1
|
Lu Y, Tang W, Zhang H, Liu J, Zhong S. Effect of hepatocyte damage in hepatic fibrogenesis of patients infected with Schistosoma japonicum. Infect Immun 2024; 92:e0002624. [PMID: 38767360 PMCID: PMC11237810 DOI: 10.1128/iai.00026-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Schistosomiasis is a serious public health problem, and previous studies found that liver function and hepatic cells are damaged. To evaluate the serum parameters of liver function and fibrosis in schistosomiasis patients infected with Schistosoma japonicum (Schistosoma J.) and analyze the correlations between liver function and serum fibrosis markers in patients infected with Schistosoma J., this retrospective study enrolled 133 patients. The study population was divided into four groups: healthy people control group (n = 20), chronic schistosomiasis without liver cirrhosis (CS) group (n = 21), schistosomiasis cirrhosis without hypoalbuminemia (SC-HA) group (n = 68), and schistosomiasis cirrhosis with hypoalbuminemia (SC +HA) group (n = 24). Clinical and laboratory data were collected for analysis. In the multiple comparison of abnormal rates of aspartate aminotransferase (AST) and total bilirubin (TBIL), the abnormal rate of the SC +HA group was significantly higher than that of the other three groups (P < 0.05), and the abnormal rate of γ-GT in the SC +HA group was significantly higher than that in the control group (P < 0.05). Multiple comparison results of serum levels of fibrosis markers showed that the SC group had a significantly higher level of indexes than other groups (P < 0.05). The levels of TGF-β1 in the CS group, SC-HA group and SC +HA group were significantly higher than those in the control group (P < 0.001). Our study demonstrated that the liver function and hepatic cells were damaged with the progression of liver disease in patients infected with Schistosoma J., and they played an important role in the occurrence and development of liver fibrosis.
Collapse
Affiliation(s)
- Yaqi Lu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wangxian Tang
- Institute of Liver Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Liu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan Zhong
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| |
Collapse
|
2
|
Li S, Sun X, Li T, Shi Y, Xu B, Deng Y, Wang S. A novel proteomic-based model for predicting colorectal cancer with Schistosoma japonicum co-infection by integrated bioinformatics analysis and machine learning. BMC Med Genomics 2023; 16:269. [PMID: 37904220 PMCID: PMC10614356 DOI: 10.1186/s12920-023-01711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Schistosoma japonicum infection is an important public health problem and the S. japonicum infection is associated with a variety of diseases, including colorectal cancer. We collected the paraffin samples of CRC patients with or without S. japonicum infection according to standard procedures. Data-Independent Acquisition was used to identify differentially expressed proteins (DEPs), protein-protein interaction (PPI) network construction, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis and machine learning algorithms (least absolute shrinkage and selection operator (LASSO) regression) were used to identify candidate genes for diagnosing CRC with S. japonicum infection. To assess the diagnostic value, the nomogram and receiver operating characteristic (ROC) curve were developed. A total of 115 DEPs were screened, the DEPs that were discovered were mostly related with biological process in generation of precursor metabolites and energy,energy derivation by oxidation of organic compounds, carboxylic acid metabolic process, oxoacid metabolic process, cellular respiration aerobic respiration according to the analyses. Enrichment analysis showed that these compounds might regulate oxidoreductase activity, transporter activity, transmembrane transporter activity, ion transmembrane transporter activity and inorganic molecular entity transmembrane transporter activity. Following the development of PPI network and LASSO, 13 genes (hsd17b4, h2ac4, hla-c, pc, epx, rpia, tor1aip1, mindy1, dpysl5, nucks1, cnot2, ndufa13 and dnm3) were filtered, and 3 candidate hub genes were chosen for nomogram building and diagnostic value evaluation after machine learning. The nomogram and all 3 candidate hub genes (hsd17b4, rpia and cnot2) had high diagnostic values (area under the curve is 0.9556). The results of our study indicate that the combination of hsd17b4, rpia, and cnot2 may become a predictive model for the occurrence of CRC in combination with S. japonicum infection. This study also provides new clues for the mechanism research of S. japonicum infection and CRC.
