1
|
Xu N, Zhang X, Liu H, Xu Y, Lu H, Zhao L, He Y, Zhang M, Zhang J, Si G, Wang Z, Chen M, Cai Y, Zhang Y, Wang Q, Hao Y, Li Y, Zhou Z, Guo Y, Chang C, Liu M, Ma C, Wang Y, Fang L, Li S, Wang G, Liu Q, Liu W. Clinical and epidemiological investigation of human infection with zoonotic parasite Trypanosoma dionisii in China. J Infect 2024; 89:106290. [PMID: 39341404 DOI: 10.1016/j.jinf.2024.106290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Trypanosomiasis continues to pose a global threat to human health, with human infection mainly caused by Trypanosoma brucei and Trypanosoma cruzi. METHODS We present a 30-year-old pregnant woman with persistent high fever from Shandong Province, China. High-throughput sequencing revealed the presence of Trypanosoma dionisii in blood. We conducted an analysis of the patient's clinical, epidemiological, and virological data. RESULTS The patients exhibited fever, shortness of breath, chest tightness, accompanied by change in liver function and inflammatory response. She made a full recovery without any long-term effects. T. dionisii was detected in blood collected 23 days after onset of illness. The 18S rRNA gene sequence showed close similarity to T. dionisii found in bats from Japan, while the gGAPDH gene was closely related to T. dionisii from bats in Mengyin County, Shandong Province. Phylogenetic analysis demonstrated the current T. dionisii belongs to clade B within its species group. Positive anti-Trypanosoma IgG antibody was detected from the patient on Day 23, 66 and 122 after disease onset, as well as the cord blood and serum from the newborn. Retrospective screening of wild small mammals captured from Shandong Province revealed a prevalence rate of 0.54% (7/1304) for T. dionisii; specifically among 0.81% (5/620) of Apodemus agrarius, and 0.46% (2/438) of Mus musculus. CONCLUSIONS The confirmation of human infection with T. dionisii underscores its potential as a zoonotic pathogen, while the widespread presence of this parasite in rodent and bat species emphasizes the emerging threat it poses to human health.
Collapse
Affiliation(s)
- Nannan Xu
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Hui Liu
- Institute of Bacterial Disease, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Yintao Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huixia Lu
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lianhui Zhao
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yishan He
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Meiqi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Jingtao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Guangqian Si
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Ziyi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Muxin Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuchun Cai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yi Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Qiang Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuwan Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuanyuan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Zhengbin Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yunhai Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Caiyun Chang
- Institute for Infectious Disease Control, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Ming Liu
- Institute for Infectious Disease Control, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Chuanmin Ma
- Institute of Bacterial Disease, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Yongbin Wang
- Shandong Institute of Parasitic Disease, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, Shandong 272033, China
| | - Liqun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Shizhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China.
| | - Gang Wang
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Qin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China.
