1
|
Onile OS, Fadahunsi AI, Adekunle AA, Oyeyemi BF, Anumudu CI. An immunoinformatics approach for the design of a multi-epitope subunit vaccine for urogenital schistosomiasis. PeerJ 2020; 8:e8795. [PMID: 33062404 PMCID: PMC7534685 DOI: 10.7717/peerj.8795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Discovery of T and B memory cells capable of eliciting long-term immunity against schistosomiasisis is important for people in endemic areas. Changes in schistosomes environment due to developmental cycle, induces up-regulation of Heat Shock Proteins (HSPs) which assist the parasite in coping with the hostile conditions associated with its life cycle. This study therefore focused on exploring the role of HSPs in urogenital schistosomiasis to develop new multi-epitope subunit vaccine against the disease using immunoinformatic approaches. The designed subunit vaccine was subjected to in silico antigenicity, immunogenicity, allergenicity and physicochemical parameters analysis. A 3D structure of the vaccine construct was predicted, followed by disulphide engineering for stability, codon adaptation and in silico cloning for proper expression and molecular protein–protein docking of vaccine construct in the vector against toll-like receptor 4 receptor, respectively. Consequently, a 493 amino acid multi-epitope vaccine construct of antigenicity probability of 0.91 was designed. This was predicted to be stable, non-allergenic in nature and safe for human use.
Collapse
Affiliation(s)
- Olugbenga S Onile
- Biotechnology Programme, Department of Biological Sciences, Elizade University, Ilara-Mokin, Ondo State, Nigeria
| | - Adeyinka I Fadahunsi
- Biotechnology Programme, Department of Biological Sciences, Elizade University, Ilara-Mokin, Ondo State, Nigeria
| | - Ameerah A Adekunle
- Biotechnology Programme, Department of Biological Sciences, Elizade University, Ilara-Mokin, Ondo State, Nigeria
| | - Bolaji F Oyeyemi
- Molecular Biology Group, Department Science Technology, The Federal Polytechnic, Ado-Ekiti, Ado-Ekiti, Ekiti State, Nigeria
| | - Chiaka I Anumudu
- Cellular Parasitology Programme, Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
2
|
Malone JB, Bergquist R, Martins M, Luvall JC. Use of Geospatial Surveillance and Response Systems for Vector-Borne Diseases in the Elimination Phase. Trop Med Infect Dis 2019; 4:E15. [PMID: 30669341 PMCID: PMC6473698 DOI: 10.3390/tropicalmed4010015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
The distribution of diseases caused by vector-borne viruses and parasites are restricted by the environmental requirements of their vectors, but also by the ambient temperature inside the host as it influences the speed of maturation of the infectious agent transferred. The launch of the Soil Moisture Active Passive (SMAP) satellite in 2015, and the new ECOSTRESS instrument onboard the International Space Station (ISS) in 2018, established the leadership of the National Aeronautics Space Administration (NASA) in ecology and climate research by allowing the structural and functional classification of ecosystems that govern vector sustainability. These advances, and the availability of sub-meter resolution data from commercial satellites, contribute to seamless mapping and modelling of diseases, not only at continental scales (1 km²) and local community or agricultural field scales (15⁻30 m²), but for the first time, also at the habitat⁻household scale (<1 m²). This communication presents current capabilities that are related to data collection by Earth-observing satellites, and draws attention to the usefulness of geographical information systems (GIS) and modelling for the study of important parasitic diseases.
Collapse
Affiliation(s)
- John B Malone
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | - Moara Martins
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jeffrey C Luvall
- National Aeronautics Space Administration (NASA), MSFC ST11, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805, USA.