Collapse
Affiliation(s)
- Shan Li
- Precision Preventive Medicine Laboratory of Basic Medical School, Jiujiang University, Jiujiang, 332005, China.
| | - Xuguang Sun
- Art School, Jiujiang University, Jiujiang, 332005, China
| | - Ting Li
- Affiliated Hospital of Jiujiang University, Jiujiang, 332005, China
| | - Yanqing Shi
- Affiliated Hospital of Jiujiang University, Jiujiang, 332005, China
| | - Binjie Xu
- Precision Preventive Medicine Laboratory of Basic Medical School, Jiujiang University, Jiujiang, 332005, China
| | - Yuyong Deng
- Precision Preventive Medicine Laboratory of Basic Medical School, Jiujiang University, Jiujiang, 332005, China
| | - Sifan Wang
- Precision Preventive Medicine Laboratory of Basic Medical School, Jiujiang University, Jiujiang, 332005, China
| |
Collapse
|
3
|
Bąska P, Norbury LJ. The Role of Nuclear Factor Kappa B (NF-κB) in the Immune Response against Parasites. Pathogens 2022; 11:pathogens11030310. [PMID: 35335634 PMCID: PMC8950322 DOI: 10.3390/pathogens11030310] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
The immune system consists of various cells, organs, and processes that interact in a sophisticated manner to defend against pathogens. Upon initial exposure to an invader, nonspecific mechanisms are raised through the activation of macrophages, monocytes, basophils, mast cells, eosinophils, innate lymphoid cells, or natural killer cells. During the course of an infection, more specific responses develop (adaptive immune responses) whose hallmarks include the expansion of B and T cells that specifically recognize foreign antigens. Cell to cell communication takes place through physical interactions as well as through the release of mediators (cytokines, chemokines) that modify cell activity and control and regulate the immune response. One regulator of cell states is the transcription factor Nuclear Factor kappa B (NF-κB) which mediates responses to various stimuli and is involved in a variety of processes (cell cycle, development, apoptosis, carcinogenesis, innate and adaptive immune responses). It consists of two protein classes with NF-κB1 (p105/50) and NF-κB2 (p100/52) belonging to class I, and RelA (p65), RelB and c-Rel belonging to class II. The active transcription factor consists of a dimer, usually comprised of both class I and class II proteins conjugated to Inhibitor of κB (IκB). Through various stimuli, IκB is phosphorylated and detached, allowing dimer migration to the nucleus and binding of DNA. NF-κB is crucial in regulating the immune response and maintaining a balance between suppression, effective response, and immunopathologies. Parasites are a diverse group of organisms comprised of three major groups: protozoa, helminths, and ectoparasites. Each group induces distinct effector immune mechanisms and is susceptible to different types of immune responses (Th1, Th2, Th17). This review describes the role of NF-κB and its activity during parasite infections and its contribution to inducing protective responses or immunopathologies.
