1
|
Carvalho L, Sarcinelli M, Patrício B. Nanotechnological approaches in the treatment of schistosomiasis: an overview. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:13-25. [PMID: 38213572 PMCID: PMC10777326 DOI: 10.3762/bjnano.15.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Schistosomiasis causes over 200,000 deaths annually. The current treatment option, praziquantel, presents limitations, including low bioavailability and resistance. In this context, nanoparticles have emerged as a promising option for improving schistosomiasis treatment. Several narrative reviews have been published on this topic. Unfortunately, the lack of clear methodologies presented in these reviews leads to the exclusion of many important studies without apparent justification. This integrative review aims to examine works published in this area with a precise and reproducible method. To achieve this, three databases (i.e., Pubmed, Web of Science, and Scopus) were searched from March 31, 2022, to March 31, 2023. The search results included only original research articles that used nanoparticles smaller than 1 µm in the treatment context. Additionally, a search was conducted in the references of the identified articles to retrieve works that could not be found solely using the original search formula. As a result, 65 articles that met the established criteria were identified. Inorganic and polymeric nanoparticles were the most prevalent nanosystems used. Gold was the primary material used to produce inorganic nanoparticles, while poly(lactic-co-glycolic acid) and chitosan were commonly used to produce polymeric nanoparticles. None of these identified works presented results in the clinical phase. Finally, based on our findings, the outlook appears favorable, as there is a significant diversity of new substances with schistosomicidal potential. However, financial efforts are required to advance these nanoformulations.
Collapse
Affiliation(s)
- Lucas Carvalho
- Laboratory of Parasitic Diseases, FIOCRUZ, Avenida Brasil, 4365, Rio de Janeiro, Brazil
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Michelle Sarcinelli
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Beatriz Patrício
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Pharmaceutical and Technological Innovation Laboratory - Department of Physiological Sciences, Biomedical Institute, R. Frei Caneca, 94, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Alsharedeh RH, Rezigue M, Bashatwah RM, Amawi H, Aljabali AAA, Obeid MA, Tambuwala MM. Nanomaterials as a Potential Target for Infectious Parasitic Agents. Curr Drug Deliv 2024; 21:828-851. [PMID: 36815647 DOI: 10.2174/1567201820666230223085403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 02/24/2023]
Abstract
Despite the technological advancement in the era of personalized medicine and therapeutics development, infectious parasitic causative agents remain one of the most challenging areas of research and development. The disadvantages of conventional parasitic prevention and control are the emergence of multiple drug resistance as well as the non-specific targeting of intracellular parasites, which results in high dose concentration needs and subsequently intolerable cytotoxicity. Nanotechnology has attracted extensive interest to reduce medication therapy adverse effects including poor bioavailability and drug selectivity. Numerous nanomaterials-based delivery systems have previously been shown in animal models to be effective in the treatment of various parasitic infections. This review discusses a variety of nanomaterials-based antiparasitic procedures and techniques as well as the processes that allow them to be targeted to different parasitic infections. This review focuses on the key prerequisites for creating novel nanotechnology-based carriers as a potential option in parasite management, specifically in the context of human-related pathogenic parasitic agents.