| |
Collapse
|
2
|
Shi Y, Lai D, Liu D, Du L, Li Y, Fu X, Deng P, Tang L, He S, Liu X, Li Y, Liu Q. Morphological and molecular characteristics of a Trypanosoma sp. from triatomines (Triatoma rubrofasciata) in China. Parasit Vectors 2024; 17:214. [PMID: 38730303 PMCID: PMC11088070 DOI: 10.1186/s13071-024-06274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Triatomines (kissing bugs) are natural vectors of trypanosomes, which are single-celled parasitic protozoans, such as Trypanosoma cruzi, T. conorhini and T. rangeli. The understanding of the transmission cycle of T. conorhini and Triatoma rubrofasciata in China is not fully known. METHODS The parasites in the faeces and intestinal contents of the Tr. rubrofasciata were collected, and morphology indices were measured under a microscope to determine the species. DNA was extracted from the samples, and fragments of 18S rRNA, heat shock protein 70 (HSP70) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) were amplified and sequenced. The obtained sequences were then identified using the BLAST search engine, followed by several phylogenetic analyses. Finally, laboratory infections were conducted to test whether Tr. rubrofasciata transmit the parasite to rats (or mice) through bites. Moreover, 135 Tr. rubrofasciata samples were collected from the Guangxi region and were used in assays to investigate the prevalence of trypanosome infection. RESULTS Trypanosoma sp. were found in the faeces and intestinal contents of Tr. rubrofasciata, which were collected in the Guangxi region of southern China and mostly exhibited characteristics typical of epimastigotes, such as the presence of a nucleus, a free flagellum and a kinetoplast. The body length ranged from 6.3 to 33.9 µm, the flagellum length ranged from 8.7 to 29.8 µm, the nucleus index was 0.6 and the kinetoplast length was -4.6. BLAST analysis revealed that the 18S rRNA, HSP70 and gGAPDH sequences of Trypanosoma sp. exhibited the highest degree of similarity with those of T. conorhini (99.7%, 99.0% and 99.0%, respectively) and formed a well-supported clade close to T. conorhini and T. vespertilionis but were distinct from those of T. rangeli and T. cruzi. Laboratory experiments revealed that both rats and mice developed low parasitaemia after inoculation with Trypanosoma sp. and laboratory-fed Tr. rubrofasciata became infected after feeding on trypanosome-positive rats and mice. However, the infected Tr. rubrofasciata did not transmit Trypanosoma sp. to their offspring. Moreover, our investigation revealed a high prevalence of Trypanosoma sp. infection in Tr. rubrofasciata, with up to 36.3% of specimens tested in the field being infected. CONCLUSIONS Our study is the first to provide a solid record of T. conorhini from Tr. rubrofasciata in China with morphological and molecular evidence. This Chinese T. conorhini is unlikely to have spread through transovarial transmission in Tr. rubrofasciata, but instead, it is more likely that the parasite is transmitted between Tr. rubrofasciata and mice (or rats). However, there was a high prevalence of T. conorhini in the Tr. rubrofasciata from our collection sites and numerous human cases of Tr. rubrofasciata bites were recorded. Moreover, whether these T. conorhini strains are pathogenic to humans has not been investigated.
Collapse
Affiliation(s)
- Yunliang Shi
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - DeHua Lai
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Dengyu Liu
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Liyan Du
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanyuan Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory on Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China
| | - Xiaoyin Fu
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Peichao Deng
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Lili Tang
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Shanshan He
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiaoquan Liu
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yanwen Li
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
| | - Qin Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory on Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
3
|
Juárez-Gabriel J, Alegría-Sánchez D, Yáñez-Aguirre D, Grostieta E, Álvarez-Castillo L, Torres-Castro M, Aréchiga-Ceballos N, Moo-Llanes DA, Alves FM, Pérez-Brígido CD, Aguilar-Tipacamú G, López González CA, Becker I, Pech-Canché JM, Colunga-Salas P, Sánchez-Montes S. Unraveling the diversity of Trypanosoma species from Central Mexico: Molecular confirmation on the presence of Trypanosoma dionisii and novel Neobat linages. Acta Trop 2024; 251:107113. [PMID: 38157924 DOI: 10.1016/j.actatropica.2023.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Bats are one of the groups of mammals with the highest number of associated Trypanosoma taxa. There are 50 Trypanosoma species and genotypes infecting more than 75 species of bats across five continents. However, in Mexico, the inventory of species of the genus Trypanosoma associated with bats is limited to only two species (Trypanosoma vespertilionis and Trypanosoma cruzi) even though 140 species of bats inhabit this country. Specifically, 91 bat species have been recorded in the state of Veracruz, but records of trypanosomatids associated with this mammalian group are absent. Due to the complex Trypanosoma-bat relationship, the high diversity of bat species in Veracruz, as well as the lack of records of trypanosomatids associated with bats for this state, the aim of this work was to analyze the diversity of species of the genus Trypanosoma and their presence from a bat community in the central area of the state of Veracruz, Mexico. During the period of January to August 2022 in the Tequecholapa Environmental Management Unit where bats were collected using mist nets and blood samples were obtained from their thumbs. We extracted genetic material and amplified a fragment of 800 bp of the 18S ribosomal gene of the genus Trypanosoma by conventional PCR. The positive amplicons were sequenced, and phylogenetic reconstruction was performed to identify the parasite species. A total of 285 bats (149♀, 136♂) belonging to 13 species from 10 genera and a single family (Phyllostomidae) were collected. Twenty-three specimens from six species tested positive for the presence of Trypanosoma dionisii, Trypanosoma sp. Neobat 4, and a potential novelty species provisionally named as Trypanosoma sp. Neobat 6. The results of the present work increase the number of species of the genus Trypanosoma infecting bats in Mexico and in the Neotropical region.