Collapse
Affiliation(s)
- Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
- Correspondence:
| | - Luke J. Norbury
- Department of Biosciences and Food Technology, School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
4
|
Lam HYP, Liang TR, Peng SY. Ameliorative effects of Schisandrin B on Schistosoma mansoni-induced hepatic fibrosis in vivo. PLoS Negl Trop Dis 2021; 15:e0009554. [PMID: 34161342 PMCID: PMC8259995 DOI: 10.1371/journal.pntd.0009554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/06/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schistosomiasis is second only to malaria as the most devastating parasitic disease in the world. It is caused by the helminths Schistosoma mansoni (S. mansoni), S. haematobium, or S. japonicum. Typically, patients with schistosomiasis suffer from symptoms of liver fibrosis and hepatosplenomegaly. Currently, patients were treated with praziquantel. Although praziquantel effectively kills the worm, it cannot prevent re-infection or resolve liver fibrosis. Also, current treatment options are not ample to completely cure liver fibrosis and splenic damages. Moreover, resistance of praziquantel has been reported in vivo and in vitro studies. Therefore, finding new effective treatment agents is urgently needed. Schisandrin B (Sch B) of Schisandra chinensis has been shown to protect against different liver injuries including fatty liver disease, hepatotoxicity, fibrosis, and hepatoma. We herein investigate the potential of using Sch B to treat S. mansoni-induced liver fibrosis. Results from the present study demonstrate that Sch B is beneficial in treating S. mansoni-induced liver fibrosis and splenic damages, through inhibition of inflammasome activation and apoptosis; and aside from that regulates host immune responses. Besides, Sch B treatment damages male adult worm in the mice, consequently helps to reduce egg production and lessen the parasite burden.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Ruei Liang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yi Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
5
|
Lam HYP, Chen CC, Chen TTW, Chang KC, Wu WJ, Yang TH, Liang TR, Cheng PC, Peng SY. Mitochondrial dynamics in Angiostrongylus cantonensis-infected mouse brain. Parasitol Int 2020; 80:102231. [PMID: 33147498 DOI: 10.1016/j.parint.2020.102231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 11/15/2022]
Abstract
Angiostrongylus cantonensis is one of the most widespread parasites causing central nervous system (CNS) diseases in mammals. Since the mitochondrion is an essential cell organelle responsible for both physiological and pathological processes, its dysfunction might lead to inflammation and multiple disorders. In this study we aimed to investigate the changes in mitochondrial dynamics that occur in the mouse brain upon infection with A. cantonensis, using molecular biology techniques such as polymerase chain reaction (PCR), western blot analysis, transmission electron microscopy (TEM), and different staining methods. Here, we show that mouse brain infected with A. cantonensis exhibits altered mitochondrial dynamics, including fission, fusion, and biogenesis. Additionally, we demonstrate that caspases and B-cell lymphoma 2 (BCL-2) were significantly upregulated in A. cantonensis-infected brain. These results are indicative of the occurrence of apoptosis during A. cantonensis infection, which was further confirmed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. These findings suggest the change in mitochondrial dynamics in A. cantonensis-infected brain, providing another point of view on the pathogenesis of meningoencephalitis caused by A. cantonensis infection.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Cheng-Chi Chen
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Laboratory Medicine, Hualien Hospital, Ministry of Health and Welfare, Hualien, Taiwan
| | - Tina Tu-Wen Chen
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Hua Yang
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Ruei Liang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
6
|
Luo J, Shen S. Lipoic acid alleviates schistosomiasis-induced liver fibrosis by upregulating Drp1 phosphorylation. Acta Trop 2020; 206:105449. [PMID: 32194067 DOI: 10.1016/j.actatropica.2020.105449] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/16/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
Lipoic acid (LA) has been shown to possess protective effects against liver fibrosis mainly by induction of apoptosis of activated hepatic stellate cells, but the mechanism of LA activity in liver fibrosis has yet to be completely explained. LA occurs naturally in mitochondria as a coenzyme. In this study, we used mice with schistosomiasis-induced liver fibrosis and mouse hepatocarcinoma cell line 1C1C7 as models to investigate the mitochondrial mechanism of LA treatment for liver fibrosis. Western blot, real-time PCR and oxygen consumption rate (OCR) test were used. In the livers of mice with liver fibrosis, the mRNA levels of LA synthetic pathway enzymes, including MCAT, OXSM, MECR, and LIAS, were significantly reduced. Livers of mice with liver fibrosis showed degenerative signs, such as mitochondrial edema, a reduced mitochondrial crest and matrix density, or vacuolation; the activities of mitochondrial complexes I, II, IV, and V were also decreased in these livers. The expression of phosphorylation Drp1 (p-Drp1) was decreased in the livers of mice with liver fibrosis, indicating increased mitochondrial fission activity, whereas OPA1 and MFN1 expression was reduced, denoting decreased activity of mitochondrial fusion. To understand the mitochondrial mechanism of LA treatment for liver fibrosis, p-Drp1, OPA1, and MFN1 expression were detected at the protein level in mouse hepatocarcinoma cell line 1C1C7 stimulated by LA. OPA1 and MFN1 were not significantly altered, but p-Drp1 was significantly increased. The results suggest that LA may alleviate liver fibrosis through upregulating p-Drp1. This study provides a new insight into the mechanism of the protective effect of LA against schistosomiasis-induced liver fibrosis, which demonstrates that LA is required for the maintenance of mitochondrial function by upregulating p-Drp1 expression to inhibit mitochondrial fission.