Collapse
Affiliation(s)
- Rawan H Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Rasha M Bashatwah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| |
Collapse
|
3
|
El-Shorbagy AA, Shafaa MW, Salah Elbeltagy R, El-Hennamy RE, Nady S. Liposomal IL-22 ameliorates liver fibrosis through miR-let7a/STAT3 signaling in mice. Int Immunopharmacol 2023; 124:111015. [PMID: 37827055 DOI: 10.1016/j.intimp.2023.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
The therapeutic effect of liposomal IL-22 versus non-liposomal IL-22 on liver fibrosis was investigated. IL-22 (5 µg/ml) was incorporated into negative charged liposomes. Schistosoma mansoni infected mice were treated with liposomal IL-22 for either 7 or 14 days before decapitation. Liver and spleen were removed and splenocytes were isolated for in vitro investigations. TNF-α, IL-17, IL-22 and IgE levels were assessed. Hepatic granulomas were counted, granuloma index and its developmental stages were calculated. Hepatic expressions of STAT3, β-catenin and let-7a miRNA were evaluated. Liposomal IL-22 size was clustered around 425.9 ± 58.0 nm with negative zeta potential (-18.8 ± 1.3 mV). After 14 days, 65.5% of IL-22 was released from liposomal IL-22 as was gradually observed in vitro. Liposomal IL-22 significantly (p < 0.05) decreased IL-17 level (-33.1%) of healthy splenocytes compared to non-liposomal IL-22. In vivo therapeutic effect of liposomal IL-22 revealed a significant (p < 0.05) decrease in hepatic granuloma index (-22.1%) and levels of TNF-α (-49.2%) and IL-17 (-57.3%), but a marked increase in IL-22 (64.2%) and IgE (196.1%) levels comparing to non-liposomal IL-22. Three developmental stages of hepatic granuloma (NE, EP, and P) were observed in liposomal and non-liposomal IL-22 groups (79.6 ± 1.7 and 81.8 ± 8.7, respectively, P < 0.05), with higher relative frequency of EP stage. Additionally, liposomal IL-22 treatment increased hepatic expression of STAT3 (21.7 fold change) and let-7a (3.6 fold change) and reduced β-catenin expression (0.6 fold change) compared to healthy mice. Conclusively, liposomal IL-22 seems more effective in the treatment of liver fibrosis resulting from S. mansoni infection than non-liposomal IL-22.
Collapse
Affiliation(s)
| | - Medhat W Shafaa
- Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rasha Salah Elbeltagy
- Departments of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rehab E El-Hennamy
- Departments of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Soad Nady
- Departments of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
4
|
Shakib P, Zivdari M, Khalaf AK, Marzban A, Ganjalikhani-Hakemi M, Parvaneh J, Mahmoudvand H, Cheraghipour K. Nanoparticles as Potent Agents for Treatment of Schistosoma Infections: A Systematic Review. CURRENT THERAPEUTIC RESEARCH 2023; 99:100715. [PMID: 37743882 PMCID: PMC10511339 DOI: 10.1016/j.curtheres.2023.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
Background Schistosomiasis is an acute and chronic parasitic disease caused by blood flukes of the genus Schistosoma. The current drugs for treating schistosomiasis are associated with some side effects. Objective The aim of this systematic study was an overview of the treatment of diseases caused by Schistosoma based on nanoparticles. Methods In the present systematic research with keywords "Schistosoma", "parasitism", "anti-Schistosoma activity", "nanoparticles", "metal nanoparticles", "silver nanoparticles", "gold nanoparticles", "polymer nanoparticles", "PLGA nanoparticles", "nanoemulsions", "in vitro", and "in vivo" from five English-language databases, including ScienceDirect, europePMC, PubMed, Scopus, Ovid, and Cochrane were searched from 2000 to 2022 by 2 researchers. Results In the initial search, 250 studies were selected. Based on the inclusion and exclusion criteria, 27 articles were finally selected after removing duplicate, unrelated, and articles containing full text. In present article, the most nanoparticles used against Schistosoma were gold nanoparticles (22%). Conclusions The results indicate the high potential of various nanoparticles, including metal nanoparticles, against Schistosoma. Also, the remarkable anti-schistosomal activity of nanoparticles suggests their use in different fields to eliminate this pathogenic microorganism so that it can be used as an effective candidate in the preparation of anti-schistosomal compounds because these compounds have fewer side effects than chemical drugs. Ther Res Clin Exp. 2023; XX:XXX-XXX).
