1
|
Liu S, Gao F, Wang R, Li W, Wang S, Zhang X. Molecular Characteristics of the Fatty-Acid-Binding Protein (FABP) Family in Spirometra mansoni-A Neglected Medical Tapeworm. Animals (Basel) 2023; 13:2855. [PMID: 37760255 PMCID: PMC10525997 DOI: 10.3390/ani13182855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The plerocercoid larva of the tapeworm Spirometra mansoni can parasitize humans and animals, causing serious parasitic zoonosis. The molecular characteristics and adaptive parasitism mechanism of Spirometra tapeworms are still unknown. In this study, 11 new members of the fatty-acid-binding protein (FABP) family were characterized in S. mansoni. A clustering analysis showed 11 SmFABPs arranged into two groups, and motif patterns within each group had similar organizations. RT-qPCR showed that SmFABPs were highly expressed in the adult stage, especially in gravid proglottid. A high genetic diversity of SmFABPs and relative conservation of FABPs in medical platyhelminthes were observed in the phylogenetic analysis. Immunolocalization revealed that natural SmFABP is mainly located in the tegument and parenchymal tissue of the plerocercoid and the uterus, genital pores, and cortex of adult worms. rSmFABP can build a more stable holo form when binding with palmitic acid to protect the hydrolytic sites of the protein. A fatty acid starvation induction test suggested that SmFABP might be involved in fatty acid absorption, transport, and metabolism in S. mansoni. The findings in this study will lay the foundation to better explore the underlying mechanisms of FABPs involved in Spirometra tapeworms as well as related taxa.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (F.G.); (R.W.); (W.L.); (S.W.)
| |
Collapse
|
2
|
Biochemical characterization of mitochondria from adult worms and plerocercoid larvae of Spirometra mansoni shows mixed populations of anaerobic and aerobic mitochondria. Parasitol Int 2023; 92:102695. [DOI: 10.1016/j.parint.2022.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
3
|
Liu SN, Su XY, Chen WQ, Yu JW, Li JR, Jiang P, Cui J, Wang ZQ, Zhang X. Transcriptome profiling of plerocercoid and adult developmental stages of the neglected medical tapeworm Spirometra erinaceieuropaei. Acta Trop 2022; 232:106483. [PMID: 35469749 DOI: 10.1016/j.actatropica.2022.106483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
The plerocercoid larvae of the tapeworm Spirometra erinaceieuropaei can parasitize humans and animals and cause serious parasitic zoonosis. However, our knowledge of the developmental process of S. erinaceieuropaei is still inadequate. To better characterize differential and specific genes and pathways associated with parasite development, a comparative transcriptomic analysis of the plerocercoid stage and the adult stage was performed using RNA-seq and de novo analysis. Approximately 13,659 differentially expressed genes (DEGs) were identified in plerocercoids versus adults, of which 6455 DEGs were upregulated and 7204 were downregulated. DEGs involved in parasite immunoevasion were more active in plerocercoid larvae than in adults, while DEGs associated with metabolic activity were upregulated in adults. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses revealed that most DEGs involved in protein phosphorylation/dephosphorylation and the Wnt signalling pathway were much more active in plerocercoid larvae. The molecular functions of upregulated unigenes in adults were mainly enriched for metabolic activities. qPCR validated that the expression levels of 10 selected DEGs were consistent with those in RNA-seq, confirming the accuracy of the RNA-seq results. Our results contributed to increasing the knowledge on the S. erinaceieuropaei gene repertoire and expression profile and also provide valuable resources for functional studies on the molecular mechanisms of S. erinaceieuropaei.
