1
|
López-Verdejo A, Occhibove F, Uberti BD, Montero FE, Santoro M. Mass mortality event of round sardinella Sardinella aurita Valenciennes associated with Glugea Thélohan, 1891 microsporidian infection off the southern Italian coast. JOURNAL OF FISH DISEASES 2024; 47:e13995. [PMID: 38953156 DOI: 10.1111/jfd.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Intracellular parasites of the genus Glugea Thélohan, 1891 (Microsporidia) comprise about 34 putative species capable of causing high morbidity and mortality in freshwater and marine teleost fishes. In this study, we report on the first mass mortality event associated with Glugea sp. infecting free-ranging round sardinella Sardinella aurita in the southern Tyrrhenian Sea (Italy). Here, we describe the ultrastructure of mature spores of this microsporidian and characterize it molecularly, as well as report its phylogenetic position. Most of the affected fish showed an irregular swelling of its abdomen. At necropsy, a variable number of xenomas, spherical to ellipsoidal in shape, were found in the peritoneal cavity strongly attached to the viscera of all fish. Histological analysis revealed varying severity of chronic inflammation along with occasional necrosis in visceral organs associated with multiple xenoma proliferation. These pathological findings were considered the main cause of this mass mortality event. Morphologically, the present material was closely related to G. sardinellesis and G. thunni. The phylogenetically closest taxa to the newly SSU rDNA sequence were G. thunni and an erroneusly identified G. plecoglossi, which were very closely related to each other, also suggesting that all these sequences might belong to the same species.
Collapse
Affiliation(s)
- Alejandro López-Verdejo
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain
| | - Flavia Occhibove
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Francisco E Montero
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
2
|
Abdel-Baki AAS, Aboelhadid SM, Abdel-Tawab H, Rocha S, Ahmed M, Al-Quraishy S, Mansour L. Ultrastructural and molecular characterization of Glugea sp. (microsporidia), a parasite of the Red Sea fish Carangoides bajad (Carangidae). J Eukaryot Microbiol 2024:e13058. [PMID: 39252569 DOI: 10.1111/jeu.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024]
Abstract
Glugea sp. found infecting the liver of the teleost fish Carangoides bajad from the Red Sea, Egypt, is described based on light microscopy and ultrastructural characteristics combined with phylogenetic analyses. This microsporidium forms whitish xenomas up to ~4 mm in size. Xenomas display numerous parasitophorous vacuoles totally filled by mature spores, no other life cycle stages were observed. Mature spores ellipsoidal and measuring 6.3 × 4.0 μm in size. The polaroplast appears composed of two distinct regions: an electron-dense vesicular region and a densely packed lamellar region. The polar tubule forms approximately 24-27 coils arranged in three layers encircling the posterior vacuole. The small subunit (SSU) rRNA gene and its ITS region were sequenced and showed the highest similarity of 99.4% to other Glugea spp. Bayesian inference and maximum likelihood analyses place the novel isolate within the Glugea clade, more specifically within a subclade that predominantly grouped species described from fish inhabiting the Arabian Gulf or Red Sea. The results validate the parasite's classification in the Glugea genus. Nevertheless, until more detailed ultrastructural and molecular data are obtained, the identification of the current Glugea species is hampered by the absence of some developmental stages and the high degree of genetic similarity.
Collapse
Affiliation(s)
| | - Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Heba Abdel-Tawab
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sónia Rocha
- Laboratory of Cell Biology, Institute of Biomedical Sciences (ICBAS/UP), University of Porto, Porto, Portugal
- Laboratory of Animal Pathology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/UP), University of Porto, Porto, Portugal
| | - Manal Ahmed
- Zoology Department, Faculty of Science, Minia University, Minia, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Laboratory of Biodiversity, Parasitology and Ecology of Aquatic Systems, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
3
|
Fujiwara T, Kawano KM, Sonoda M, Shimizu N, Sawayama E, Yanagida T. First report of Pleistophora hyphessobryconis infection in medaka Oryzias latipes, an important ornamental and laboratory fish in Japan. Parasitol Int 2024; 98:102825. [PMID: 37981261 DOI: 10.1016/j.parint.2023.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Medaka Oryzias latipes is a small freshwater fish widely distributed in Japan. It is a popular ornamental fish and now has been recognized as an important model organism in many areas of biological research. Here we report microsporidian infections for the first time in medaka, from 2 research facilities and a wild population. Infected medaka exhibited abnormal appearance with whitish trunk muscle, and microsporidian spores were detected from the affected tissue. The size of spores was similar in all the three cases: 7.0 μm in length and 3.7-4.2 μm in width. In the histological observation, numerous sporophorous vesicles containing spores or other developmental stages were observed within the myocytes of the trunk muscle. Nucleotide sequence of the ribosomal RNA gene was determined and it was identical among all three cases. A BLAST search revealed it shared 99.5-99.6% identity with Pleistophora hyphessobryconis, a microsporidian known to infect >20 freshwater fish species. Light microscopic observation of spores and histological features also indicated the microsporidian infection in medaka is caused by P. hyphessobryconis. This is the first record of the microsporidian species from medaka and from Japan.
