1
|
Silva ARST, Costa AMB, Scher R, Andrade-Neto VV, Sarmento VHV, Santos ADJ, Torres-Santos EC, Jain S, Nunes RDS, Menna-Barreto RFS, Dolabella SS. Effect of 3-Carene and the Micellar Formulation on Leishmania (Leishmania) amazonensis. Trop Med Infect Dis 2023; 8:324. [PMID: 37368742 DOI: 10.3390/tropicalmed8060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Leishmaniases are neglected tropical diseases caused by obligate intracellular protozoa of the genus Leishmania. The drugs used in treatment have a high financial cost, a long treatment time, high toxicity, and variable efficacy. 3-Carene (3CR) is a hydrocarbon monoterpene that has shown in vitro activity against some Leishmania species; however, it has low water solubility and high volatility. This study aimed to develop Poloxamer 407 micelles capable of delivering 3CR (P407-3CR) to improve antileishmanial activity. The micelles formulated presented nanometric size, medium or low polydispersity, and Newtonian fluid rheological behavior. 3CR and P407-3CR inhibited the growth of L. (L.) amazonensis promastigote with IC50/48h of 488.1 ± 3.7 and 419.9 ±1.5 mM, respectively. Transmission electron microscopy analysis showed that 3CR induces multiple nuclei and kinetoplast phenotypes and the formation of numerous cytosolic invaginations. Additionally, the micelles were not cytotoxic to L929 cells or murine peritoneal macrophages, presenting activity on intracellular amastigotes. P407-3CR micelles (IC50/72 h = 0.7 ± 0.1 mM) increased the monoterpene activity by at least twice (3CR: IC50/72 h >1.5 mM). These results showed that P407 micelles are an effective nanosystem for delivering 3CR and potentiating antileishmanial activity. More studies are needed to evaluate this system as a potential therapeutic option for leishmaniases.
Collapse
Affiliation(s)
| | | | - Ricardo Scher
- Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Valter Viana Andrade-Neto
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | | | - Adriana de Jesus Santos
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Eduardo Caio Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Sona Jain
- Programa de Biotecnologia Industrial, Universidade Tiradentes, Aracaju 49032-490, Sergipe, Brazil
| | - Rogéria de Souza Nunes
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | | | - Silvio Santana Dolabella
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
- Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| |
Collapse
|
2
|
Silva AR, Costa AM, Jain S, Severino P, Scher R, Nunes RS, Souto EB, Dolabella SS. 3-Carene-loaded poloxamer micelles against Leishmania: Development, characterization and in vitro proof-of-concept. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
3
|
Brioschi MBC, Coser EM, Coelho AC, Gadelha FR, Miguel DC. Models for cytotoxicity screening of antileishmanial drugs: what has been done so far? Int J Antimicrob Agents 2022; 60:106612. [PMID: 35691601 DOI: 10.1016/j.ijantimicag.2022.106612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022]
Abstract
A growing number of studies have demonstrated the in vitro potential of an impressive number of antileishmanial candidates in the past years. However, the lack of uniformity regarding the choice of cell types for cytotoxicity assays may lead to uncomparable and inconclusive data. In vitro assays relying solely on non-phagocytic cell models may not represent a realistic result as the effect of an antileishmanial agent should ideally be presented based on its cytotoxicity profile against reticuloendothelial system cells. In the present review, we have assembled studies published in the scientific literature from 2015 to 2021 that explored leishmanicidal candidates, emphasising the main host cell models used for cytotoxicity assays. The pros and cons of different host cell types as well as primary cells and cell lines are discussed in order to draw attention to the need to establish standardised protocols for preclinical testing when assessing new antileishmanial candidates.