Collapse
Affiliation(s)
- Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masoomeh Zivdari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Yedıtepe University, Istanbul, Turkey
| | | | - Hossein Mahmoudvand
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Lorestan Provincial Veterinary Service, Khorramabad, Iran
| |
Collapse
|
5
|
Qadeer A, Ullah H, Sohail M, Safi SZ, Rahim A, Saleh TA, Arbab S, Slama P, Horky P. Potential application of nanotechnology in the treatment, diagnosis, and prevention of schistosomiasis. Front Bioeng Biotechnol 2022; 10:1013354. [PMID: 36568300 PMCID: PMC9780462 DOI: 10.3389/fbioe.2022.1013354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis is one of the neglected tropical diseases that affect millions of people worldwide. Globally, it affects economically poor countries, typically due to a lack of proper sanitation systems, and poor hygiene conditions. Currently, no vaccine is available against schistosomiasis, and the preferred treatment is chemotherapy with the use of praziquantel. It is a common anti-schistosomal drug used against all known species of Schistosoma. To date, current treatment primarily the drug praziquantel has not been effective in treating Schistosoma species in their early stages. The drug of choice offers low bioavailability, water solubility, and fast metabolism. Globally drug resistance has been documented due to overuse of praziquantel, Parasite mutations, poor treatment compliance, co-infection with other strains of parasites, and overall parasitic load. The existing diagnostic methods have very little acceptability and are not readily applied for quick diagnosis. This review aims to summarize the use of nanotechnology in the treatment, diagnosis, and prevention. It also explored safe and effective substitute approaches against parasitosis. At this stage, various nanomaterials are being used in drug delivery systems, diagnostic kits, and vaccine production. Nanotechnology is one of the modern and innovative methods to treat and diagnose several human diseases, particularly those caused by parasite infections. Herein we highlight the current advancement and application of nanotechnological approaches regarding the treatment, diagnosis, and prevention of schistosomiasis.
Collapse
Affiliation(s)
- Abdul Qadeer
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hanif Ullah
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Muhammad Sohail
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Sher Zaman Safi
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore, Pakistan,Faculty of Medicine, Bioscience and Nursing MAHSA University, Selangor, Malaysia
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan,*Correspondence: Abdur Rahim, ; Petr Slama, ; Pavel Horky,
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia,*Correspondence: Abdur Rahim, ; Petr Slama, ; Pavel Horky,
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia,*Correspondence: Abdur Rahim, ; Petr Slama, ; Pavel Horky,
| |
Collapse
|
6
|
Ossai EC, Eze AA, Ogugofor MO. Plant-derived compounds for the treatment of schistosomiasis: Improving efficacy via nano-drug delivery. Niger J Clin Pract 2022; 25:747-764. [DOI: 10.4103/njcp.njcp_1322_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Adekiya TA, Kumar P, Kondiah PPD, Pillay V, Choonara YE. Synthesis and therapeutic delivery approaches for praziquantel: a patent review (2010-present). Expert Opin Ther Pat 2021; 31:851-865. [PMID: 33832392 DOI: 10.1080/13543776.2021.1915292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION : Among all the anti-schistosomal drugs, praziquantel has been the most widely used. However, some major challenges have been faced using the drug in the treatment of schistosome infections. AREAS COVERED : Several approaches used in the synthesis of praziquantel aimed at reducing the time and cost of production, the toxicity and experimental harsh conditions are discussed. Also, patented methods involved in the pharmaceutical reformulation of praziquantel in the treatment of diverse endoparasitic infestations are reported. Additionally, future perspectives in terms of nanomedicine approach in the formulation of praziquantel are highlighted. EXPERT OPINION : Lipid-based nanosystems (LBNSs) formulations can be used to overcome the shortcomings associated with the use of praziquantel in the schistosomiasis treatment due to their amphipathic nature. This could be a promising vehicle for the delivery of praziquantel, which could in turn improve the bioavailability, as well as reduce the frequent dose of the drug and improve patient compliance. This may sustain the release of the drug and improve the rapid conversion of the drug into inactive metabolite due to rapid metabolism. Additionally, LBNSs approach could increase and improve the lipophilicity of the drug, which could make it easier to interact with the hydrophobic cores of the worm tegument.
