year. No dog acquired natural L. infantum infections during the first year, but most developed anti-saliva antibodies, and median log-transformed optical densities (LODs) were seasonal, mimicking those of local sandflies. This indicates that the repellent efficacy of the insecticide used is below 100%. Multi-level modelling of LODs revealed variability among dogs, autocorrelation and differences according to the salivary antigen and the dog's age. However, dog seroprevalence, estimated using pre-exposure LODs as cut-offs, was relatively low. This, and the fact that dogs did not become naturally infected with L. infantum, would support the efficacy and usefulness of this imidacloprid-permethrin topical insecticide in canine leishmaniasis control.
Collapse
Affiliation(s)
- J Risueño
- Department of Animal Health, Faculty of Veterinary Science, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - T Spitzová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - L J Bernal
- Department of Medicine and Surgery, Faculty of Veterinary Science, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - C Muñoz
- Department of Animal Health, Faculty of Veterinary Science, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - M C López
- Molecular Biology Department, Institute of Parasitology and Biomedicine 'López Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - M C Thomas
- Molecular Biology Department, Institute of Parasitology and Biomedicine 'López Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - J J Infante
- Bioorganic Research and Services, SA, Jerez de la Frontera, Spain
| | - P Volf
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - E Berriatua
- Department of Animal Health, Faculty of Veterinary Science, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| |
Collapse
|
8
|
Sumova P, Sima M, Spitzova T, Osman ME, Guimaraes-Costa AB, Oliveira F, Elnaiem DEA, Hailu A, Warburg A, Valenzuela JG, Volf P. Human antibody reaction against recombinant salivary proteins of Phlebotomus orientalis in Eastern Africa. PLoS Negl Trop Dis 2018; 12:e0006981. [PMID: 30513081 PMCID: PMC6279015 DOI: 10.1371/journal.pntd.0006981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023] Open
Abstract
Background Phlebotomus orientalis is a vector of Leishmania donovani, the causative agent of life threatening visceral leishmaniasis spread in Eastern Africa. During blood-feeding, sand fly females salivate into the skin of the host. Sand fly saliva contains a large variety of proteins, some of which elicit specific antibody responses in the bitten hosts. To evaluate the exposure to sand fly bites in human populations from disease endemic areas, we tested the antibody reactions of volunteers' sera against recombinant P. orientalis salivary antigens. Methodology/Principal findings Recombinant proteins derived from sequence data on P. orientalis secreted salivary proteins, were produced using either bacterial (five proteins) or mammalian (four proteins) expression systems and tested as antigens applicable for detection of anti-P. orientalis IgG in human sera. Using these recombinant proteins, human sera from Sudan and Ethiopia, countries endemic for visceral leishmaniasis, were screened by ELISA and immunoblotting to identify the potential markers of exposure to P. orientalis bites. Two recombinant proteins; mAG5 and mYEL1, were identified as the most promising antigens showing high correlation coefficients as well as good specificity in comparison to the whole sand fly salivary gland homogenate. Combination of both proteins led to a further increase of correlation coefficients as well as both positive and negative predictive values of P. orientalis exposure. Conclusions/Significance This is the first report of screening human sera for anti-P. orientalis antibodies using recombinant salivary proteins. The recombinant salivary proteins mYEL1 and mAG5 proved to be valid antigens for screening human sera from both Sudan and Ethiopia for exposure to P. orientalis bites. The utilization of equal amounts of these two proteins significantly increased the capability to detect anti-P. orientalis antibody responses. Hosts repeatedly bitten by phlebotomine sand flies develop species-specific antibody responses against certain sand fly salivary antigens. Salivary gland homogenate (SGH) is frequently used to evaluate the levels of this antibody response in host. However, SGH is less suitable for large-scale studies, since obtaining sufficient numbers of salivary glands is labor intensive and requires expertise in dissection. To replace SGH as antigen to screen for exposure to sand fly bites, specific recombinant salivary antigens were utilized. Our study assessed the human antibody reactions against recombinant salivary proteins of Phlebotomus orientalis. This sand fly species is a vector of Leishmania donovani, the causative agent of severe visceral leishmaniasis in Eastern Africa. To identify valid markers of exposure to P. orientalis in humans, we screened for anti-P. orientalis antibody responses in serum samples from individuals residing in Sudan and Ethiopia. We tested nine recombinant salivary antigens and found a combination of yellow-related protein (mYEL1) and antigen 5-related protein (mAG5) the best marker of exposure, accurately correlating with the levels of exposure to P. orientalis bites as determined using SGH. Thus the combination mYEL1+ mAG5 can comprise a useful epidemiological tool to determine levels of exposure to P. orientalis in populations living in endemic areas of Eastern Africa, which could help in monitoring the distribution of P. orientalis and therefore assessing suitable anti-vector campaigns.