Collapse
Affiliation(s)
- Mariana B C Brioschi
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Elizabeth M Coser
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Adriano C Coelho
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda R Gadelha
- Department of Biochemistry and Tissue Biology, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Ribeiro Antinarelli LM, Glanzmann N, Mendonça DVC, Lage DP, Oliveira-da-Silva JA, Tavares GSV, Carvalho AMRS, Freitas CS, Martins VT, Duarte MC, Menezes-Souza D, da Silva AD, Coelho EAF, Soares Coimbra E. Parasitological and immunological evaluation of a quinoline derivative salt incorporated into a polymeric micelle formulation against Leishmania infantum infection. Parasitol Res 2022; 121:2129-2140. [PMID: 35614147 PMCID: PMC9132674 DOI: 10.1007/s00436-022-07544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
Leishmaniasis is a parasitic disease caused by Leishmania protozoa, which presents a large spectrum of clinical manifestations. In the present study, a quinoline derivative salt named N-(2-((7-chloroquinolin-4-yl)amino)ethyl)-N-(prop-2-yn-1-yl)prop-2-yn-1-aminium chloride or QDS3 was in vitro and in vivo tested against L. infantum by means of its incorporation in Poloxamer 407-based polymeric micelles (QDS3/M). The in vitro antileishmanial activity of QDS3 and QDS3/M was investigated in L. infantum promastigotes, axenic amastigotes and infected macrophages. BALB/c mice were infected with L. infantum, and parasitological parameters were evaluated 1 and 15 days post-treatment by determining the parasite load by a limiting dilution assay, besides a quantitative PCR (qPCR) method. Immunological response was assessed based on production of cellular cytokines, as well as by quantification of nitrite levels and specific antibodies. In vitro results showed that QDS3 free or in micelles presented effective antileishmanial action against both parasite stages, being more effective in amastigotes. In vivo data showed that treatment using QDS3 or QDS3/M reduced the parasite load in the livers, spleens, draining lymph nodes (dLN) and bone marrows of the treated animals, 1 and 15 days after treatment, when compared to values found in the control groups. Additionally, treated mice developed a polarized Th1-type immune response, with higher levels of IL-12, IFN-γ, GM-CSF and nitrite, besides high production of specific IgG2a antibodies, when compared to the controls. Parasitological and immunological data obtained using the micellar composition were better than the others. In conclusion, QDS3, mainly when applied in a delivery adjuvant system, could be considered for future studies as therapeutic candidate against VL.
Collapse
Affiliation(s)
- Luciana M Ribeiro Antinarelli
- Departamento de Parasitologia, Microbiologia E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, 36036-900, Brazil.,Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Nícolas Glanzmann
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Débora V C Mendonça
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Ana Maria R S Carvalho
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adilson David da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, 36036-900, Brazil.
| |
Collapse
|
5
|
Assolini JP, Carloto ACM, Bortoleti BTDS, Gonçalves MD, Tomiotto Pellissier F, Feuser PE, Cordeiro AP, Hermes de Araújo PH, Sayer C, Miranda Sapla MM, Pavanelli WR. Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview. Eur J Pharmacol 2022; 923:174934. [PMID: 35367420 DOI: 10.1016/j.ejphar.2022.174934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Leishmaniasis is a neglected tropical disease that has a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths notified every year. The severity of the disease and its various clinical forms are determined by the species of the causative agent, Leishmania, as well as the host's immune response. Major challenges still exist in the diagnosis and treatment of leishmaniasis, and there is no vaccine available to prevent this disease in humans. Nanotechnology has emerged as a promising tool in a variety of fields. In this review, we highlight the main and most recent advances in nanomedicine to improve the diagnosis and treatment, as well as for the development of vaccines, for leishmaniasis. Nanomaterials are nanometric in size and can be produced by a variety of materials, including lipids, polymers, ceramics, and metals, with varying structures and morphologies. Nanotechnology can be used as biosensors to detect antibodies or antigens, thus improving the sensitivity and specificity of such immunological and molecular diagnostic tests. While in treatment, nanomaterials can act as drug carriers or, be used directly, to reduce any toxic effects of drug compounds to the host and to be more selective towards the parasite. Furthermore, preclinical studies show that different nanomaterials can carry different Leishmania antigens, or even act as adjuvants to improve a Th1 immune response in an attempt to produce an effective vaccine.
Collapse
Affiliation(s)
- João Paulo Assolini
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil; Universidade Alto Vale do Rio Peixe, Caçador, SC, Brazil.
| | | | | | | | | | - Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | | | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | | | - Wander Rogério Pavanelli
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil.
| |
Collapse
|
6
|
Adeel M, Saorin G, Boccalon G, Sfriso AA, Parisi S, Moro I, Palazzolo S, Caligiuri I, Granchi C, Corona G, Cemazar M, Canzonieri V, Tuccinardi T, Rizzolio F. A carrier free delivery system of a monoacylglycerol lipase hydrophobic inhibitor. Int J Pharm 2021; 613:121374. [PMID: 34906647 DOI: 10.1016/j.ijpharm.2021.121374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
Monoacylglycerol lipase (MAGL) is an emerging therapeutic target for cancer. It is involved in lipid metabolism and its inhibition impairs many hallmarks of cancer including cell proliferation, migration/invasion and tumor growth. For these reasons, our group has recently developed a potent reversible MAGL inhibitor (MAGL23), which showed promising anticancer activities. Here in, to improve its pharmacological properties, a nanoformulation based on nanocrystals coated with albumin was prepared for therapeutic applications. MAGL23 was solubilized by a nanocrystallization method with Pluronic F-127 as surfactant into an organic solvent and was recovered as nanocrystals in water after solvent evaporation. Finally, the solubilized nanocrystals were stabilized by human serum albumin to create a smart delivery carrier. An in-silico prediction (lipophilicity, structure at different pH and solubility in water), as well as experimental studies (solubility), have been performed to check the chemical properties of the inhibitor and nanocrystals. The solubility in water increases from less than 0.01 mg/mL (0.0008 mg/mL, predicted) up to 0.82 mg/mL in water. The formulated inhibitor maintained its potency in ovarian and colon cancer cell lines as the free drug. Furthermore, the system was thoroughly observed at each step of the solubilization process till the final formulation stage by different spectroscopic techniques and a comparative study was performed to check the effects of Pluronic F-127 and CTAB as surfactants. The formulated system is favorable to release the drug at physiological pH conditions (at pH 7.4, after 24 h, less than 20% of compound is released). In vivo studies have shown that albumin-complexed nanocrystals increase the therapeutic window of MAGL23 along with a favorable biodistribution. As per our knowledge, we are reporting the first ever nanoformulation of a MAGL inhibitor, which is promising as a therapeutic system where the MAGL enzyme is involved, especially for cancer therapeutic applications.