Collapse
Affiliation(s)
- Tayo A Adekiya
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Adekiya TA, Kondiah PPD, Choonara YE, Kumar P, Pillay V. A Review of Nanotechnology for Targeted Anti-schistosomal Therapy. Front Bioeng Biotechnol 2020; 8:32. [PMID: 32083071 PMCID: PMC7005470 DOI: 10.3389/fbioe.2020.00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis is one of the major parasitic diseases and second most prevalent among the group of neglected diseases. The prevalence of schistosomiasis may be due to environmental and socio-economic factors, as well as the unavailability of vaccines for schistosomiasis. To date, current treatment; mainly the drug praziquantel (PZQ), has not been effective in treating the early forms of schistosome species. The development of drug resistance has been documented in several regions globally, due to the overuse of PZQ, rate of parasitic mutation, poor treatment compliance, co-infection with different strains of schistosomes and the overall parasite load. Hence, exploring the schistosome tegument may be a potential focus for the design and development of targeted anti-schistosomal therapy, with higher bioavailability as molecular targets using nanotechnology. This review aims to provide a concise incursion on the use of various advance approaches to achieve targeted anti-schistosomal therapy, mainly through the use of nano-enabled drug delivery systems. It also assimilates the molecular structure and function of the schistosome tegument and highlights the potential molecular targets found on the tegument, for effective specific interaction with receptors for more efficacious anti-schistosomal therapy.
Collapse
Affiliation(s)
| | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Radwan A, El-Lakkany NM, William S, El-Feky GS, Al-Shorbagy MY, Saleh S, Botros S. A novel praziquantel solid lipid nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection. Parasit Vectors 2019; 12:304. [PMID: 31208446 PMCID: PMC6580642 DOI: 10.1186/s13071-019-3563-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/12/2019] [Indexed: 11/24/2022] Open
Abstract
Background Schistosomiasis is responsible for a considerable global disease burden. This work aimed to improve the therapeutic outcome of the only available antischistosomal drug worldwide, praziquantel (PZQ), by incorporating it into a novel carrier, “solid lipid nanoparticles (SLNs)”, to enhance its solubility, bioavailability and efficacy. A simple, cost-effective method was used to prepare SLN-PZQ. Results Compared to market PZQ (M-PZQ), SLN-PZQ was more bioavailable, as denoted by higher serum concentrations in both normal and infected mice where elevated Ka, AUC0–24, Cmax, and t1/2e with a decrease in kel were demonstrated. The AUC0–24 for SLN-PZQ in normal and Schistosoma mansoni-infected groups was almost nine- and eight-fold higher, respectively, than that for M-PZQ in corresponding groups. In normal and S. mansoni-infected mice, SLN-PZQ was detectable in serum at 24 h, while M-PZQ completely vanished 8 h post-treatment. Additionally, enhanced absorption with extended residence time was recorded for SLN-PZQ. Compared to M-PZQ, SLN-PZQ revealed superior antischistosomal activity coupled with enhanced bioavailability in all treated groups where higher percentages of worm reduction were recorded with all dosages tested. This effect was especially evident at the lower dose levels. The ED95 of SLN-PZQ was 5.29-fold lower than that of M-PZQ, with a significantly higher reduction in both the hepatic and intestinal tissue egg loads of all treated groups and almost complete disappearance of immature deposited eggs (clearly evident at the low dose levels). Conclusions SLN-PZQ demonstrated enhanced PZQ bioavailability and antischistosomal efficacy with a safe profile despite the prolonged residence in the systemic circulation.
