1
|
Chen KY, Chen YJ, Cheng CJ, Jhan KY, Chiu CH, Wang LC. The therapeutic effect of tanshinone IIA in mouse astrocytes after treatment with Angiostrongylus cantonensis fifth-stage larval excretory-secretory products. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:853-862. [PMID: 37147244 DOI: 10.1016/j.jmii.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Angiostrongylus cantonensis is an important food-borne zoonotic parasite that causes eosinophilic meningitis and meningoencephalitis in humans. Excretory-secretory products (ESPs) are valuable targets for studying host-parasite relationships. ESPs are composed of a variety of molecules that are used to penetrate defensive barriers and avoid immune attack of the host. Tanshinone IIA (TSIIA) is a vasoactive cardioprotective drug that is widely used in studies evaluating potential therapeutic mechanisms. In this study, we will evaluate the therapeutic effects of TSIIA in mouse astrocytes after A. cantonensis fifth-stage larvae (L5) ESPs treatment. METHODS Here, we examined the therapeutic effect of TSIIA by real-time qPCR, western blotting, activity assay, and cell viability assays. RESULTS First, the results showed that TSIIA can elevate cell viability in astrocytes after stimulation with ESPs. On the other hand, TSIIA downregulated the expression of apoptosis-related molecules. However, the expression of molecules related to antioxidant, autophagy, and endoplasmic reticulum stress was significantly increased. The results of antioxidant activation assays showed that the activities of superoxide dismutase (SOD), glutathione S-transferase (GST), and catalase were significantly increased. Finally, we found that cell apoptosis and oxidative stress were reduced in TSIIA-treated astrocytes by immunofluorescence staining. CONCLUSION The findings from this study suggest that TSIIA can reduce cellular damage caused by A. cantonensis L5 ESPs in astrocytes and clarify the related molecular mechanisms.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Parasitology, School of Medicine, China Medical University, Taichung, 404, Taiwan.
| | - Yi-Ju Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kai-Yuan Jhan
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Chen KY, Chen YJ, Cheng CJ, Jhan KY, Chiu CH, Wang LC. 3-Hydroxybenzaldehyde and 4-Hydroxybenzaldehyde enhance survival of mouse astrocytes treated with Angiostrongylus cantonensis young adults excretory/secretory products. Biomed J 2020; 44:S258-S266. [PMID: 35300947 PMCID: PMC9068576 DOI: 10.1016/j.bj.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 01/15/2023] Open
Abstract
Background Methods Results Conclusions
Collapse
|
3
|
Tsai HC, Chen YH, Yen CM, Chung LY, Wann SR, Lee SSJ, Chen YS. Dexamethasone Downregulates Expressions of 14-3-3β and γ-Isoforms in Mice with Eosinophilic Meningitis Caused by Angiostrongylus cantonensis Infection. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:249-256. [PMID: 31284347 PMCID: PMC6616158 DOI: 10.3347/kjp.2019.57.3.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/09/2019] [Indexed: 11/23/2022]
Abstract
Steroids are commonly used in patients with eosinophilic meningitis caused by A. cantonensis infections. The mechanism steroids act on eosinophilic meningitis remains unclear. In this mouse experiments, expressions of 14-3-3 isoform β and γ proteins significantly increased in the CSF 2–3 weeks after the infection, but not increasedin the dexamethasone-treated group. Expression of 14-3-3 β, γ, ɛ, and θ isoforms increased in brain meninges over the 3-week period after infection and decreased due to dexamethasone treatment. In conclusion, administration of dexamethasone in mice with eosinophilic meningitis decreased expressions of 14-3-3 isoform proteins in the CSF and in brain meninges.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan.,Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsin Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan
| | - Chuan-Min Yen
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Yu Chung
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shue-Ren Wann
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan
| | - Susan Shin-Jung Lee
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan
| | - Yao-Shen Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
4
|
Tsai HC, Chen YH, Yen CM, Lee SSJ, Chen YS. Increased 14-3-3β and γ protein isoform expressions in parasitic eosinophilic meningitis caused by Angiostrongylus cantonensis infection in mice. PLoS One 2019; 14:e0213244. [PMID: 30845271 PMCID: PMC6405114 DOI: 10.1371/journal.pone.0213244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 02/19/2019] [Indexed: 11/28/2022] Open
Abstract