Collapse
Affiliation(s)
- Muhammad Adeel
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy; Dotoctoral School in Science and Technology of Bio and Nanomaterials, Ca'Foscari University of Venice, Venezia-Mestre, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Gloria Saorin
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy; Dotoctoral School in Science and Technology of Bio and Nanomaterials, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Giacomo Boccalon
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | | | - Salvatore Parisi
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy; Doctoral School in Molecular Biomedicine, University of Trieste, Trieste, Italy
| | - Isabella Moro
- Department of Biology, University of Padua, Padua, Italy
| | - Stefano Palazzolo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Pisa, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| |
Collapse
|
7
|
Briones Nieva CA, Cid AG, Romero AI, García-Bustos MF, Villegas M, Bermúdez JM. An appraisal of the scientific current situation and new perspectives in the treatment of cutaneous leishmaniasis. Acta Trop 2021; 221:105988. [PMID: 34058160 DOI: 10.1016/j.actatropica.2021.105988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is a Neglected Tropical Diseases caused by protozoan parasites of the genus Leishmania. It is a major health problem in many tropical and subtropical regions of the world and can produce three different clinical manifestations, among which cutaneous leishmaniasis has a higher incidence in the world than the other clinical forms. There are no recognized and reliable means of chemoprophylaxis or vaccination against infections with different forms of leishmaniasis. In addition, chemotherapy, unfortunately, remains, in many respects, unsatisfactory. Therefore, there is a continuing and urgent need for new therapies against leishmaniasis that are safe and effective in inducing a long-term cure. This review summarizes the latest advances in currently available treatments and improvements in the development of drug administration. In addition, an analysis of the in vivo assays was performed and the challenges facing promising strategies to treat CL are discussed. The treatment of leishmaniasis will most likely evolve into an approach that uses multiple therapies simultaneously to reduce the possibility of developing drug resistance. There is a continuous effort to discover new drugs to improve the treatment of leishmaniasis, but this is mainly at the level of individual researchers. Undoubtedly, more funding is needed in this area, as well as greater participation of the pharmaceutical industry to focus efforts on the development of chemotherapeutic agents and vaccines for this and other neglected tropical diseases.
Collapse
Affiliation(s)
- C A Briones Nieva
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - Alicia Graciela Cid
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - Analía Irma Romero
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - María Fernanda García-Bustos
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Salta, Argentina
| | - Mercedes Villegas
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - José María Bermúdez
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina.
| |
Collapse
|
8
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
9
|
Shahriyar S, Taymouri S, Saberi S, Asadi P, Tabbakhian M. Preparation and characterization of itraconazole loaded nanomicelles based on dextran-behenic acid for cutaneous leishmaniasis treatment. Drug Dev Ind Pharm 2021; 47:416-428. [PMID: 33617377 DOI: 10.1080/03639045.2021.1890112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cutaneous leishmaniasis is known as the most prevalent clinical form of leishmaniasis. It needs the development of new therapies due to the serious side-effects promoted by taking the current drugs. In the present study, dextran-behenic acid (DEX-BA) based nanomicelles were developed to direct the delivery of itraconazole (ITZ) to the macrophages and enhance its toxic effects against Leishmania parasites. DEX-BA was synthesized through the esterification of dextran with behenic acid. The critical micelle concentration of the newly developed conjugate was evaluated using pyrene as the fluorescent probe. The nanomicelles were generated by the dialysis method; then they were optimized by applying a Box-Behnken design. The effects of the dialysis temperature, polymer content, and sonication time on the characteristics of micelles were subsequently studied. Furthermore, in vitro efficacy against Leishmania major promastigotes and parasite-infected macrophages was evaluated. The optimized formulation showed the particle size of 195.16 ± 3.06 nm, the polydispersity index of 0.39 ± 0.01, the zeta potential of -16.29 ± 0.89 mV, the encapsulation efficiency % of 56.11 ± 4.9, and the release efficiency % of 51.29 ± 1.97. According to scanning electron microscopy, the nanomicelles were found to be nearly spherical in shape. ITZ-loaded nanomicelles showed the strongest anti-leishmanial activities when compared with the free ITZ and drug-free nanomicelles. It could be, therefore, concluded that ITZ-loaded nanomicelles might be useful as an alternative therapy for the treatment of cutaneous leishmania.