| |
Collapse
|
3
|
Masamba P, Adenowo AF, Oyinloye BE, Kappo AP. Universal Stress Proteins as New Targets for Environmental and Therapeutic Interventions of Schistosomiasis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E972. [PMID: 27706050 PMCID: PMC5086711 DOI: 10.3390/ijerph13100972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
In spite of various control measures and eradication methods that have been in progress, schistosomiasis still prevails as one of the most prevalent debilitating parasitic diseases, typically affecting the poor and the underprivileged that are predominantly concentrated in sub-Saharan Africa. The parasitic schistosome blood fluke responsible for causing the disease completes its complex developmental cycle in two hosts: humans and freshwater snails, where they physically undergo gross modifications to endure the different conditions associated with each host. Just like any other organism, the worm possesses mechanisms that help them respond to environmental insults. It has been hypothesized that a special class of proteins known as Universal Stress Proteins (USPs) are up-regulated during sudden environmental changes, thus assisting the worm to tolerate the unfavourable conditions associated with its developmental cycle. The position of praziquantel as the drug of choice against all schistosome infections has been deemed vulnerable due to mounting concerns over drug pressure and so the need for alternative treatment is now a matter of urgency. Therefore, this review seeks to explore the associations and possible roles of USPs in schistosomiasis as well as the functioning of these proteins in the schistosomulae stage in order to develop new therapeutic interventions against this disease.
Collapse
Affiliation(s)
- Priscilla Masamba
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Abiola Fatimah Adenowo
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
4
|
Xu J, Bergquist R, Qian YJ, Wang Q, Yu Q, Peeling R, Croft S, Guo JG, Zhou XN. China-Africa and China-Asia Collaboration on Schistosomiasis Control: A SWOT Analysis. ADVANCES IN PARASITOLOGY 2016; 92:435-66. [PMID: 27137455 DOI: 10.1016/bs.apar.2016.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Schistosomiasis, a disease caused by a trematode, parasitic worm, is a worldwide public health problem. In spite of great progress with regard to morbidity control, even elimination of this infection in recent decades, there are still challenges to overcome in sub-Saharan Africa and endemic areas in Southeast Asia. Regarded as one of the most successful countries with respect to schistosomiasis control, The People's Republic of China has accumulated considerable experience and learnt important lessons in various local settings that could benefit schistosomiasis control in other endemic countries. Based on an analysis of conceived strengths, weaknesses, opportunities and threats (SWOT) of potential collaborative activities with regard to schistosomiasis in Africa and Asia, this article addresses the importance of collaborative efforts and explores the priorities that would be expected to facilitate the transfer of Chinese experience to low- and middle-income countries in Africa and Asia.
Collapse
Affiliation(s)
- J Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite & Vector Biology, Ministry of Public Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - R Bergquist
- Geospatial Health, University of Naples Federico II, Naples, Italy
| | - Y-J Qian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite & Vector Biology, Ministry of Public Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - Q Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite & Vector Biology, Ministry of Public Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - Q Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite & Vector Biology, Ministry of Public Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - R Peeling
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - S Croft
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - J-G Guo
- World Health Organization, Geneva, Switzerland
| | - X-N Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite & Vector Biology, Ministry of Public Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| |
Collapse
|
5
|
Guo W, Zheng LY, Wu RM, Fan XL. Design, synthesis, and cercaricidal activity of novel high-efficient, low-toxic self-spreading PEG-N-salicylanilide derivatives against cercariae larvae of Schistosome Japonicum floating on the water surface. Chem Biol Drug Des 2014; 85:527-33. [PMID: 25244005 DOI: 10.1111/cbdd.12439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/09/2014] [Accepted: 08/29/2014] [Indexed: 12/01/2022]
Abstract
Novel cercaricides of PEG-N-salicylanilide derivatives that could self-spread and float on the water surface were designed and synthesized according to the particular habit of cercariae larvae of Schistosome japonicum. The structures of the cercaricides were characterized by the infrared spectra (IR), magnetic resonance ((1) H NMR), and mass spectrum (MS). The images of the floating cercaricides on the water surface were investigated by the Brewster angle microscopy (BAM). When the cercaricides were dropped on the water surface, they could spread along the air-water interface automatically and form thin membranes floating on the water surface immediately. The lethality rate of cercariae for 5a and 6a was more than 90% in 120 min at a surface concentration of 0.008 mg/cm(2) . The non-ionic surfactant-cercaricides not only showed strong cercaricidal activities against the cercariae larvae but also exhibited low toxicities, which offered an effective and environment-friendly approach for the reduction of population infection rate and the realization of schistosome control.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| | | | | | | |