Collapse
Affiliation(s)
- Takuto Fujiwara
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi, Japan
| | - Karina Midori Kawano
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi, Japan
| | - Misaki Sonoda
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi, Japan
| | - Nodoka Shimizu
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi, Japan
| | - Eitaro Sawayama
- Department of Marine Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Tetsuya Yanagida
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi, Japan; Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi, Japan.
| |
Collapse
|
4
|
Weng M, Zhang X, Xin Z, Xue S, Zhang Q, Li A, Zhang J. Intraspecific genetic diversity of the fish-infecting microsporidian parasite Pseudokabatana alburnus (Microsporidia). Front Microbiol 2023; 14:1129136. [PMID: 36970667 PMCID: PMC10034183 DOI: 10.3389/fmicb.2023.1129136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Pseudokabatana alburnus is a xenoma-forming fish microsporidium, firstly described from the liver of the Culter alburnus from Poyang Lake in China. In the present study, P. alburnus was firstly reported from the ovary of 6 other East Asian minnows, including Squaliobarbus curriculus, Hemiculter leucisculus, Cultrichthys erythropterus, Pseudolaubuca engraulis, Toxabramis swinhonis, and Elopichthys bambusa. Genetic analysis revealed high sequence diversity in the ribosomal internal transcribed spacer region (ITS) and the largest subunit of RNA polymerase II (Rpb1) loci of P. alburnus isolated from different hosts and locations. The variation of Rpb1 mainly occurred in the 1,477–1737 bp regions. The presence of a wide variety of Rpb1 haplotypes within a single fish host, together with evidence of genetic recombination suggested that P. alburnus may have the intergenomic variation and sexual reproduction might be present in other hosts (possibly freshwater shrimp). Phylogenetic analysis and population genetic analysis showed that there was no geographical population divergence for P. alburnus. Homogeneity and high variability of ITS sequences indicates that ITS may be a suitable molecular marker to distinguish different P. alburnus isolates. Our data confirm the broad geographical distribution and host range of P. alburnus in the middle and lower reaches of the Yangtze River. Additionally, we emendated the genus Pseudokabatana to exclude the infection site, liver as one of the taxonomic criteria, and proposed that fish ovary was be the general infection site of P. alburnus.
Collapse
Affiliation(s)
- Meiqi Weng
- Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xintong Zhang
- Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhaozhe Xin
- Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Sijia Xue
- Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Aihua Li
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jinyong Zhang
- Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- *Correspondence: Jinyong Zhang,
| |
Collapse
|
5
|
Ramdani S, Ramdane Z, Slamovits CH, Trilles JP. G lugea sp. infecting Sardinella aurita in Algeria. J Parasit Dis 2022; 46:672-685. [PMID: 36091289 PMCID: PMC9458822 DOI: 10.1007/s12639-022-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022] Open
Abstract
Parasitological examination of the commercially important pelagic fish Sardinella aurita Valenciennes, 1847 (Clupeidae) from the Eastern coast of Algeria revealed xenomas in the peritoneal cavity, suggesting a microsporidian infection. The prevalence of the disease was approximately 30% on average, higher in smaller individuals and showing significant seasonal variation. The xenomas contained numerous ellipsoidal spores, surrounded by a dense layer of connective tissue. Spore sizes were 6.10 ± 0.38 µm length and 3.54 ± 0.43 µm width. Ultrastructural examination by transmission electron microscopy showed various development stages of the parasite, including meronts, sporonts, sporoblasts and mature spores. The internal organization of the mature spores, with a single nucleus, prominent posterior vacuole, a lamellar polaroplast and an isofilar polar tube arranged in a single row, was typical of the genus Glugea. The DNA sequence of the small subunit ribosomal RNA gene confirmed that this parasite belongs to the genus Glugea. Genetic and morphologic comparison with G. sardinellensis, a species previously described in the same host from Tunisia shows many similarities, although some molecular and morphometric inconsistencies precluded the unambiguous assignment of our samples to G. sardinellensis. At the same time, we do not find sufficient grounds to erect a new taxon for our parasite. We discuss the implications of our findings for the current state of the systematics of Glugea.