Collapse
Affiliation(s)
- Petra Sumova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| | - Michal Sima
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatiana Spitzova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maha E. Osman
- Commission for Biotechnology and Genetic Engineering, National Centre for Research, Khartoum, Sudan
| | - Anderson B. Guimaraes-Costa
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dia-Eldin A. Elnaiem
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alon Warburg
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University—Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Coutinho-Abreu IV, Valenzuela JG. Comparative Evolution of Sand Fly Salivary Protein Families and Implications for Biomarkers of Vector Exposure and Salivary Vaccine Candidates. Front Cell Infect Microbiol 2018; 8:290. [PMID: 30211125 PMCID: PMC6123390 DOI: 10.3389/fcimb.2018.00290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022] Open
Abstract
Sand fly salivary proteins that produce a specific antibody response in humans and animal reservoirs have been shown to be promising biomarkers of sand fly exposure. Furthermore, immunity to sand fly salivary proteins were shown to protect rodents and non-human primates against Leishmania infection. We are missing critical information regarding the divergence amongst sand fly salivary proteins from different sand fly vectors, a knowledge that will support the search of broad or specific salivary biomarkers of vector exposure and those for vaccines components against leishmaniasis. Here, we compare the molecular evolution of the salivary protein families in New World and Old World sand flies from 14 different sand fly vectors. We found that the protein families unique to OW sand flies are more conserved than those unique to NW sand flies regarding both sequence polymorphisms and copy number variation. In addition, the protein families unique to OW sand flies do not display as many conserved cysteine residues as the one unique to the NW group (28.5% in OW vs. 62.5% in NW). Moreover, the expression of specific protein families is restricted to the salivary glands of unique sand fly taxon. For instance, the ParSP15 family is unique to the Larroussius subgenus whereas phospholipase A2 is only expressed in member of Larroussius and Adlerius subgenera. The SP2.5-like family is only expressed in members of the Phlebotomus and Paraphlebotomus subgenera. The sequences shared between OW and NW sand flies have diverged at similar rates (38.7 and 45.3% amino acid divergence, respectively), yet differences in gene copy number were evident across protein families and sand fly species. Overall, this comparative analysis sheds light on the different modes of sand fly salivary protein family divergence. Also, it informs which protein families are unique and conserved within taxon for the choice of taxon-specific biomarkers of vector exposure, as well as those families more conserved across taxa to be used as pan-specific vaccines for leishmaniasis.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
10
|
Sundar S, Singh B. Understanding Leishmania parasites through proteomics and implications for the clinic. Expert Rev Proteomics 2018; 15:371-390. [PMID: 29717934 PMCID: PMC5970101 DOI: 10.1080/14789450.2018.1468754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Leishmania spp. are causative agents of leishmaniasis, a broad-spectrum neglected vector-borne disease. Genomic and transcriptional studies are not capable of solving intricate biological mysteries, leading to the emergence of proteomics, which can provide insights into the field of parasite biology and its interactions with the host. Areas covered: The combination of genomics and informatics with high throughput proteomics may improve our understanding of parasite biology and pathogenesis. This review analyses the roles of diverse proteomic technologies that facilitate our understanding of global protein profiles and definition of parasite development, survival, virulence and drug resistance mechanisms for disease intervention. Additionally, recent innovations in proteomics have provided insights concerning the drawbacks associated with conventional chemotherapeutic approaches and Leishmania biology, host-parasite interactions and the development of new therapeutic approaches. Expert commentary: With progressive breakthroughs in the foreseeable future, proteome profiles could provide target molecules for vaccine development and therapeutic intervention. Furthermore, proteomics, in combination with genomics and informatics, could facilitate the elimination of several diseases. Taken together, this review provides an outlook on developments in Leishmania proteomics and their clinical implications.