Collapse
Affiliation(s)
- Shi Nan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Yi Su
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Qing Chen
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Wei Yu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Ru Li
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Jiang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Kondo Y, Ito D, Tademoto S, Itami N, Nishikata S, Takashima E, Tsuboi T, Fukumoto S, Otsuki H. Molecular cloning and characterization of plerocercoid-immunosuppressive factor from Spirometra erinaceieuropaei. Parasitol Int 2020; 76:102062. [PMID: 31978597 DOI: 10.1016/j.parint.2020.102062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 01/15/2023]
Abstract
A platyhelminth, Spirometra erinaceieuropaei, belonging to the class Cestoda, causes human sparganosis, and infection with its larva results in subtle inflammation in the body of its host. We previously reported the purification of a glycoprotein, plerocercoid-immunosuppressive factor (P-ISF) from the excretory/secretory products of S. erinaceieuropaei plerocercoids that may be involved in immuno-modification. We determined the sequence of P-ISF from the N-terminal and the internal 10 amino acids of P-ISF using degenerate PCR and 5'- and 3'-RACE methods. The putative gene encoding P-ISF was 1443 bp long and the gene contained 10 exons and 9 introns in a genomic DNA of size 5205 bp. P-ISF consists of 480 amino acids including the N-terminal signal peptide sequence, and has two unknown domains,-cestoda cysteine-rich domains (CCDs) and a fibronectin type III domain between the two CCDs. All cysteine residues were conserved in the two CCDs, which shared 62% amino acid identities. Homologous analysis revealed that the CCDs were homologous with an unknown protein of Diphyllobothrium latum. To produce specific antibodies, we expressed recombinant P-ISF (rP-ISF) using wheat germ protein synthetic system. P-ISF was localized in the sub-cutaneous tissues and the parenchymal tissues of plerocercoids. Transcription of P-ISF was detected only in plerocercoid stage, but not in adult stage. Western blotting also showed a band in plerocercoide stage but not in adult. The rP-ISF did not suppress nitrite production in RAW 264.7 cells stimulated with LPS, and this might be due to lack of carbohydrate chains in the recombinant protein.
Collapse
Affiliation(s)
- Yoko Kondo
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Sayuri Tademoto
- Technical Department, Tottori University, Yonago 683-8503, Japan
| | - Nanase Itami
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Shuma Nishikata
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Soji Fukumoto
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; Tottori Medical Career Support Center, Tottori University Hospital, Yonago 683-8504, Japan
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.
| |
Collapse
|
5
|
Zhang S. Screening and verification for proteins that interact with leucine aminopeptidase of Taenia pisiformis using a yeast two-hybrid system. Parasitol Res 2019; 118:3387-3398. [PMID: 31728719 DOI: 10.1007/s00436-019-06510-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022]
Abstract
Leucine aminopeptidase of Taenia pisiformis (TpLAP) belonging to the M17 peptidase family has been implicated as a stage-differentially expressed protein in the adult stage of T. pisiformis. In order to further dissect the biological functions of TpLAP in the growth and development of adult worms, TpLAP-interacting partners were investigated. In this study, a yeast two-hybrid (Y2H) cDNA library from adult T. pisiformis was constructed. Using pGBKT7-TpLAP as bait, proteins interacting with TpLAP were screened by Y2H system and positive preys were sequenced and analyzed using the Basic Local Alignment Search Tool (BLAST). Our results showed that six genuine TpLAP-interacting proteins, including LAP, dynein light chain (DLC), SUMO-conjugating enzyme (UBC9), histone-lysine n-methyltransferase, trans-acting transcriptional, and one unknown protein, were identified via Y2H assay. Furthermore, the interaction between TpLAP and UBC9 of T. pisiformis (TpUBC9), an important protein involved in SUMOylation pathway, was further validated by one-to-one Y2H assay, co-immunoprecipitation, and confocal analysis. These findings provide a deeper understanding of the biological functions of TpLAP and offer the first clue that TpLAP may act as a novel SUMOylated substrate, suggesting that the SUMO modification pathway plays an important role in regulation of adult worm growth and development.