Collapse
Affiliation(s)
- Javier Juárez-Gabriel
- Maestría en Ciencias del Ambiente, Facultad de Ciencias Biológicas y Agropecuarias región Tuxpan, Universidad Veracruzana, Tuxpan de Rodriguez Cano, Veracruz, México; Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Daniela Alegría-Sánchez
- Facultad de Ciencias Biológicas y Agropecuarias región Peñuela, Universidad Veracruzana, Amatlán de los Reyes, Veracruz, México
| | - Damaris Yáñez-Aguirre
- Facultad de Ciencias Biológicas y Agropecuarias región Peñuela, Universidad Veracruzana, Amatlán de los Reyes, Veracruz, México
| | - Estefania Grostieta
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Lucía Álvarez-Castillo
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, Ciudad de México, México
| | - Marco Torres-Castro
- Laboratorio de Zoonosis y Otras Enfermedades Transmitidas por Vector, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Nidia Aréchiga-Ceballos
- Dirección de Diagnóstico y Referencia, Instituto de Diagnóstico y Referencia Epidemiológicos Dr. Manuel Martínez Báez, Mexico City, México
| | - David A Moo-Llanes
- Grupo de Arbovirosis y Zoonosis, Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Fernanda Moreira Alves
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos D Pérez-Brígido
- Hospital Veterinario, Facultad de Ciencias Biológicas y Agropecuarias, región Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano, Veracruz, México
| | - Gabriela Aguilar-Tipacamú
- CA. Ecología y Diversidad Faunística, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Carlos A López González
- CA. Ecología y Diversidad Faunística, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Ingeborg Becker
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Juan M Pech-Canché
- Laboratorio de Vertebrados Terrestres, Facultad de Ciencias Biológicas y Agropecuarias región Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano, Veracruz, México.
| | - Pablo Colunga-Salas
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México; Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa de Enríquez, Veracruz, México.
| | - Sokani Sánchez-Montes
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México; Laboratorio de Diagnóstico, Facultad de Ciencias Biológicas y Agropecuarias región Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano, Veracruz, México.
| |
Collapse
|
4
|
Thiombiano NG, Boungou M, Chabi BAM, Oueda A, Werb O, Schaer J. First investigation of blood parasites of bats in Burkina Faso detects Hepatocystis parasites and infections with diverse Trypanosoma spp. Parasitol Res 2023; 122:3121-3129. [PMID: 37847392 PMCID: PMC10667148 DOI: 10.1007/s00436-023-08002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Bats are hosts to a large diversity of eukaryotic protozoan blood parasites that comprise species of Trypanosoma and different haemosporidian parasite taxa and bats have played an important role in the evolutionary history of both parasite groups. However, bats in several geographical areas have not been investigated, including in Burkina Faso, where no information about malaria parasites and trypanosomes of bats exists to date.In this study, we collected data on the prevalence and the phylogenetic relationships of protozoan blood parasites in nine different bat species in Burkina Faso. Hepatocystis parasites were detected in two species of epauletted fruit bats, and a relatively high diversity of trypanosome parasites was identified in five bat species. The phylogenetic analyses recovered the trypanosome parasites of the bat species Rhinolophus alcyone and Nycteris hispida as close relatives of T. livingstonei, the trypanosome infections in Scotophilus leucogaster as closely related to the species T. vespertilionis and the trypanosomes from Pipistrellus nanulus and Epomophorus gambianus might present the species T. dionisii. These findings of the first investigation in Burkina Faso present a first snapshot of the diversity of protozoan blood parasites in bats in this country.