Collapse
Affiliation(s)
- Souhila Ramdani
- Laboratoire de Zoologie Appliquée et d’Ecophysiologie Animale, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaïa, Algeria
| | - Zouhir Ramdane
- Laboratoire de Zoologie Appliquée et d’Ecophysiologie Animale, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaïa, Algeria
| | - Claudio H. Slamovits
- Department of Biochemistry and Molecular Biology, Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Jean-Paul Trilles
- UMR 5119 (CNRS-UM2-IRD-UM1-IFREMER), Équipe Adaptation Écophysiologique Et Ontogenèse, Université de Montpellier 2, Montpellier, France
| |
Collapse
|
6
|
López-Verdejo A, Montero FE, de la Gándara F, Gallego MA, Ortega A, Raga JA, Palacios-Abella JF. A severe microsporidian disease in cultured Atlantic Bluefin Tuna (Thunnus thynnus). IMA Fungus 2022; 13:5. [PMID: 35272715 PMCID: PMC8915461 DOI: 10.1186/s43008-022-00090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
One of the most promising aquaculture species is the Atlantic bluefin tuna (Thunnus thynnus) with high market value; disease control is crucial to prevent and reduce mortality and monetary losses. Microsporidia (Fungi) are a potential source of damage to bluefin tuna aquaculture. A new microsporidian species is described from farmed bluefin tunas from the Spanish Mediterranean. This new pathogen is described in a juvenile associated with a highly severe pathology of the visceral cavity. Whitish xenomas from this microsporidian species were mostly located at the caecal mass and ranged from 0.2 to 7.5 mm. Light and transmission electron microscopy of the spores revealed mature spores with an average size of 2.2 × 3.9 μm in size and a polar filament with 13-14 coils arranged in one single layer. Phylogenetic analysis clustered this species with the Glugea spp. clade. The morphological characteristics and molecular comparison confirm that this is a novel microsporidian species, Glugea thunni. The direct life-cycle and the severe pathologies observed makes this parasite a hard risk for bluefin tuna cultures.
Collapse
Affiliation(s)
- Alejandro López-Verdejo
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Francisco E Montero
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Fernando de la Gándara
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, 30860, Puerto de Mazarrón, Murcia, Spain
| | - Miguel A Gallego
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, 30860, Puerto de Mazarrón, Murcia, Spain
| | - Aurelio Ortega
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, 30860, Puerto de Mazarrón, Murcia, Spain
| | - Juan Antonio Raga
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - José F Palacios-Abella
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
7
|
Hepatic microsporidiosis of mudskipper, Boleophthalmus dussumieri Valenciennes, 1837 (Perciformes: Gobiidae), due to Microgemma sp. J Parasit Dis 2022; 46:72-79. [PMID: 35299917 PMCID: PMC8901909 DOI: 10.1007/s12639-021-01419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022] Open
Abstract
The present study reports a case of hepatic microsporidiosis caused by Microgemma sp. in brackishwater fish, Boleophthalmus dussumieri (Valenciennes, 1837) (n = 60), from the west coast of India. An eight-month study from September 2017 to April 2018 revealed a prevalence of 11.7% for this parasite. The microsporidian showed tissue-specific infection and did not reveal any gross pathology in infected fish. Small whitish cysts containing microspores of size 0.3-0.5 mm were observed in the liver of fish. The range of pyriform microsporidian spore size varied from 2.9-3.77 × 1.85-2.67 µm. Scanning electron microscopy of the spores showed a distinct groove on the anterior end of the spore for polar tube extrusion. Polymerase chain reaction (PCR) amplification of the DNA extracted from the microsporidian-infected liver tissue using primers targeting small ribosomal subunit DNA (SSU rDNA) yielded ~ 1340 bp amplicon and the genetic distance analysis showed a 0.2% variation with the reported M. tilanpasiri. Accordingly, in the phylogenetic tree, the present species of Microgemma clustered with M. tilanpasiri. Even though, the morphomeristic characters of the present Microgemma sp. was marginally different from the reported M. tilanpsasiri; the SSU rDNA showed considerably higher similarity with M. tilanpasiri. Thus, we report the species of Microgemma as Microgemma aff. tilanpasiri from a new host. This is the first report of a microsporidian from B. dussumieri and the first record of the genus Microgemma from India.