Collapse
Affiliation(s)
- Shyam Sundar
- a Department of Medicine, Institute of Medical Sciences , Banaras Hindu University , Varanasi , India
| | - Bhawana Singh
- a Department of Medicine, Institute of Medical Sciences , Banaras Hindu University , Varanasi , India
| |
Collapse
|
11
|
Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol Rev Camb Philos Soc 2017; 93:184-200. [DOI: 10.1111/brv.12339] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | | | - Jiao Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | | |
Collapse
|
12
|
Sima M, Ferencova B, Warburg A, Rohousova I, Volf P. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites. PLoS Negl Trop Dis 2016; 10:e0004553. [PMID: 26986566 PMCID: PMC4795800 DOI: 10.1371/journal.pntd.0004553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/26/2016] [Indexed: 01/03/2023] Open
Abstract
Background Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Methodology/Principal Findings Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Conclusions/Significance Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species. The sand fly Phlebotomus orientalis is the main vector of Leishmania donovani, the causative agent of visceral leishmaniasis in East Africa. During bloodfeeding, sand flies inject saliva into the host skin and repeated bites result in a specific antibody response in the bitten hosts. Antibody responses are directed against sand fly salivary proteins and the levels of these antibodies reflect the intensity of exposure to biting sand flies. The antibody reactions can be measured using salivary gland homogenates (SGHs), but for large-scale testing its use is impractical because of the amount of work required to obtain sufficient quantities of SGH. Recombinant proteins prepared based on the antigens in the sand fly saliva can substitute whole SGH in large-scale studies. We tested five recombinant proteins from Ph. orientalis saliva expressed in Escherichia coli and demonstrated that the yellow-related protein rPorSP24 can replace the SGH in estimating exposure to sand flies of dogs, goats, and sheep in Ethiopia. Immune reactions to vector saliva in endemic areas, provides useful information on levels of exposure and, thereby, on the effectiveness of vector control programs.
Collapse
Affiliation(s)
- Michal Sima
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Blanka Ferencova
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Alon Warburg
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iva Rohousova
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
13
|
Cameron MM, Acosta-Serrano A, Bern C, Boelaert M, den Boer M, Burza S, Chapman LAC, Chaskopoulou A, Coleman M, Courtenay O, Croft S, Das P, Dilger E, Foster G, Garlapati R, Haines L, Harris A, Hemingway J, Hollingsworth TD, Jervis S, Medley G, Miles M, Paine M, Picado A, Poché R, Ready P, Rogers M, Rowland M, Sundar S, de Vlas SJ, Weetman D. Understanding the transmission dynamics of Leishmania donovani to provide robust evidence for interventions to eliminate visceral leishmaniasis in Bihar, India. Parasit Vectors 2016; 9:25. [PMID: 26812963 PMCID: PMC4729074 DOI: 10.1186/s13071-016-1309-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/15/2016] [Indexed: 12/31/2022] Open
Abstract
Visceral Leishmaniasis (VL) is a neglected vector-borne disease. In India, it is transmitted to humans by Leishmania donovani-infected Phlebotomus argentipes sand flies. In 2005, VL was targeted for elimination by the governments of India, Nepal and Bangladesh by 2015. The elimination strategy consists of rapid case detection, treatment of VL cases and vector control using indoor residual spraying (IRS). However, to achieve sustained elimination of VL, an appropriate post elimination surveillance programme should be designed, and crucial knowledge gaps in vector bionomics, human infection and transmission need to be addressed. This review examines the outstanding knowledge gaps, specifically in the context of Bihar State, India.The knowledge gaps in vector bionomics that will be of immediate benefit to current control operations include better estimates of human biting rates and natural infection rates of P. argentipes, with L. donovani, and how these vary spatially, temporally and in response to IRS. The relative importance of indoor and outdoor transmission, and how P. argentipes disperse, are also unknown. With respect to human transmission it is important to use a range of diagnostic tools to distinguish individuals in endemic communities into those who: 1) are to going to progress to clinical VL, 2) are immune/refractory to infection and 3) have had past exposure to sand flies.It is crucial to keep in mind that close to elimination, and post-elimination, VL cases will become infrequent, so it is vital to define what the surveillance programme should target and how it should be designed to prevent resurgence. Therefore, a better understanding of the transmission dynamics of VL, in particular of how rates of infection in humans and sand flies vary as functions of each other, is required to guide VL elimination efforts and ensure sustained elimination in the Indian subcontinent. By collecting contemporary entomological and human data in the same geographical locations, more precise epidemiological models can be produced. The suite of data collected can also be used to inform the national programme if supplementary vector control tools, in addition to IRS, are required to address the issues of people sleeping outside.