Collapse
Affiliation(s)
- Noel Gabiliga Thiombiano
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Magloire Boungou
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Bertrand Adéchègoun Mèschac Chabi
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Adama Oueda
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Universite de Ouahigouya, Ouahigouya, Burkina Faso
| | - Oskar Werb
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Juliane Schaer
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.
| |
Collapse
|
5
|
Xie Y, Liang H, Jiang N, Liu D, Zhang N, Li Q, Zhang K, Sang X, Feng Y, Chen R, Zhang Y, Chen Q. Graphene quantum dots induce cascadic apoptosis via interaction with proteins associated with anti-oxidation after endocytosis by Trypanosoma brucei. Front Immunol 2022; 13:1022050. [PMID: 36561761 PMCID: PMC9763322 DOI: 10.3389/fimmu.2022.1022050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma brucei, the pathogen causing African sleeping sickness (trypanosomiasis) in humans, causes debilitating diseases in many regions of the world, but mainly in African countries with tropical and subtropical climates. Enormous efforts have been devoted to controlling trypanosomiasis, including expanding vector control programs, searching for novel anti-trypanosomial agents, and developing vaccines, but with limited success. In this study, we systematically investigated the effect of graphene quantum dots (GQDs) on trypanosomal parasites and their underlying mechanisms. Ultrasmall-sized GQDs can be efficiently endocytosed by T. brucei and with no toxicity to mammalian-derived cells, triggering a cascade of apoptotic reactions, including mitochondrial disorder, intracellular reactive oxygen species (ROS) elevation, Ca2+ accumulation, DNA fragmentation, adenosine triphosphate (ATP) synthesis impairment, and cell cycle arrest. All of these were caused by the direct interaction between GQDs and the proteins associated with cell apoptosis and anti-oxidation responses, such as trypanothione reductase (TryR), a key protein in anti-oxidation. GQDs specifically inhibited the enzymatic activity of TryR, leading to a reduction in the antioxidant capacity and, ultimately, parasite apoptotic death. These data, for the first time, provide a basis for the exploration of GQDs in the development of anti-trypanosomials.
Collapse
Affiliation(s)
- Yiwei Xie
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Hongrui Liang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Dingyuan Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Kai Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China,*Correspondence: Qijun Chen,
| |
Collapse
|
6
|
Linhart P, Bandouchova H, Zukal J, Votýpka J, Baláž V, Heger T, Kalocsanyiova V, Kubickova A, Nemcova M, Sedlackova J, Seidlova V, Veitova L, Vlaschenko A, Divinova R, Pikula J. Blood Parasites and Health Status of Hibernating and Non-Hibernating Noctule Bats (Nyctalus noctula). Microorganisms 2022; 10:microorganisms10051028. [PMID: 35630470 PMCID: PMC9143927 DOI: 10.3390/microorganisms10051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Co-existence of bats with a wide range of infectious agents relates to their co-evolutionary history and specific physiology. Here, we examined blood samples collected during hibernation and the post-hibernation period to assess the influence of trypanosomes and babesias on the health status of 50 Noctule bats (Nyctalus noctula) using nested PCR. The impact of blood parasites on health was assessed by analysis of haematology and blood chemistry parameters in 21 bats. Prevalence of trypanosomes (Trypanosoma dionisii and T. vespertilionis) and babesia (Babesia vesperuginis) was 44% and 8%, respectively. Analysis of blood parameters indicated impact of babesia on acid–base balance. Blood chemistry parameters showed a significant decrease in total dissolved carbon dioxide and bicarbonate, increased anion gap, and no change in blood pH, suggesting compensated metabolic acidosis. Adverse effects of babesia were only apparent in hibernating bats. Our results suggest differences in the pathogenicity of trypanosomes and babesia in bats. While trypanosomes in general had no significant impact on the health status, we observed alterations in the blood acid–base balance in Babesia-infected bats during hibernation. Despite being infected, Babesia-positive bats survived hibernation without showing any clinical signs.
