1
|
Lian Y, Zhang M, Zhu Y, Wu M, Huang B, Xiao L, Shi K, Li P, Cong F, Wang H. The establishment of a recombinase polymerase amplification technique for the detection of mouse poxvirus. BMC Vet Res 2023; 19:256. [PMID: 38053140 DOI: 10.1186/s12917-023-03703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/23/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Ectromelia virus (ECTV) is the causative agent of mousepox in mice. In the past century, ECTV was a serious threat to laboratory mouse colonies worldwide. Recombinase polymerase amplification (RPA), which is widely used in virus detection, is an isothermal amplification method. RESULTS In this study, a probe-based RPA detection method was established for rapid and sensitive detection of ECTV.Primers were designed for the highly conserved region of the crmD gene, the main core protein of recessive poxvirus, and standard plasmids were constructed. The lowest detection limit of the ECTV RT- RPA assay was 100 copies of DNA mol-ecules per reaction. In addition, the method showed high specificity and did not cross-react with other common mouse viruses.Therefore, the practicability of the RPA method in the field was confirmed by the detection of 135 clinical samples. The real-time RPA assay was very similar to the ECTV real-time PCR assay, with 100% agreement. CONCLUSIONS In conclusion, this RPA assay offers a novel alternative for the simple, sensitive, and specific identification of ECTV, especially in low-resource settings.
Collapse
Affiliation(s)
- Yuexiao Lian
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Mengdi Zhang
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Yujun Zhu
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Miaoli Wu
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Bihong Huang
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Li Xiao
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Kehang Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peide Li
- Wenzhou Engineering Research Center of Pet, Department of Animal Science, Wenzhou Vocational College of Science & Technology, Wenzhou, 325006, China.
| | - Feng Cong
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China.
| | - Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Li H, Zhu Y, Wan C, Wang Z, Liu L, Tan M, Zhang F, Zeng Y, Huang J, Wu C, Huang Y, Kang Z, Guo X. Rapid detection of goose astrovirus genotypes 2 using real-time reverse transcription recombinase polymerase amplification. BMC Vet Res 2023; 19:232. [PMID: 37936127 PMCID: PMC10629041 DOI: 10.1186/s12917-023-03790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Goose astrovirus (GoAstV) is an important pathogen that causes joint and visceral gout in goslings. It has been circulating in many provinces of China since 2017. Goose astrovirus genotypes 2 (GoAstV-2) is the main epidemic strain, and its high morbidity and mortality have caused huge economic losses to the goose industry. An accurate point-of-care detection for GoAstV-2 is of great significance. In this study, we developed a real-time reverse transcription recombinase polymerase amplification (RT-RPA) method for the on-site detection of GoAstV-2 infection. RESULTS The real-time RT-RPA reaction was carried out at a constant temperature of 39 °C, and the entire detection time from nucleic acid preparation to the end of amplification was only 25 min using the portable device. The results of a specificity analysis showed that no cross-reaction was observed with other related pathogens. The detection limit of the assay was 100 RNA copies/μL. The low coefficient of variation value indicated excellent repeatability. We used 270 clinical samples to evaluate the performance of our established method, the positive concordance rates with RT-qPCR were 99.6%, and the linear regression analysis revealed a strong correlation. CONCLUSIONS The established real-time RT-RPA assay showed high rapidity, specificity and sensitivity, which can be widely applied in the laboratory, field and especially in the resource-limited settings for GoAstV-2 point-of-care diagnosis.
Collapse
Affiliation(s)
- Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi AgriculturalUniversity, Nanchang, China
| | - Yujun Zhu
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China
| | - Zhangzhang Wang
- Xingguo County Agricultural Technology Extension Center, Ganzhou, 341000, Jiangxi, China
| | - Lei Liu
- XinyuYushui District Center for Agricultural Sciences, Xinyu, 338000, Jiangxi, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Chengcheng Wu
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China.
| | - Xiaoqiao Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi AgriculturalUniversity, Nanchang, China.