Collapse
|
6
|
Savaya Alkalay A, Rosen O, Sokolow SH, Faye YPW, Faye DS, Aflalo ED, Jouanard N, Zilberg D, Huttinger E, Sagi A. The prawn Macrobrachium vollenhovenii in the Senegal River basin: towards sustainable restocking of all-male populations for biological control of schistosomiasis. PLoS Negl Trop Dis 2014; 8:e3060. [PMID: 25166746 PMCID: PMC4148216 DOI: 10.1371/journal.pntd.0003060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/18/2014] [Indexed: 02/04/2023] Open
Abstract
Early malacological literature suggests that the outbreak of schistosomiasis, a parasitic disease transmitted by aquatic snails, in the Senegal River basin occurred due to ecological changes resulting from the construction of the Diama dam. The common treatment, the drug praziquantel, does not protect from the high risk of re-infection due to human contact with infested water on a daily basis. The construction of the dam interfered with the life cycle of the prawn Macrobrachium vollenhovenii by blocking its access to breeding grounds in the estuary. These prawns were demonstrated to be potential biological control agents, being effective predators of Schistosoma-susceptible snails. Here, we propose a responsible restocking strategy using all-male prawn populations which could provide sustainable disease control. Male prawns reach a larger size and have a lower tendency to migrate than females. We, therefore, expect that periodic restocking of all-male juveniles will decrease the prevalence of schistosomiasis and increase villagers' welfare. In this interdisciplinary study, we examined current prawn abundance along the river basin, complemented with a retrospective questionnaire completed by local fishermen. We revealed the current absence of prawns upriver and thus demonstrated the need for restocking. Since male prawns are suggested to be preferable for bio-control, we laid the molecular foundation for production of all-male M. vollenhovenii through a complete sequencing of the insulin-like androgenic gland-encoding gene (IAG), which is responsible for sexual differentiation in crustaceans. We also conducted bioinformatics and immunohistochemistry analyses to demonstrate the similarity of this sequence to the IAG of another Macrobrachium species in which neo-females are produced and their progeny are 100% males. At least 100 million people at risk of schistosomiasis are residents of areas that experienced water management manipulations. Our suggested non-breeding sustainable model of control—if proven successful—could prevent re-infections and thus prove useful throughout the world. Schistosomiasis is a chronic parasitic disease that infects millions of people, especially in Africa. Schistosomes are transmitted by direct contact with water sources infested by freshwater snails, which are intermediate hosts for the parasite. The cure in humans is a drug, praziquantel, that kills the mature parasites inside the human body. The main problem with controlling the parasite by drug treatment is the high re-infection rate, since individuals are in contact with infected water on a daily basis. To efficiently combat the disease, an integrated management program is needed that includes control of infection in the intermediate host snails. We suggest the use of non-migrating, all-male populations of freshwater prawns that efficiently prey on these snails. Here, we describe the case of the Senegal River basin as an example of human actions (dam construction) that resulted in severe ecosystem changes, including exclusion of the native river prawns and expansion of snails hosting schistosomiasis. We have conducted an interdisciplinary study that documents the reduction of prawn abundance in the Senegal River and lays the molecular foundation for technology to produce all-male prawn populations to be used as part of an integrated disease control program, including both periodic stocking of juvenile prawns and chemotherapy.
Collapse
Affiliation(s)
- Amit Savaya Alkalay
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer Sheva, Israel
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University, Sede-Boqer, Israel
| | - Ohad Rosen
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer Sheva, Israel
| | - Susanne H. Sokolow
- Department of Biology, Hopkins Marine Station, Stanford University, Palo Alto, California, United States of America
| | | | | | - Eliahu D. Aflalo
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer Sheva, Israel
| | - Nicolas Jouanard
- Centre de Recherche Biomédicale Espoir Pour La Santé, Sor, Saint-Louis, Senegal
| | - Dina Zilberg
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University, Sede-Boqer, Israel
| | | | - Amir Sagi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|