Collapse
Affiliation(s)
- Petr Linhart
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences, 61242 Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
- Correspondence: ; Tel.: +420-541-562-653
| | - Jan Zukal
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, 60365 Brno, Czech Republic;
- Department of Botany and Zoology, Masaryk University, 61137 Brno, Czech Republic;
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, 12800 Prague, Czech Republic;
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Vojtech Baláž
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Tomas Heger
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Vendula Kalocsanyiova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Aneta Kubickova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Jana Sedlackova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Lucie Veitova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Anton Vlaschenko
- Bat Rehabilitation Center of Feldman Ecopark, Lisne, 62340 Kharkiv, Ukraine;
| | - Renata Divinova
- Department of Botany and Zoology, Masaryk University, 61137 Brno, Czech Republic;
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| |
Collapse
|
7
|
Riana E, Arnuphapprasert A, Narapakdeesakul D, Ngamprasertwong T, Wangthongchaicharoen M, Soisook P, Bhodhibundit P, Kaewthamasorn M. Molecular detection of Trypanosoma (Trypanosomatidae) in bats from Thailand, with their phylogenetic relationships. Parasitology 2022; 149:654-666. [PMID: 35115070 PMCID: PMC11010503 DOI: 10.1017/s0031182022000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/06/2022]
Abstract
The vast majority of trypanosome species is vector-borne parasites, with some of them being medically and veterinary important (such as Trypanosoma cruzi and Trypanosoma brucei) and capable of causing serious illness in vertebrate hosts. The discovery of trypanosomes in bats emphasizes the importance of bats as an important reservoir. Interestingly, there is a hypothesis that bats are ancestral hosts of T. cruzi. Trypanosome diversity has never been investigated in bats in Thailand, despite being in a biodiversity hot spot. To gain a better understanding of the diversity and evolutionary relationship of trypanosomes, polymerase chain reaction-based surveys were carried out from 2018 to 2020 in 17 sites. A total of 576 bats were captured, representing 23 species. A total of 38 (6.6%) positive samples was detected in ten bat species. Trypanosoma dionisii and Trypanosoma noyesi were identified from Myotis siligorensis and Megaderma spasma, respectively. The remaining 18S rRNA sequences of trypanosomes were related to other trypanosomes previously reported elsewhere. The sequences in the current study showed nucleotide identity as low as 90.74% compared to those of trypanosomes in the GenBank database, indicating the possibility of new species. All bat trypanosomes identified in the current study fall within the T. cruzi clade. The current study adds to evidence linking T. noyesi to a bat trypanosome and further supports the bat host origin of the T. cruzi clade. To the best of authors' knowledge, this is the first study on bat trypanosomes in Thailand and their phylogenetic relationships with global isolates.