Collapse
|
8
|
Abstract
Around 57.1% of microsporidia occupy aquatic environments, excluding a further 25.7% that utilise both terrestrial and aquatic systems. The aquatic microsporidia therefore compose the most diverse elements of the Microsporidia phylum, boasting unique structural features, variable transmission pathways, and significant ecological influence. From deep oceans to tropical rivers, these parasites are present in most aquatic environments and have been shown to infect hosts from across the Protozoa and Animalia. The consequences of infection range from mortality to intricate behavioural change, and their presence in aquatic communities often alters the overall functioning of the ecosystem.In this chapter, we explore aquatic microsporidian diversity from the perspective of aquatic animal health. Examples of microsporidian parasitism of importance to an aquacultural ('One Health') context and ecosystem context are focussed upon. These include infection of commercially important penaeid shrimp by Enterocytozoon hepatopenaei and interesting hyperparasitic microsporidians of wild host groups.Out of ~1500 suggested microsporidian species, 202 have been adequately taxonomically described using a combination of ultrastructural and genetic techniques from aquatic and semi-aquatic hosts. These species are our primary focus, and we suggest that the remaining diversity have additional genetic or morphological data collected to formalise their underlying systematics.
Collapse
Affiliation(s)
- Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
- National Horizons Centre, Teesside University, Darlington, UK.
| | - Grant D Stentiford
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| |
Collapse
|
9
|
Schuster CJ, Sanders JL, Couch C, Kent ML. Recent Advances with Fish Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:285-317. [PMID: 35544007 DOI: 10.1007/978-3-030-93306-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There have been several significant new findings regarding Microsporidia of fishes over the last decade. Here we provide an update on new taxa, new hosts and new diseases in captive and wild fishes since 2013. The importance of microsporidiosis continues to increase with the rapid growth of finfish aquaculture and the dramatic increase in the use of zebrafish as a model in biomedical research. In addition to reviewing new taxa and microsporidian diseases, we include discussions on advances with diagnostic methods, impacts of microsporidia on fish beyond morbidity and mortality, novel findings with transmission and invertebrate hosts, and a summary of the phylogenetics of fish microsporidia.
Collapse
Affiliation(s)
- Corbin J Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Justin L Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Claire Couch
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
10
|
Tetra disseminated microsporidiosis: a novel disease in ornamental fish caused by Fusasporis stethaprioni n. gen. n. sp. Parasitol Res 2021; 120:497-514. [PMID: 33415390 DOI: 10.1007/s00436-020-06988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
A novel microsporidial disease was documented in two ornamental fish species, black tetra Gymnocorymbus ternetzi Boulenger 1895 and cardinal tetra Paracheirodon axelrodi Schultz 1956. The non-xenoma-forming microsporidium occurred diffusely in most internal organs and the gill, thus referring to the condition as tetra disseminated microsporidiosis (TDM). The occurrence of TDM in black tetra was associated with chronic mortality in a domestic farmed population, while the case in cardinal tetra occurred in moribund fish while in quarantine at a public aquarium. Histology showed that coelomic visceral organs were frequently necrotic and severely disrupted by extensive infiltrates of macrophages. Infected macrophages were presumed responsible for the dissemination of spores throughout the body. Ultrastructural characteristics of the parasite developmental cycle included uninucleate meronts directly in the host cell cytoplasm. Sporonts were bi-nucleated as a result of karyokinesis and a parasite-produced sporophorous vesicle (SPV) became apparent at this stage. Cytokinesis resulted in two spores forming within each SPV. Spores were uniform in size, measuring about 3.9 ± 0.33 long by 2.0 ± 0.2 μm wide. Ultrastructure demonstrated two spore types, one with 9-12 polar filament coils and a double-layered exospore and a second type with 4-7 polar filament coils and a homogenously electron-dense exospore, with differences perhaps related to parasite transmission mechanisms. The 16S rDNA sequences showed closest identity to the genus Glugea (≈ 92%), though the developmental cycle, specifically being a non-xenoma-forming species and having two spores forming within a SPV, did not fit within the genus. Based on combined phylogenetic and ultrastructural characteristics, a new genus (Fusasporis) is proposed, with F. stethaprioni n. gen. n. sp. as the type species.
Collapse
|