Collapse
Affiliation(s)
- Amr Radwan
- Research Department, Academy of Scientific Research and Technology, Cairo, Egypt.
| | - Naglaa M El-Lakkany
- Pharmacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Samia William
- Parasitology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Gina S El-Feky
- Pharmaceutical Technology Department, National Research Center, Giza, Egypt
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Samira Saleh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Sanaa Botros
- Pharmacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| |
Collapse
|
10
|
Labib El Gendy AEM, Mohammed FA, Abdel-Rahman SA, Shalaby TIA, Fathy GM, Mohammad SM, El-Shafey MA, Mohammed NA. Effect of nanoparticles on the therapeutic efficacy of praziquantel against Schistosoma mansoni infection in murine models. J Parasit Dis 2019; 43:416-425. [PMID: 31406407 DOI: 10.1007/s12639-019-01106-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
Praziquantel (PZQ) is the main treatment of Schistosomiasis mansoni. However, resistance to it was described. So, there is a necessity to develop novel drugs or to enhance the present drugs. This work aimed to assess the efficacy of PZQ alone and when loaded on liposomes in treatment of S. mansoni infection by parasitological and histopathological studies in experimental murine models. 112 male laboratories bred Swiss Albino mice were used in this work. They were divided into four groups: Group 1: control group; Group 2: infected then treated by PZQ (500 mg/kg) at 7, 30 and 45 days post infection; Group 3: infected then treated by liposome encapsulated PZQ (lip.PZQ) (500 mg/kg) at 7, 30 and 45 days post infection; Group 4: infected then treated by free liposomes at 7, 30 and 45 days post infection. The results showed that G3 caused the highest significant reduction of the total worm count, eggs/gram liver tissue and intestine (97.2%, 99.3%, 99.5%) respectively. Followed by G2 (85.1%, 97.6%, 89.8%) respectively. Regarding the histopathological studies, G3 showed the highest significant reduction in number and diameter of hepatic granuloma (97.6% and 98.1%), followed by G2 (77.2% and 75%) when compared to other groups. In conclusion, lip.PZQ is more effective than free PZQ from all aspects especially when administered 45 days PI.
Collapse
Affiliation(s)
| | - Faten Alsayed Mohammed
- 1Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara A Abdel-Rahman
- 1Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ghada M Fathy
- 1Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Mahmoud A El-Shafey
- 3Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nesma Atef Mohammed
- 1Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Abstract
Schistosomiasis affects millions globally. There is no vaccine, and treatment depends entirely on praziquantel (PZQ). Field isolates exhibit reduced susceptibility to PZQ, and resistance has been experimentally induced, suggesting that reliance on a single treatment is particularly dangerous. The present study investigated the value of cinnarizine and griseofulvin against Schistosoma mansoni through their in vitro effects on adult worms and oviposition as well as in vivo evaluation in early and late infection, compared to PZQ, in a preliminary experimental model. In vitro, both cinnarizine and griseofulvin showed uncoupling, sluggish worm movement and complete absence of ova at 100 μg/ml. In early infection, cinnarizine showed a significant reduction in the number of porto-mesenteric couples compared to the griseofulvin and control groups, a finding similar to PZQ. Remarkably, cinnarizine significantly exceeded PZQ and griseofulvin in reducing the total worm burden. In late infection, cinnarizine and griseofulvin showed results similar to PZQ by significantly reducing the numbers of hepatic and porto-mesenteric couples and total worm burden compared to controls. Cinnarizine performed better than griseofulvin by reducing hepatic and intestinal ovum counts, and it led to complete disappearance of the first two immature stages. The current work suggests the possibility of using cinnarizine and griseofulvin, mainly in late S. mansoni infection, especially cinnarizine, which showed similar results to PZQ and surpassed it in early infection. Further studies are required to elucidate their exact mechanisms of action and particularly their synergistic effect with PZQ.