Collapse
Affiliation(s)
- Elizabeth Riana
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Apinya Arnuphapprasert
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Duriyang Narapakdeesakul
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Pipat Soisook
- Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Songkhla, Thailand
- Harrison Institute, Bowerwood House, No. 15, St Botolph's Road, Sevenoaks, KentTN13 3AQ, UK
| | - Phanaschakorn Bhodhibundit
- Sai Yok National Park, Department of National Parks, Wildlife and Plant Conservation, Kanchanaburi, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Dario MA, Lisboa CV, Xavier SCDC, D’Andrea PS, Roque ALR, Jansen AM. Trypanosoma Species in Small Nonflying Mammals in an Area With a Single Previous Chagas Disease Case. Front Cell Infect Microbiol 2022; 12:812708. [PMID: 35223545 PMCID: PMC8873152 DOI: 10.3389/fcimb.2022.812708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022] Open
Abstract
Trypanosomatids are hemoflagellate parasites that even though they have been increasingly studied, many aspects of their biology and taxonomy remain unknown. The aim of this study was to investigate the Trypanosoma sp. transmission cycle in nonflying small mammals in an area where a case of acute Chagas disease occurred in Mangaratiba municipality, Rio de Janeiro state. Three expeditions were conducted in the area: the first in 2012, soon after the human case, and two others in 2015. Sylvatic mammals were captured and submitted to blood collection for trypanosomatid parasitological and serological exams. Dogs from the surrounding areas where the sylvatic mammals were captured were also tested for T. cruzi infection. DNA samples were extracted from blood clots and positive hemocultures, submitted to polymerase chain reaction targeting SSU rDNA and gGAPDH genes, sequenced and phylogenetic analysed. Twenty-one wild mammals were captured in 2012, mainly rodents, and 17 mammals, mainly marsupials, were captured in the two expeditions conducted in 2015. Only four rodents demonstrated borderline serological T. cruzi test (IFAT), two in 2012 and two in 2015. Trypanosoma janseni was the main Trypanosoma species identified, and isolates were obtained solely from Didelphis aurita. In addition to biological differences, molecular differences are suggestive of genetic diversity in this flagellate species. Trypanosoma sp. DID was identified in blood clots from D. aurita in single and mixed infections with T. janseni. Concerning dogs, 12 presented mostly borderline serological titers for T. cruzi and no positive hemoculture. In blood clots from 11 dogs, T. cruzi DNA was detected and characterized as TcI (n = 9) or TcII (n = 2). Infections by Trypanosoma rangeli lineage E (n = 2) and, for the first time, Trypanosoma caninum, Trypanosoma dionisii, and Crithidia mellificae (n = 1 each) were also detected in dogs. We concluded that despite the low mammalian species richness and degraded environment, a high Trypanosoma species richness species was being transmitted with the predominance of T. janseni and not T. cruzi, as would be expected in a locality of an acute case of Chagas disease.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Maria Augusta Dario,
| | - Cristiane Varella Lisboa
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Paulo Sérgio D’Andrea
- Laboratory of Biology and Parasitology of Wild Reservoir Mammals, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - André Luiz Rodrigues Roque
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Maria Jansen
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Sato H, Mafie E. "Visiting old, learn new": taxonomical overview of chiropteran trypanosomes from the morphology to the genes. Parasitol Res 2022; 121:805-822. [PMID: 35106654 DOI: 10.1007/s00436-022-07423-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/02/2022] [Indexed: 11/25/2022]
Abstract
Bats (the order Chiroptera) account for more than 20% of all mammalian species in the world; remarkably, they are the only mammals capable of true and sustained flight using their wing-like forelimbs. Since the beginning of the twentieth century, various morphotypes (or genotypes in the last decade) of haemoflagellates in the genus Trypanosoma (Euglenozoa: Kinetoplastea: Trypanosomatidae) have been reported worldwide in the blood of bats. Of note, the latent nature of chiropteran trypanosome infection with low levels of parasitaemia, together with the apparent morphological variation of the bloodstream forms related to phenotypical plasticity and the morphological resemblance of different parasite species, has hampered the taxonomic classification of bat trypanosomes based on morphological criteria. This said, 50 years ago, Hoare (1972) provisionally divided bat trypanosomes into two major morphotypes: the megadermae group (corresponding to the subgenus Megatrypanum in the traditional taxonomic system; 8 species) and the vespertilionis group (similar to the subgenus Schizotrypanum; 5 species). Importantly, the biological and biochemical analyses of bat trypanosomes isolated by haemoculture, together with the molecular genetic characterisation using various gene markers, allowed the establishment of clear phylogenetic and taxonomic relationships of various isolates from different continents in the last two decades. Here, we review the historical taxonomic approaches used to define chiropteran trypanosomes, as well as the ones currently employed to shed light on the diversity and evolutional tracks of the globally distributed chiropteran trypanosomes.