Collapse
Affiliation(s)
- Sara Shahriyar
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Saberi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Tabbakhian
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Bakr RO, Tawfike A, El-Gizawy HA, Tawfik N, Abdelmohsen UR, Abdelwahab MF, Alshareef WA, Fayez SM, El-Mancy SMS, El-Fishawy AM, Abdelkawy MA, Fayed MAA. The metabolomic analysis of five Mentha species: cytotoxicity, anti- Helicobacter assessment, and the development of polymeric micelles for enhancing the anti- Helicobacter activity. RSC Adv 2021; 11:7318-7330. [PMID: 35423273 PMCID: PMC8694964 DOI: 10.1039/d0ra09334c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/26/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Mentha species are medicinally used worldwide and remain attractive for research due to the diversity of their phytoconstituents and large therapeutic indices for various ailments. This study used the metabolomics examination of five Mentha species (M. suaveolens, M. sylvestris, M. piperita, M. longifolia, and M. viridis) to justify their cytotoxicity and their anti-Helicobacter effects. The activities of species were correlated with their phytochemical profiles by orthogonal partial least square discriminant analysis (OPLS-DA). Tentatively characterized phytoconstituents using liquid chromatography high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS) included 49 compounds: 14 flavonoids, 10 caffeic acid esters, 7 phenolic acids, and other constituents. M. piperita showed the highest cytotoxicity to HepG2 (human hepatoma), MCF-7 (human breast adenocarcinoma), and CACO2 (human colon adenocarcinoma) cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. OPLS-DA and dereplication studies predicted that the cytotoxic activity was related to benzyl glucopyranoside-sulfate, a lignin glycoside. Furthermore, M. viridis was effective in suppressing the growth of Helicobacter pylori at a concentration of 50 mg mL-1. OPLS-DA predicted that this activity was related to a dihydroxytrimethoxyflavone. M. viridis extract was formulated with Pluronic® F127 to develop polymeric micelles as a nanocarrier that enhanced the anti-Helicobacter activity of the extract and provided minimum inhibitory concentrations and minimum bactericidal concentrations of 6.5 and 50 mg mL-1, respectively. This activity was also correlated to tentatively identified constituents, including rosmarinic acid, catechins, carvone, and piperitone oxide.
Collapse
Affiliation(s)
- Riham O Bakr
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza Egypt
| | - Ahmed Tawfike
- Molecular Discovery Group, Computational and Analytical Science Department Rothamsted Research AL5 2JQ Harpenden UK
| | - Heba A El-Gizawy
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Nashwa Tawfik
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University Cairo 11795 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +2-86-2347759
| | - Miada F Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +2-86-2347759
| | - Walaa A Alshareef
- Department of Microbiology and Immunology, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Sahar M Fayez
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Shereen M S El-Mancy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Ahlam M El-Fishawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Mostafa A Abdelkawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City Sadat 32897 Egypt
| |
Collapse
|
11
|
Nafari A, Cheraghipour K, Sepahvand M, Shahrokhi G, Gabal E, Mahmoudvand H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol Control 2020; 10:e00156. [PMID: 32566773 PMCID: PMC7298521 DOI: 10.1016/j.parepi.2020.e00156] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is a widespread disease that causes 20,000 to 30,000 deaths annually, making it a major health problem in endemic areas. Because of low-performance medications, drug delivery poses a great challenge for better treatment of leishmaniasis. The present study's purpose was to review the application of nanoparticles as a new method in leishmaniasis treatment. To identify all relevant literature, we searched Web of Sciences, Scopus, PubMed, NCBI, Scielo, and Google Scholar, and profiled studies published between 1986 and 2019. In the present study, we tried to identify different research efforts in different conditions that examined the influence of various nanoparticles on different forms of leishmaniasis. In this way, we could compare their results and obtain a reliable conclusion from the most recent studies on this subject. Our review's results indicate that incorporating nanoparticles with chemical drugs improves the quality, efficiency, and sustainability of drugs and reduces their costs. Finally, considering the use of nanoparticles in the destruction of parasites, their inhibitory effect (making drugs more effective and less harmful), and their utility in making effective vaccines to prevent and fight against parasites, further research on this issue is highly recommended.
Collapse
Affiliation(s)
- Amir Nafari
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Koroush Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Sepahvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ghazal Shahrokhi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esraa Gabal
- Agricultural Science and Resource Management in the Tropics and Subtropics, Bonn University, Germany
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|