| |
Collapse
|
3
|
Schurig S, Kobialka R, Wende A, Ashfaq Khan MA, Lübcke P, Eger E, Schaufler K, Daugschies A, Truyen U, Abd El Wahed A. Rapid Reverse Purification DNA Extraction Approaches to Identify Microbial Pathogens in Wastewater. Microorganisms 2023; 11:813. [PMID: 36985386 PMCID: PMC10056086 DOI: 10.3390/microorganisms11030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Wastewater monitoring became a promising solution in the early detection of outbreaks. Despite the achievements in the identification of pathogens in wastewater using real-time PCR, there is still a lack of reliable rapid nucleic acid extraction protocols. Therefore, in this study, samples were subjected to alkali, proteinase K and/or bead-beating followed by reverse purification magnetic beads-based separation. Wastewater samples spiked with S. aureus, E. coli and C. parvum were used as examples for Gram-positive and -negative bacteria and protozoa, respectively. All results were compared with a spin column technology as a reference method. Proteinase K with bead beating (vortexing with 0.1 mm glass beads for three minutes) was particularly successful for bacterial DNA extraction (three- to five-fold increase). The most useful extraction protocol for protozoa was pre-treatment with proteinase K (eight-fold increase). The selected methods were sensitive as far as detecting one bacterial cell per reaction for S. aureus, ten bacterial cells for E. coli and two oocysts for C. parvum. The extraction reagents are cold chain independent and no centrifuge or other large laboratory equipment is required to perform DNA extraction. A controlled validation trial is needed to test the effectiveness at field levels.
Collapse
Affiliation(s)
- Sarah Schurig
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
- Xpedite Diagnostics GmbH, 80687 Munich, Germany
| | - Rea Kobialka
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| | - Andy Wende
- Xpedite Diagnostics GmbH, 80687 Munich, Germany
| | - Md Anik Ashfaq Khan
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| | - Phillip Lübcke
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Elias Eger
- Institute of Infection Medicine, Christian-Albrecht University Kiel, 24105 Kiel, Germany
- University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Katharina Schaufler
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel, 24105 Kiel, Germany
- University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Centre for Infectious Disease, Leipzig University, 04103 Leipzig, Germany
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Zhang H, Zhao M, Hu S, Ma K, Li J, Zhao J, Wei X, Tong L, Li S. Establishment of a Real-Time Recombinase Polymerase Amplification for Rapid Detection of Pathogenic Yersinia enterocolitica. Pathogens 2023; 12:pathogens12020226. [PMID: 36839498 PMCID: PMC9963195 DOI: 10.3390/pathogens12020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Yersinia enterocolitica is a zoonotic proto-microbe that is widespread throughout the world, causes self-limiting diseases in humans or animals and even leads to sepsis and death in patients with severe cases. In this study, a real-time recombinase polymerase amplification (RPA) assay for pathogenic Y. enterocolitica was established based on the ail gene. The results showed that the RPA detection for Y. enterocolitica could be completed within 20 min at an isothermal temperature of 38 °C by optimizing the conditions in the primers and Exo probe. Moreover, the sensitivity of the current RT-RPA was 10-4 ng/μL, and the study found that the assay was negative in the application of the genomic DNA of other pathogens. These suggest the establishment of a rapid and sensitive real-time RPA method for the detection of pathogenic Y. enterocolitica, which can provide new understandings for the early diagnosis of the pathogens.
Collapse
|
5
|
Mesquita SG, Lugli EB, Matera G, Fonseca CT, Caldeira RL, Webster B. Development of real-time and lateral flow recombinase polymerase amplification assays for rapid detection of Schistosoma mansoni. Front Microbiol 2022; 13:1043596. [PMID: 36466644 PMCID: PMC9716991 DOI: 10.3389/fmicb.2022.1043596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Background Accurate diagnosis followed by timely treatment is an effective strategy for the prevention of complications together with reducing schistosomiasis transmission. Recombinase Polymerase Amplification (RPA) is a simple, rapid, sensitive, and specific isothermal method with low resource needs. This research aimed at the development and optimisation of a real-time (RT) and a lateral flow (LF) RPA assay for the detection of Schistosoma mansoni. Methodology Recombinase Polymerase Amplification reactions were performed at full- (as recommended) and half-volumes (to reduce costs), with RT or LF detection systems targeting the S. mansoni mitochondrial minisatellite region. The specificity was assessed using gDNA from other Schistosoma species, helminths co-endemic with S. mansoni, human stool, and urine, and Biomphalaria snail hosts. The analytical sensitivity was evaluated using serial dilutions of gDNA, synthetic copies of the target, and single eggs. The ability of both assays to detect the S. mansoni DNA in human urine and stool samples was also tested. The long-term stability of the RT-RPA reagents was evaluated by storing the reaction components in different temperature conditions for up to 3 weeks. Results The RT- and the LF-RPA (SmMIT- and SmMIT-LF-RPA, respectively) presented similar results when used full- and half-volumes, thus the latter was followed in all experiments. The SmMIT-RPA was 100% specific to S. mansoni, able to detect a single egg, with a limit of detection (LOD) of down to 1 fg of gDNA and one synthetic copy of the target. The assay was able to detect S. mansoni DNA from stool containing 1 egg/g and in spiked urine at a concentration of 10 fg/μl. SmMIT-RPA reagents were stable for up to 3 weeks when kept at 19°C, and 2 weeks when stored at 27°C. The SmMIT-LF-RPA cross-reacted with Clinostomidae, presented the LOD of 10 fg and one synthetic copy of the target, being able to detect a single egg and 1 egg/g in a stool sample. The LOD in spiked urine samples was 10 pg/μl. Conclusion The half-volume SmMIT-RPA is a promising method to be used in the field. It is specific, sensitive, robust, and tolerant to inhibitors, with a long-term stability of the reaction components and the real-time visualisation of results.