Collapse
Affiliation(s)
- Hiroshi Sato
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
- Division of Pathogenic Microorganisms, Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| | - Eliakunda Mafie
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
10
|
Austen JM, Barbosa AD. Diversity and Epidemiology of Bat Trypanosomes: A One Health Perspective. Pathogens 2021; 10:pathogens10091148. [PMID: 34578180 PMCID: PMC8465530 DOI: 10.3390/pathogens10091148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Bats (order Chiroptera) have been increasingly recognised as important reservoir hosts for human and animal pathogens worldwide. In this context, molecular and microscopy-based investigations to date have revealed remarkably high diversity of Trypanosoma spp. harboured by bats, including species of recognised medical and veterinary importance such as Trypanosoma cruzi and Trypanosoma evansi (aetiological agents of Chagas disease and Surra, respectively). This review synthesises current knowledge on the diversity, taxonomy, evolution and epidemiology of bat trypanosomes based on both molecular studies and morphological records. In addition, we use a One Health approach to discuss the significance of bats as reservoirs (and putative vectors) of T. cruzi, with a focus on the complex associations between intra-specific genetic diversity and eco-epidemiology of T. cruzi in sylvatic and domestic ecosystems. This article also highlights current knowledge gaps on the biological implications of trypanosome co-infections in a single host, as well as the prevalence, vectors, life-cycle, host-range and clinical impact of most bat trypanosomes recorded to date. Continuous research efforts involving molecular surveillance of bat trypanosomes are required for improved disease prevention and control, mitigation of biosecurity risks and potential spill-over events, ultimately ensuring the health of humans, domestic animals and wildlife globally.
Collapse
Affiliation(s)
- Jill M. Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (J.M.A.); (A.D.B.)
| | - Amanda D. Barbosa
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, DF, Brazil
- Correspondence: (J.M.A.); (A.D.B.)
| |
Collapse
|
11
|
Abstract
Trypanosomes are blood-borne parasites that can infect a variety of different vertebrates, including animals and humans. This study aims to broaden scientific knowledge about the presence and biodiversity of trypanosomes in Australian bats. Molecular and morphological analysis was performed on 86 blood samples collected from seven different species of microbats in Western Australia. Phylogenetic analysis on 18S rDNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) sequences identified Trypanosoma dionisii in five different Australian native species of microbats; Chalinolobus gouldii, Chalinolobus morio, Nyctophilus geoffroyi, Nyctophilus major and Scotorepens balstoni. In addition, two novels, genetically distinct T. dionisii genotypes were detected and named T. dionisii genotype Aus 1 and T. dionisii genotype Aus 2. Genotype Aus 2 was the most prevalent and infected 20.9% (18/86) of bats in the present study, while genotype Aus 1 was less prevalent and was identified in 5.8% (5/86) of Australian bats. Morphological analysis was conducted on trypomastigotes identified in blood films, with morphological parameters consistent with trypanosome species in the subgenus Schizotrypanum. This is the first report of T. dionisii in Australia and in Australian native bats, which further contributes to the global distribution of this cosmopolitan bat trypanosome.