Collapse
Affiliation(s)
- Mary M Cameron
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | | | - Caryn Bern
- UCSF School of Medicine, 550 16th Street, San Francisco, 94158, CA, USA.
| | | | | | - Sakib Burza
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | | | - Alexandra Chaskopoulou
- European Biological Control Laboratory, USDA-ARS, Tsimiski 43 Street, Thessaloniki, 54623, Greece.
| | - Michael Coleman
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Orin Courtenay
- University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Simon Croft
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Pradeep Das
- Rajendra Memorial Research Institute of Medical Sciences, Patna, India.
| | - Erin Dilger
- University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Geraldine Foster
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | - Lee Haines
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | - Janet Hemingway
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | - Sarah Jervis
- University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Graham Medley
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Michael Miles
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Mark Paine
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Albert Picado
- FIND, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.
| | - Richard Poché
- Genesis Laboratories, Inc., Wellington, CO, 80549, USA.
| | - Paul Ready
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Matthew Rogers
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Mark Rowland
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - David Weetman
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
14
|
Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, Giron D. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:4-21. [PMID: 26705897 DOI: 10.1016/j.jinsphys.2015.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/04/2023]
Abstract
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter.
Collapse
Affiliation(s)
- Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France; Département de Biologie, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA; Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France
| | - Heidi M Appel
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jack C Schultz
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Marcos H Pereira
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France; Laboratório de Fisiologia de Insectos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France.
| |
Collapse
|
15
|
Jain K, Jain NK. Vaccines for visceral leishmaniasis: A review. J Immunol Methods 2015; 422:1-12. [PMID: 25858230 DOI: 10.1016/j.jim.2015.03.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 02/21/2015] [Accepted: 03/28/2015] [Indexed: 01/09/2023]
Abstract
Visceral leishmaniasis, which is also known as Kala-Azar, is one of the most severely neglected tropical diseases recognized by the World Health Organization (WHO). The threat of this debilitating disease continues due to unavailability of promising drug therapy or human vaccine. An extensive research is undergoing to develop a promising vaccine to prevent this devastating disease. In this review we compiled the findings of recent research with a view to facilitate knowledge on experimental vaccinology for visceral leishmaniasis. Various killed or attenuated parasite based first generation vaccines, second generation vaccines based on antigenic protein or recombinant protein, and third generation vaccines derived from antigen-encoding DNA plasmids including heterologous prime-boost Leishmania vaccine have been examined for control and prevention of visceral leishmaniasis. Vaccines based on recombinant protein and antigen-encoding DNA plasmids have given promising results and few vaccines including Leishmune®, Leishtec, and CaniLeish® have been licensed for canine visceral leishmaniasis. A systematic investigation of these vaccine candidates can lead to development of promising vaccine for human visceral leishmaniasis, most probably in the near future.