Collapse
Affiliation(s)
- Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
6
|
Barčák D, Yoneva A, Sehadová H, Oros M, Gustinelli A, Kuchta R. Complex insight on microanatomy of larval "human broad tapeworm" Dibothriocephalus latus (Cestoda: Diphyllobothriidea). Parasit Vectors 2019; 12:408. [PMID: 31434579 PMCID: PMC6702751 DOI: 10.1186/s13071-019-3664-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In Europe, the tapeworm Dibothriocephalus latus (syn. Diphyllobothrium latum) is a well-known etiological agent of human diphyllobothriosis, which spreads by the consumption of raw fish flesh infected by plerocercoids (tapeworm's larval stage). However, the process of parasite establishment in both intermediate and definitive hosts is poorly understood. This study was targeted mainly on the scolex (anterior part) of the plerocercoid of this species, which facilitates penetration of the parasite in intermediate paratenic fish hosts, and subsequently its attachment to the intestine of the definitive host. METHODS Plerocercoids were isolated from the musculature of European perch (Perca fluviatilis) caught in Italian alpine lakes. Parasites were examined using confocal microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Immunofluorescence tagging was held on whole mount larvae. RESULTS The organisation of the central and peripheral nervous system was captured in D. latus plerocercoids, including the ultrastructure of the nerve cells possessing large dense neurosecretory granules. Two types of nerve fibres run from the body surface toward the nerve plexus located in the parenchyma on each side of bothria. One type of these fibres was found to be serotoninergic and possessed large subtegumental nerve cell bodies. A well-developed gland apparatus, found throughout the plerocercoid parenchyma, produced heterogeneous granules with lucent core packed in a dense layer. Three different types of microtriches occurred on the scolex and body surface of plerocercoids of D. latus: (i) uncinate spinitriches; (ii) coniform spinitriches; and (iii) capilliform filitriches. Non-ciliated sensory receptors were observed between the distal cytoplasm of the tegument and the underlying musculature. CONCLUSIONS Confocal laser scanning microscopy and electron microscopy (SEM and TEM) showed the detailed microanatomy of the nervous system in the scolex of plerocercoids, and also several differences in the larval stages compared with adult D. latus. These features, i.e. well-developed glandular system and massive hook-shaped uncinate spinitriches, are thus probably required for plerocercoids inhabiting fish hosts and also for their post-infection attachment in the human intestine.
Collapse
Affiliation(s)
- Daniel Barčák
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Aneta Yoneva
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria
| | - Hana Sehadová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, 37005 České Budějovice, Czech Republic
| | - Mikuláš Oros
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - Andrea Gustinelli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO Italy
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
7
|
Tsubokawa D, Lee JM, Hatta T, Mikami F, Maruyama H, Arakawa T, Kusakabe T, Tsuji N. Characterization of the RAGE-binding protein, Strongyloides venestatin, produced by the silkworm-baculovirus expression system. INFECTION GENETICS AND EVOLUTION 2019; 75:103964. [PMID: 31302241 DOI: 10.1016/j.meegid.2019.103964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
The receptor for advanced glycation end products (RAGE) recognizes Ca++-binding proteins, such as members of the S100 protein family released by dead or devitalized tissues, and plays an important role in inflammatory responses. We recently identified the Ca++-binding protein, venestatin, secreted from the rodent parasitic nematode, Strongyloides venezuelensis. We herein characterized recombinant venestatin, which is abundantly produced by the silkworm-baculovirus expression system (silkworm-BES), particularly in its interaction with RAGE. Venestatin from silkworm-BES possessed a binding capacity with Ca++ ions and vaccine immunogenicity against S. venezuelensis larvae in mice, which is similar to venestatin produced by the E. coli expression system (EES). Venestatin from silkworm-BES had a higher affinity for human recombinant RAGE than that from EES, and their affinities were Ca++-dependent. RAGE in the mouse lung co-immunoprecipitated with venestatin from silkworm-BES administered intranasally, indicating that it bound endogenous mouse RAGE. The present results suggest that venestatin from silkworm-BES affects RAGE-mediated pathological processes.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan; Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan.