Collapse
|
7
|
McKay DM, Mancini NL, Shearer J, Shutt T. Perturbed mitochondrial dynamics, an emerging aspect of epithelial-microbe interactions. Am J Physiol Gastrointest Liver Physiol 2020; 318:G748-G762. [PMID: 32116020 DOI: 10.1152/ajpgi.00031.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondria exist in a complex network that is constantly remodeling via the processes of fission and fusion in response to intracellular conditions and extracellular stimuli. Excessive fragmentation of the mitochondrial network because of an imbalance between fission and fusion reduces the cells' capacity to generate ATP and can be a forerunner to cell death. Given the critical roles mitochondria play in cellular homeostasis and innate immunity, it is not surprising that many microbial pathogens can disrupt mitochondrial activity. Here we note the putative contribution of mitochondrial dysfunction to gut disease and review data showing that infection with microbial pathogens can alter the balance between mitochondrial fragmentation and fusion, preventing normal remodeling (i.e., dynamics) and can lead to cell death. Current data indicate that infection of epithelia or macrophages with microbial pathogens will ultimately result in excessive fragmentation of the mitochondrial network. Concerted research efforts are required to elucidate fully the processes that regulate mitochondrial dynamics, the mechanisms by which microbes affect epithelial mitochondrial fission and/or fusion, and the implications of this for susceptibility to infectious disease. We speculate that the commensal microbiome of the gut may be important for normal epithelial mitochondrial form and function. Drugs designed to counteract the effect of microbial pathogen interference with mitochondrial dynamics may be a new approach to infectious disease at mucosal surfaces.
Collapse
Affiliation(s)
- Derek M McKay
- Gastrointestinal Research Group (GIRG) and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole L Mancini
- Gastrointestinal Research Group (GIRG) and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Timothy Shutt
- Department of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Chen TT, Peng S, Wang Y, Hu Y, Shen Y, Xu Y, Yin J, Liu C, Cao J. Improvement of Mitochondrial Activity and Fibrosis by Resveratrol Treatment in Mice with Schistosoma japonicum Infection. Biomolecules 2019; 9:biom9110658. [PMID: 31717714 PMCID: PMC6920829 DOI: 10.3390/biom9110658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023] Open
Abstract
Schistosomiasis caused by Schistosoma japonicum is a major parasitic disease in the People's Republic of China. Liver fibrosis is the main pathological mechanism of schistosomiasis, and it is also the major lesion. The common drug used for its treatment, praziquantel (PZQ), does not have a marked effect on liver fibrosis. Resveratrol (RSV), which is an antioxidant, improves mitochondrial function and also attenuates liver fibrosis. The combination of PZQ and RSV has been found to have a synergistic antischistosomal effect on Schistosoma mansoni; additionally, the activity of PZQ is enhanced in the presence of RSV. Here, we examine the therapeutic effects of RSV on the S. japonicum infection in a mouse model, and we investigate RSV as a novel therapeutic agent for mitochondrial function and schistosomiasis-associated liver fibrosis (SSLF). Mitochondrial membrane potential was examined using flow cytometry analysis. The expression of the mitochondrial biogenesis genes PGC-α and fibrosis-associated genes collagen I, collagen III and α-SMA were examined using western blot analysis. Fibrosis-associated histological changes were examined using Masson trichrome staining. Additionally, the effects of RSV on S. japonicum adult worms were examined using scanning electron microscopy and transmission electron microscopy. RSV treatment improved mitochondrial function by increasing membrane potential and increasing PGC-α expression (mitochondrial biogenesis). Further, RSV attenuated liver injury, including liver scarring, by decreasing collagen deposition and the extent of fibrosis, based on the decrease in expression of the fibrosis-related genes. RSV also decreased the adult worm count and caused considerable physical damage to the worm. These results indicate that RSV upregulates mitochondrial biogenesis and inhibits fibrosis. RSV may have potential as a therapeutic target for the treatment of fibrosis in schistosomiasis.