Collapse
Affiliation(s)
- Keerti Jain
- Pharmaceutical Nanotechnology Research Laboratory, ISF College of Pharmacy, Moga, Punjab 142001, India.
| | - N K Jain
- Pharmaceutical Nanotechnology Research Laboratory, ISF College of Pharmacy, Moga, Punjab 142001, India.
| |
Collapse
|
16
|
Abdeladhim M, Kamhawi S, Valenzuela JG. What's behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. INFECTION GENETICS AND EVOLUTION 2014; 28:691-703. [PMID: 25117872 DOI: 10.1016/j.meegid.2014.07.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/15/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
Sand flies are blood-feeding insects and vectors of the Leishmania parasite. For many years, saliva of these insects has represented a gold mine for the discovery of molecules with anti-hemostatic and immuno-modulatory activities. Furthermore, proteins in sand fly saliva have been shown to be a potential vaccine against leishmaniasis and also markers of vector exposure. A bottleneck to progress in these areas of research has been the identification of molecules responsible for the observed activities and properties of saliva. Over the past decade, rapid advances in transcriptomics and proteomics resulted in the completion of a number of sialomes (salivary gland transcriptomes) and the expression of several recombinant salivary proteins from different species of sand fly vectors. This review will provide readers with a comprehensive update of recent advances in the characterization of these salivary molecules and their biological activities and offer insights pertaining to their protective effect against leishmaniasis and their potential as markers of vector exposure.
Collapse
Affiliation(s)
- Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States.
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States.
| |
Collapse
|
17
|
Geraci NS, Mukbel RM, Kemp MT, Wadsworth MN, Lesho E, Stayback GM, Champion MM, Bernard MA, Abo-Shehada M, Coutinho-Abreu IV, Ramalho-Ortigão M, Hanafi HA, Fawaz EY, El-Hossary SS, Wortmann G, Hoel DF, McDowell MA. Profiling of human acquired immunity against the salivary proteins of Phlebotomus papatasi reveals clusters of differential immunoreactivity. Am J Trop Med Hyg 2014; 90:923-938. [PMID: 24615125 PMCID: PMC4015589 DOI: 10.4269/ajtmh.13-0130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phlebotomus papatasi sand flies are among the primary vectors of Leishmania major parasites from Morocco to the Indian subcontinent and from southern Europe to central and eastern Africa. Antibody-based immunity to sand fly salivary gland proteins in human populations remains a complex contextual problem that is not yet fully understood. We profiled the immunoreactivities of plasma antibodies to sand fly salivary gland sonicates (SGSs) from 229 human blood donors residing in different regions of sand fly endemicity throughout Jordan and Egypt as well as 69 US military personnel, who were differentially exposed to P. papatasi bites and L. major infections in Iraq. Compared with plasma from control region donors, antibodies were significantly immunoreactive to five salivary proteins (12, 26, 30, 38, and 44 kDa) among Jordanian and Egyptian donors, with immunoglobulin G4 being the dominant anti-SGS isotype. US personnel were significantly immunoreactive to only two salivary proteins (38 and 14 kDa). Using k-means clustering, donors were segregated into four clusters distinguished by unique immunoreactivity profiles to varying combinations of the significantly immunogenic salivary proteins. SGS-induced cellular proliferation was diminished among donors residing in sand fly-endemic regions. These data provide a clearer picture of human immune responses to sand fly vector salivary constituents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mary Ann McDowell
- * Address correspondence to Mary Ann McDowell, Eck Institute for Global Health, University of Notre Dame, 215 Galvin Life Sciences, Notre Dame, IN 46556. E-mail:
| |
Collapse
|
18
|
Vlkova M, Sima M, Rohousova I, Kostalova T, Sumova P, Volfova V, Jaske EL, Barbian KD, Gebre-Michael T, Hailu A, Warburg A, Ribeiro JMC, Valenzuela JG, Jochim RC, Volf P. Comparative analysis of salivary gland transcriptomes of Phlebotomus orientalis sand flies from endemic and non-endemic foci of visceral leishmaniasis. PLoS Negl Trop Dis 2014; 8:e2709. [PMID: 24587463 PMCID: PMC3937273 DOI: 10.1371/journal.pntd.0002709] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/07/2014] [Indexed: 12/20/2022] Open