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan; Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Fusako Mikami
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Haruhiko Maruyama
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki 899-1692, Japan
| | - Takeshi Arakawa
- Laboratory of Vaccinology and Vaccine Immunology, Center of Molecular Biosciences, University of the Ryukyu, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naotoshi Tsuji
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan; Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
8
|
Ma C, Liang K, Tang L, He S, Liu X, He M, Li Y. Identification and characteristics of a cathepsin L-like cysteine protease from Clonorchis sinensis. Parasitol Res 2019; 118:829-835. [PMID: 30689051 DOI: 10.1007/s00436-019-06223-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 01/17/2019] [Indexed: 11/27/2022]
Abstract
Cathepsin L-like protease is an important member of the papain-like cysteine protease and plays numerous indispensable roles in the biology of parasitic organisms. In a previous study, we identified a gene encoding a cathepsin L-like protease of Clonorchis sinensis (CsCPL) that was detected in the cercaria, metacercaria, and adult worm stages by immunolocalization, suggesting that this cysteine protease may be important and involved in the development of C. sinensis. In this study, the mature domain of CsCPL (CsCPL-m) was cloned and expressed in the form of inclusion bodies in Escherichia coli. After refolding, the recombinant CsCPL-m displayed optimal protease activity towards Z-Phe-Arg-AMC substrates but not towards Z-Arg-Arg-AMC, and the activity of the protease was inhibited completely by the cysteine protease-specific inhibitors E-64 and IAA, which further demonstrated that CsCPL belongs to the cathepsin L-like cysteine protease family. Recombinant CsCPL-m exhibited considerable activity at temperatures ranging from 28 to 42 °C, with the highest activity observed at 42 °C. Furthermore, recombinant CsCPL-m exhibited activity across a broad range of pH values (pH 4.0-8.0), with an optimal pH of 5.5. The Km and Vmax of the recombinant CsCPL-m towards Z-Phe-Arg-AMC were determined to be 5.71 × 10-6 M and 0.6 μM/min, respectively, at 37 °C and pH 5.5. The recombinant CsCPL-m could degrade BSA and gelatine, but could not degrade human hemoglobin and human immunoglobulin G. These results implied that CsCPL might participate in the catabolism of host proteins for nutrition during the parasitic life cycle of C. sinensis; thus, CsCPL could be used as a potential vaccine antigen and drug target against C. sinensis infection.
Collapse
Affiliation(s)
- Changling Ma
- Department of Pathogen Biology & Immunology, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Liang
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Lili Tang
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Shanshan He
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiaoquan Liu
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Mian He
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yanwen Li
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
9
|
Zhang S, Cai X, Luo X, Wang S, Guo A, Hou J, Wu R. Molecular cloning and characterization of leucine aminopeptidase gene from Taenia pisiformis. Exp Parasitol 2018; 186:1-9. [PMID: 29329981 DOI: 10.1016/j.exppara.2018.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/08/2018] [Indexed: 02/02/2023]
Abstract
Leucine aminopeptidase (LAP, EC: 3.4.11.1) is an important metalloexopeptidase that catalyze the hydrolysis of amino-terminal leucine residues from polypeptides and proteins. In this study, a full length of cDNA encoding leucine aminopeptidase of Taenia pisiformis (TpLAP) was cloned by rapid amplification of cDNA-ends using the polymerase chain reaction (RACE-PCR) method. The full-length cDNA of the TpLAP gene is 1823 bp and contains a 1569 bp ORF encoding 533 amino acids with a putative mass of 56.4 kDa. TpLAP contains two characteristic motifs of the M17LAP family in the C-terminal sequence: the metal binding site 265-[VGKG]-271 and the catalytic domain motif 351-[NTDAEGRL]-357. The soluble GST-TpLAP protein was expressed in Escherichia coli Transetta (DE3) and four specific anti-TpLAP monoclonal antibodies (mAbs) were prepared. In enzymatic assays, the optimal activity was observed at pH 9.5 at 45 °C. GST-TpLAP displayed a hydrolyzing activity for the Leu-pNA substrate with a maximum activity of 46 U/ml. The enzymatic activity was significantly enhanced by Mn2+ and completely inhibited by 20 nM bestatin and 0.15 mM EDTA. The native TpLAP was detected specifically in ES components of adult T. pisiformis by western blotting using anti-TpLAP mAb as a probe. Quantitative real-time PCR revealed that the TpLAP gene was expressed at a high level in adult worm tissues, especially in the gravid proglottids (50.71-fold). Immunolocalization analysis showed that TpLAP was located primarily in the subtegumental parenchyma zone and the uterine wall of adult worms. Our results indicate that TpLAP is a new member of the M17LAP family and can be considered as a stage-differentially expressed protein. These findings might provide new insights into the study of the mechanisms of growth, development and survival of T. pisiformis in the final host and have potential value as an attractive target for drug therapy or vaccine intervention.
Collapse
Affiliation(s)
- Shaohua Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Aijiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Junling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Run Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|