Collapse
|
12
|
Barros JHDS, Roque ALR, Xavier SCDC, Nascimento KCS, Toma HK, Madeira MDF. Biological and Genetic Heterogeneity in Trypanosoma dionisii Isolates from Hematophagous and Insectivorous Bats. Pathogens 2020; 9:pathogens9090736. [PMID: 32906826 PMCID: PMC7558101 DOI: 10.3390/pathogens9090736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/05/2023] Open
Abstract
This study describes the morphological, biochemical, and molecular differences among Trypanosoma dionisii isolates from hemocultures of hematophagous (Desmodus rotundus; n = 2) and insectivorous (Lonchorhina aurita; n = 1) bats from the Atlantic Rainforest of Rio de Janeiro, Brazil. Fusiform epimastigotes from the hematophagous isolates were elongated, whereas those of the insectivorous isolate were stumpy, reflected in statistically evident differences in the cell body and flagellum lengths. In the hemocultures, a higher percentage of trypomastigote forms (60%) was observed in the hematophagous bat isolates than that in the isolate from the insectivorous bat (4%), which demonstrated globular morphology. Three molecular DNA regions were analyzed: V7V8 (18S rDNA), glycosomal glyceraldehyde 3-phosphate dehydrogenase gene, and mitochondrial cytochrome b gene. The samples were also subjected to multilocus enzyme electrophoresis and random amplified polymorphic DNA analysis. All isolates were identified as T. dionisii by phylogenetic analysis. These sequences were clustered into two separate subgroups with high bootstrap values according to the feeding habits of the bats from which the parasites were isolated. However, other T. dionisii samples from bats with different feeding habits were found in the same branch. These results support the separation of the three isolates into two subgroups, demonstrating that different subpopulations of T. dionisii circulate among bats.
Collapse
Affiliation(s)
- Juliana Helena da Silva Barros
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (A.L.R.R.); (S.C.d.C.X.); (K.C.S.N.)
- Correspondence: ; Tel.: +55-21-2562-1416; Fax: +55-21-2562-1609
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (A.L.R.R.); (S.C.d.C.X.); (K.C.S.N.)
| | - Samanta Cristina das Chagas Xavier
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (A.L.R.R.); (S.C.d.C.X.); (K.C.S.N.)
| | - Kátia Cristina Silva Nascimento
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (A.L.R.R.); (S.C.d.C.X.); (K.C.S.N.)
| | - Helena Keiko Toma
- Laboratório de Diagnóstico Molecular e Hematologia, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21491-599, Brazil;
| | - Maria de Fatima Madeira
- Laboratório de Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| |
Collapse
|
13
|
Cai Y, Wang X, Zhang N, Li J, Gong P, He B, Zhang X. First report of the prevalence and genotype of Trypanosoma spp. in bats in Yunnan Province, Southwestern China. Acta Trop 2019; 198:105105. [PMID: 31348896 DOI: 10.1016/j.actatropica.2019.105105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 02/02/2023]
Abstract
Trypanosome is considered as one of important parasites in almost all mammalian species, which occurs in Chiroptera throughout the world. Although numerous trypanosome species have been identified in bats in Asia, Africa, South America and Europe, little is known about the genetic diversity and pathogenicity of trypanosomes in Chinese bat. Recently, some human Trypanosoma cruzi infection attributed to a bat-related T. cruzi (TcBat) from the Noctilio spp., Myotis spp. and Artibeus spp was found. Consequently, it is a necessity to know trypanosome species in bats from China. In order to determine the prevalence and genotypes in bat from southwestern China, wehere detected trypanosomes prevalence 227bat brain tissue samples, including 60 Rousettus leschenaultia, 58 Hipposideros Pomona, 69 Rhinolophus pusillus, 40 Myotis daubentonni in Yunnan Province of China using nested PCR based on 18S rRNA. 14 (6.2%) of them were trypanosmes positive including 13 insect-eating bats and 1 fruit bat. The prevalence of trypanosome in R.leschenaultia, H. Pomona, and R.pusillus was 1.67%(1/60), 6.90%(4/58) and 13.0%(9/69), respectively (P < 0.01), suggesting R. pusillus was a main-vector host bat. The positive rate of T.sp, T. dionisii, T.brucei brucei and T.sp ZY-2 was 4.8% (11/227), 0.4%(1/227), 0.4%(1/227), and 0.4% (1/227), resepectively. These results showed that T.sp-Yunnan is the predominant genospecies. To our knowledge, this is the first report about Trypanosome species in bats in Yunnan Province, southwestern China.
Collapse
|