Collapse
|
12
|
In vitro schistosomicidal activity of tamoxifen and its effectiveness in a murine model of schistosomiasis at a single dose. Parasitol Res 2019; 118:1625-1631. [PMID: 30798369 DOI: 10.1007/s00436-019-06259-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 02/11/2019] [Indexed: 01/17/2023]
Abstract
Schistosomiasis is a neglected tropical disease affecting 220 million people worldwide. Praziquantel has proven to be effective against this parasitic disease, though there are increasing concerns regarding tolerance/resistance that calls for new drugs. Repurposing already existing and well-known drugs has been a desirable approach since it reduces time, costs, and ethical concerns. The anti-cancer drug tamoxifen (TAM) has been used worldwide for several decades to treat and prevent breast cancer. Previous reports stated that TAM affects Schistosoma hormonal physiology; however, no controlled schistosomicidal in vivo assays have been conducted. In this work, we evaluated the effect of TAM on female and male Schistosoma mansoni morphology, motility, and egg production. We further assessed worm survival and egg production in S. mansoni-infected mice. TAM induced morphological alterations in male and female parasites, as well as in eggs in vitro. Furthermore, in our in vivo experiments, one single dose of intraperitoneal TAM citrate reduced the total worm burden by 73% and led to a decrease in the amount of eggs in feces and low percentages of immature eggs in the small intestine wall. Eggs obtained from TAM citrate-treated mice were reduced in size and presented hyper-vacuolated structures. Our results suggest that TAM may be repurposed as a therapeutic alternative against S. mansoni infections.
Collapse
|
13
|
Nisini R, Poerio N, Mariotti S, De Santis F, Fraziano M. The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases. Front Immunol 2018; 9:155. [PMID: 29459867 PMCID: PMC5807682 DOI: 10.3389/fimmu.2018.00155] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022] Open
Abstract
Liposomes are closed bilayer structures spontaneously formed by hydrated phospholipids that are widely used as efficient delivery systems for drugs or antigens, due to their capability to encapsulate bioactive hydrophilic, amphipathic, and lipophilic molecules into inner water phase or within lipid leaflets. The efficacy of liposomes as drug or antigen carriers has been improved in the last years to ameliorate pharmacokinetics and capacity to release their cargo in selected target organs or cells. Moreover, different formulations and variations in liposome composition have been often proposed to include immunostimulatory molecules, ligands for specific receptors, or stimuli responsive compounds. Intriguingly, independent research has unveiled the capacity of several phospholipids to play critical roles as intracellular messengers in modulating both innate and adaptive immune responses through various mechanisms, including (i) activation of different antimicrobial enzymatic pathways, (ii) driving the fusion–fission events between endosomes with direct consequences to phagosome maturation and/or to antigen presentation pathway, and (iii) modulation of the inflammatory response. These features can be exploited by including selected bioactive phospholipids in the bilayer scaffold of liposomes. This would represent an important step forward since drug or antigen carrying liposomes could be engineered to simultaneously activate different signal transduction pathways and target specific cells or tissues to induce antigen-specific T and/or B cell response. This lipid-based host-directed strategy can provide a focused antimicrobial innate and adaptive immune response against specific pathogens and offer a novel prophylactic or therapeutic option against chronic, recurrent, or drug-resistant infections.