The 14-3-3 proteins are cerebrospinal fluid (CSF) markers of neuronal damage during infectious meningitis and Creutzfeldt-Jakob disease. Little is known about dynamic changes in the individual isoforms in response to parasitic eosinophilic meningitis. The purposes of this study were to determine the 14-3-3 protein isoform patterns, examine the kinetics and correlate the severity of blood brain barrier (BBB) damage with the expressions of these markers in mice with eosinophilic meningitis. Mice were orally infected with 50 A. cantonensis L3 via an oro-gastric tube and sacrificed every week for 3 consecutive weeks after infection. The Evans blue method and BBB junctional protein expressions were used to measure changes in the BBB. Hematoxylin and eosin staining was used to analyze pathological changes in the mice brains following 1–3 weeks of infection with A. cantonensis. The levels of 14-3-3 protein isoforms in serum/CSF and brain homogenates were analyzed by Western blot, and immunohistochemistry (IHC) was used to explore the different isoform distributions of 14-3-3 proteins and changes in BBB junctional proteins in the mice brain meninges. Dexamethasone was injected intraperitoneally from the seventh day post infection (dpi) until the end of the study (21 dpi) to study the changes in BBB junctional proteins. The amounts of Evans blue, tight junction and 14-3-3 protein isoforms in the different groups of mice were compared using the nonparametric Kruskal-Wallis test. There were significant increases in 14-3-3 protein isoforms β and γ in the CSF in the second and third weeks after infection compared to the controls and first week of infection, which were correlated with the severity of BBB damage in brain histology, and Evans blue extravasation. Using IHC to assess the distribution of 14-3-3 protein isoforms and changes in BBB junctional proteins in the mice brain meninges, the expressions of isoforms β, γ, ε, and θ and junctional proteins occludin and claudin-5 in the brain meninges increased over a 3-week period after infection compared to the controls and 1 week after infection. The administration of dexamethasone decreased the expressions of BBB junctional proteins occludin and claudin-5 in the mice brain meninges. Our findings support that 14-3-3 proteins β and γ can potentially be used as a CSF marker of neuronal damage in parasitic eosinophilic meningitis caused by A. cantonensis.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.
- * E-mail:
| | - Yu-Hsin Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Chuan-Min Yen
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.
| | - Susan Shin-Jung Lee
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Yao-Shen Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
| |
Collapse
|
5
|
Wang T, Zheng X, Li R, Liu X, Wu J, Zhong X, Zhang W, Liu Y, He X, Liu W, Wang H, Zeng H. Integrated bioinformatic analysis reveals YWHAB as a novel diagnostic biomarker for idiopathic pulmonary arterial hypertension. J Cell Physiol 2018; 234:6449-6462. [PMID: 30317584 DOI: 10.1002/jcp.27381] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/17/2018] [Indexed: 11/05/2022]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a severe cardiovascular disease that is a serious threat to human life. However, the specific diagnostic biomarkers have not been fully clarified and candidate regulatory targets for IPAH have not been identified. The aim of this study was to explore the potential diagnostic biomarkers and possible regulatory targets of IPAH. We performed a weighted gene coexpression network analysis and calculated module-trait correlations based on a public microarray data set (GSE703) and six modules were found to be related to IPAH. Two modules which have the strongest correlation with IPAH were further analyzed and the top 10 hub genes in the two modules were identified. Furthermore, we validated the data by quantitative real-time polymerase chain reaction (qRT-PCR) in an independent sample set originated from our study center. Overall, the qRT-PCR results were consistent with most of the results of the microarray analysis. Intriguingly, the highest change was found for YWHAB, a gene encodes a protein belonging to the 14-3-3 family of proteins, members of which mediate signal transduction by binding to phosphoserine-containing proteins. Thus, YWHAB was subsequently selected for validation. In congruent with the gene expression analysis, plasma 14-3-3β concentrations were significantly increased in patients with IPAH compared with healthy controls, and 14-3-3β expression was also positively correlated with mean pulmonary artery pressure ( R 2 = 0.8783; p < 0.001). Taken together, using weighted gene coexpression analysis, YWHAB was identified and validated in association with IPAH progression, which might serve as a biomarker and/or therapeutic target for IPAH.