Abstract
Background In East Africa, Phlebotomus orientalis serves as the main vector of Leishmania donovani, the causative agent of visceral leishmaniasis (VL). Phlebotomus orientalis is present at two distant localities in Ethiopia; Addis Zemen where VL is endemic and Melka Werer where transmission of VL does not occur. To find out whether the difference in epidemiology of VL is due to distant compositions of P. orientalis saliva we established colonies from Addis Zemen and Melka Werer, analyzed and compared the transcriptomes, proteomes and enzymatic activity of the salivary glands. Methodology/Principal Findings Two cDNA libraries were constructed from the female salivary glands of P. orientalis from Addis Zemen and Melka Werer. Clones of each P. orientalis library were randomly selected, sequenced and analyzed. In P. orientalis transcriptomes, we identified members of 13 main protein families. Phylogenetic analysis and multiple sequence alignments were performed to evaluate differences between the P. orientalis colonies and to show the relationship with other sand fly species from the subgenus Larroussius. To further compare both colonies, we investigated the humoral antigenicity and cross-reactivity of the salivary proteins and the activity of salivary apyrase and hyaluronidase. Conclusions This is the first report of the salivary components of P. orientalis, an important vector sand fly. Our study expanded the knowledge of salivary gland compounds of sand fly species in the subgenus Larroussius. Based on the phylogenetic analysis, we showed that P. orientalis is closely related to Phlebotomus tobbi and Phlebotomus perniciosus, whereas Phlebotomus ariasi is evolutionarily more distinct species. We also demonstrated that there is no significant difference between the transcriptomes, proteomes or enzymatic properties of the salivary components of Addis Zemen (endemic area) and Melka Werer (non-endemic area) P. orientalis colonies. Thus, the different epidemiology of VL in these Ethiopian foci cannot be attributed to the salivary gland composition. Phlebotomus orientalis is the vector of visceral leishmaniasis (VL) caused by Leishmania donovani in Northeast Africa. Immunization with sand fly saliva or with individual salivary proteins has been shown to protect against leishmaniasis in different hosts, warranting the intensive study of salivary proteins of sand fly vectors. In our study, we characterize the salivary compounds of P. orientalis, thereby broadening the repertoire of salivary proteins of sand fly species belonging to the subgenus Larroussius. In order to find out whether there is any connection between the composition of P. orientalis saliva and the epidemiology of VL in two distinct Ethiopian foci, Addis Zemen and Melka Werer, we studied the transcriptomes, proteomes, enzymatic activities, and the main salivary antigens in two P. orientalis colonies originating from these areas. We did not detect any significant difference between the saliva of female sand flies originating in Addis Zemen (endemic area) and Melka Werer (non-endemic area). Therefore, the different epidemiology of VL in these Ethiopian foci cannot be related to the distant salivary gland protein composition. Identifying the sand fly salivary gland compounds will be useful for future research focused on characterizing suitable salivary proteins as potential anti-Leishmania vaccine candidates.
Collapse
Affiliation(s)
- Michaela Vlkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Sima
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Iva Rohousova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatiana Kostalova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Sumova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vera Volfova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Erin L. Jaske
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Kent D. Barbian
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Teshome Gebre-Michael
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology & Parasitology, Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alon Warburg
- Department of Parasitology, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jose M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (JGV); (RCJ); (PV)
| | - Ryan C. Jochim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (JGV); (RCJ); (PV)
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail: (JGV); (RCJ); (PV)
| |
Collapse
|