Collapse
Affiliation(s)
- Tina Tuwen Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shihyi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yanjuan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yuxin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Congshan Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
9
|
Activation of the NLRP3 and AIM2 inflammasomes in a mouse model of Schistosoma mansoni infection. J Helminthol 2019; 94:e72. [PMID: 31412958 DOI: 10.1017/s0022149x19000622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is an inflammatory disease that occurs when schistosome species eggs are deposited in the liver, resulting in fibrosis and portal hypertension. Schistosomes can interact with host inflammasomes to elicit host immune responses, leading to mitochondrial damage, generation of high levels of reactive oxygen species (ROS) and activation of apoptosis during inflammation. This study aims to examine whether ROS and NF-κB (p65) expression elicited other types of inflammasome activation in Schistosoma mansoni-infected mouse livers. We examine the relationship between inflammasome activation, mitochondrial damage and ROS production in mouse livers infected with S. mansoni. We demonstrate a significant release of ROS and superoxides and increased NF-κB (p65) in S. mansoni-infected mouse livers. Moreover, activation of the NLRP3 and AIM2 inflammasomes was triggered by S. mansoni infection. Stimulation of HuH-7 hepatocellular carcinoma cells with soluble egg antigen induced activation of the AIM2 inflammasome pathway. In this study, we demonstrate that S. mansoni infection promotes both NLRP3 and AIM2 inflammasome activation.
Collapse
|
10
|
Soultawi C, Fortier Y, Soundaramourty C, Estaquier J, Laforge M. Mitochondrial Bioenergetics and Dynamics During Infection. EXPERIENTIA. SUPPLEMENTUM 2019; 109:221-233. [PMID: 30535601 DOI: 10.1007/978-3-319-74932-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microbes have developed a series of strategies to overcome the defense mechanisms of the infected host. During pathogen-host coevolution, they develop strategy to manipulate cellular machinery particularly in subverting mitochondrion function. Mitochondria are highly dynamic organelles that constantly remodel their structure. In particular, shaping and cellular distribution of the mitochondrial network is maintained in large part by the conserved activities of mitochondrial division, fusion, motility, and tethering. Mitochondria have been long recognized for their role in providing energy production, calcium metabolism, and apoptosis. More recently, mitochondria have been also shown to serve as a platform for innate immune response. In this context, mitochondrial dynamics and shaping is not only essential to maintain cristae structure and bioenergetic to fuel cellular demands but contribute to regulate cellular function such as innate immune response and mitochondrial permeabilization. Due to their key role in cell survival, mitochondria represent attractive targets for pathogens. Therefore, microbes by manipulating mitochondrial dynamics may escape to host cellular control. Herein, we describe how mitochondrial bioenergetics, dynamics, and shaping are impacted during microbe infections and how this interplay benefits to pathogens contributing to the diseases.
Collapse
Affiliation(s)
- Cynthia Soultawi
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Yasmina Fortier
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | | | - Jérôme Estaquier
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France. .,Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada.
| | - Mireille Laforge
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France.
| |
Collapse
|
11
|
Abd El-Aal NF, Hamza RS, Harb O. Paeoniflorin targets apoptosis and ameliorates fibrosis in murine schistosomiasis mansoni : A novel insight. Exp Parasitol 2017; 183:23-32. [DOI: 10.1016/j.exppara.2017.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/25/2017] [Accepted: 10/12/2017] [Indexed: 01/04/2023]
|
12
|
Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission. Virology 2016; 500:149-160. [PMID: 27816895 DOI: 10.1016/j.virol.2016.10.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 02/08/2023]
Abstract
Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication.
Collapse
|