Collapse
Affiliation(s)
- Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Noemi Poerio
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Sabrina Mariotti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Federica De Santis
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Maurizio Fraziano
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| |
Collapse
|
14
|
Siqueira LDP, Fontes DAF, Aguilera CSB, Timóteo TRR, Ângelos MA, Silva LCPBB, de Melo CG, Rolim LA, da Silva RMF, Neto PJR. Schistosomiasis: Drugs used and treatment strategies. Acta Trop 2017; 176:179-187. [PMID: 28803725 DOI: 10.1016/j.actatropica.2017.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022]
Abstract
Neglected tropical diseases (NTDs) affect millions of people in different geographic regions, especially the poorest and most vulnerable. Currently NTDs are prevalent in 149 countries, seventeen of these neglected tropical parasitic diseases are classified as endemic. One of the most important of these diseases is schistosomiasis, also known as bilharzia, a disease caused by the genus Schistosoma. It presents several species, such as Schistosoma haematobium, Schistosoma japonicum and Schistosoma mansoni, the latter being responsible for parasitosis in Brazil. Contamination occurs through exposure to contaminated water in the endemic region. This parasitosis is characterized by being initially asymptomatic, but it is able to evolve into more severe clinical forms, potentially causing death. Globally, more than 200 million people are infected with one of three Schistosome species, including an estimated 40 million women of reproductive age. In Brazil, about 12 million children require preventive chemotherapy with anthelmintic. However, according to the World Health Organization (WHO), only about 15% of the at-risk children receive regular treatment. The lack of investment by the pharmaceutical industry for the development and/or improvement of new pharmaceutical forms, mainly aimed at the pediatric public, is a great challenge. Currently, the main forms of treatment used for schistosomiasis are praziquantel (PZQ) and oxaminiquine (OXA). PZQ is the drug of choice because it presents as a high-spectrum anthelmintic, used in the treatment of all known species of schistosomiasis and some species of cestodes and trematodes. OXA, however, is not active against the three Schistosome species. This work presents a literature review regarding schistosomiasis. It addresses points such as available treatments, the role of the pharmaceutical industry against neglected diseases, and perspectives for treatment.
Collapse
Affiliation(s)
- Lidiany da Paixão Siqueira
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Danilo Augusto Ferreira Fontes
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Cindy Siqueira Britto Aguilera
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Taysa Renata Ribeiro Timóteo
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Matheus Alves Ângelos
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Laysa Creusa Paes Barreto Barros Silva
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Camila Gomes de Melo
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Larissa Araújo Rolim
- Central de Análise de Fármacos, Medicamentos e Alimentos da Universidade Federal do Vale do São Francisco, Avenida José de Sá Maniçoba, CEP 56304-917, Petrolina, Pernambuco, Brazil
| | - Rosali Maria Ferreira da Silva
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil
| | - Pedro José Rolim Neto
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, CEP 50740-521, Recife, Pernambuco, Brazil.
| |
Collapse
|
15
|
Tomiotto-Pellissier F, Miranda-Sapla MM, Machado LF, Bortoleti BTDS, Sahd CS, Chagas AF, Assolini JP, Oliveira FJDA, Pavanelli WR, Conchon-Costa I, Costa IN, Melanda FN. Nanotechnology as a potential therapeutic alternative for schistosomiasis. Acta Trop 2017; 174:64-71. [PMID: 28668252 DOI: 10.1016/j.actatropica.2017.06.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023]
Abstract
Schistosomiasis is a neglected disease that affects millions of people worldwide, recognized as the most important human helminth infection in terms of morbidity and mortality. The treatment of choice presents low bioavailability and water solubility, in addition to the induction of parasite resistance. In this context, researchers have been conducting studies seeking to develop new drugs to ensure safety, quality, and efficacy against this parasitosis. In this scenario, nanotechnology arises including the drug delivery systems in nanoscale: nanoemulsions, liposomes and nanoparticles. These drug delivery systems have been extensively applied for in vitro and in vivo studies against Schistosoma spp. with promising results. This review pointed out the most relevant development scenarios regarding the treatment of schistosomiasis as well as the application of nanotechnology as a vaccine, highlighting the use of nanotechnology as an alternative therapy for both the repositioning of drugs and the use of new pharmaceutical products, with promising results regarding the aforementioned disease.
Collapse
|
16
|
Cong Z, Shi Y, Peng X, Wei B, Wang Y, Li J, Li J, Li J. Design and optimization of thermosensitive nanoemulsion hydrogel for sustained-release of praziquantel. Drug Dev Ind Pharm 2017; 43:558-573. [DOI: 10.1080/03639045.2016.1270960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhaotong Cong
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Xue Peng
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Bei Wei
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Yu Wang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Jincheng Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Jianyong Li
- CAAS, Institute of Lanzhou Husbandry and Animal Pharmaceutics, Lanzhou, P.R. China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| |
Collapse
|