Collapse
Affiliation(s)
- Tao Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xuan Zheng
- Laboratory of Molecular Cardiology, Wuhan Asia Heart Hospital, Wuhan University, Wuhan, China
| | - Ruidong Li
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, California
| | - Xintian Liu
- Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan University, Wuhan, China
| | - Jinhua Wu
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiaodan Zhong
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Wenjun Zhang
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yujian Liu
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xingwei He
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Wanjun Liu
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hongjie Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hesong Zeng
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
6
|
Chen KY, Wang LC. Stimulation of IL-1β and IL-6 through NF-κB and sonic hedgehog-dependent pathways in mouse astrocytes by excretory/secretory products of fifth-stage larval Angiostrongylus cantonensis. Parasit Vectors 2017; 10:445. [PMID: 28950910 PMCID: PMC5615811 DOI: 10.1186/s13071-017-2385-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/17/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiostrongylus cantonensis is an important causative agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans. Previous studies have shown that the Sonic hedgehog (Shh) signaling pathway may reduce cell apoptosis by inhibiting oxidative stress in A. cantonensis infection. In this study, we investigated the relationship between cytokine secretion and Shh pathway activation after treatment with excretory/secretory products (ESP) of fifth-stage larval A. cantonensis (L5). RESULTS The results showed that IL-1β and IL-6 levels in mouse astrocytes were increased. Moreover, ESP stimulated the protein expression of Shh pathway molecules, including Shh, Ptch, Smo and Gli-1, and induced IL-1β and IL-6 secretion. The transcription factor nuclear factor-κB (NF-κB) plays an important role in inflammation, and it regulates the expression of proinflammatory genes, including cytokines and chemokines, such as IL-1β and TNF-α. After ESP treatment, NF-κB induced IL-1β and IL-6 secretion in astrocytes by activating the Shh signaling pathway. CONCLUSIONS Overall, the data presented in this study showed that ESP of fifth-stage larval A. cantonensis stimulates astrocyte activation and cytokine generation through NF-κB and the Shh signaling pathway.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Angiostrongylus cantonensis: a review of its distribution, molecular biology and clinical significance as a human pathogen. Parasitology 2016; 143:1087-118. [PMID: 27225800 DOI: 10.1017/s0031182016000652] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Angiostrongylus cantonensis is a metastrongyloid nematode found widely in the Asia-Pacific region, and the aetiological agent of angiostrongyliasis; a disease characterized by eosinophilic meningitis. Rattus rats are definitive hosts of A. cantonensis, while intermediate hosts include terrestrial and aquatic molluscs. Humans are dead-end hosts that usually become infected upon ingestion of infected molluscs. A presumptive diagnosis is often made based on clinical features, a history of mollusc consumption, eosinophilic pleocytosis in cerebral spinal fluid, and advanced imaging such as computed tomography. Serological tests are available for angiostrongyliasis, though many tests are still under development. While there is no treatment consensus, therapy often includes a combination of anthelmintics and corticosteroids. Angiostrongyliasis is relatively rare, but is often associated with morbidity and sometimes mortality. Recent reports suggest the parasites' range is increasing, leading to fatalities in regions previously considered Angiostrongylus-free, and sometimes, delayed diagnosis in newly invaded regions. Increased awareness of angiostrongyliasis would facilitate rapid diagnosis and improved clinical outcomes. This paper summarizes knowledge on the parasites' life cycle, clinical aspects and epidemiology. The molecular biology of Angiostrongylus spp. is also discussed. Attention is paid to the significance of angiostrongyliasis in Australia, given the recent severe cases reported from the Sydney region.
Collapse
|