Collapse
Affiliation(s)
- Silvia Gonçalves Mesquita
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil,Wolfson Wellcome Laboratories, Department of Science, Natural History Museum, London, United Kingdom
| | - Elena Birgitta Lugli
- Wolfson Wellcome Laboratories, Department of Science, Natural History Museum, London, United Kingdom
| | - Giovanni Matera
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Cristina Toscano Fonseca
- Grupo de Pesquisa em Biologia e Imunologia Parasitária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Roberta Lima Caldeira
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil,*Correspondence: Bonnie Webster, ; Roberta Lima Caldeira,
| | - Bonnie Webster
- Wolfson Wellcome Laboratories, Department of Science, Natural History Museum, London, United Kingdom,*Correspondence: Bonnie Webster, ; Roberta Lima Caldeira,
| |
Collapse
|
6
|
Bustinduy AL, Randriansolo B, Sturt AS, Kayuni SA, Leustcher PDC, Webster BL, Van Lieshout L, Stothard JR, Feldmeier H, Gyapong M. An update on female and male genital schistosomiasis and a call to integrate efforts to escalate diagnosis, treatment and awareness in endemic and non-endemic settings: The time is now. ADVANCES IN PARASITOLOGY 2022; 115:1-44. [PMID: 35249661 DOI: 10.1016/bs.apar.2021.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The last decades have brought important insight and updates in the diagnosis, management and immunopathology of female genital schistosomiasis (FGS) and male genital schistosomiasis (MGS). Despite sharing a common parasitic aetiological agent, FGS and MGS have typically been studied separately. Infection with Schistosoma haematobium manifests with gender-specific clinical manifestations and consequences of infection, albeit having a similar pathogenesis within the human genital tract. Schistosoma haematobium is a known urinary bladder carcinogen, but its potential causative role in other types of neoplasia, such as cervical cancer, is not fully understood. Furthermore, the impact of praziquantel treatment on clinical outcomes remains largely underexplored, as is the interplay of FGS/MGS with relevant reproductive tract infections such as HIV and Human Papillomavirus. In non-endemic settings, travel and immigrant health clinics need better guidance to correctly identify and treat FGS and MGS. Our review outlines the latest advances and remaining knowledge gaps in FGS and MGS research. We aim to pave a way forward to formulate more effective control measures and discuss elimination targets. With a growing community awareness in health practitioners, scientists and epidemiologists, alongside the sufferers from these diseases, we aspire to witness a new generation of young women and men free from the downstream disabling manifestations of disease.
Collapse
Affiliation(s)
- Amaya L Bustinduy
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | | | - Amy S Sturt
- Section of Infectious Diseases, Veterans Affairs Palo Alto Health Care System, Palo Alto, United States
| | - Seke A Kayuni
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; MASM Medi Clinics Limited, Blantyre, Malawi
| | - Peter D C Leustcher
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Lisette Van Lieshout
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hermann Feldmeier
- Charité University Medicine Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Margaret Gyapong
- Institute of Health Research, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
7
|
Archer J, Patwary FK, Sturt AS, Webb EL, Phiri CR, Mweene T, Hayes RJ, Ayles H, Brienen EAT, van Lieshout L, Webster BL, Bustinduy AL. Validation of the isothermal Schistosoma haematobium Recombinase Polymerase Amplification (RPA) assay, coupled with simplified sample preparation, for diagnosing female genital schistosomiasis using cervicovaginal lavage and vaginal self-swab samples. PLoS Negl Trop Dis 2022; 16:e0010276. [PMID: 35286336 PMCID: PMC8947142 DOI: 10.1371/journal.pntd.0010276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/24/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Female genital schistosomiasis (FGS) is a neglected and disabling gynecological disease that can result from infection with the parasitic trematode Schistosoma haematobium. Accurate diagnosis of FGS is crucial for effective case management, surveillance and control. However, current methods for diagnosis and morbidity assessment can be inaccessible to those at need, labour intensive, costly and unreliable. Molecular techniques such as PCR can be used to reliably diagnose FGS via the detection of Schistosoma DNA using cervicovaginal lavage (CVL) samples as well as lesser-invasive vaginal self-swab (VSS) and cervical self-swab samples. PCR is, however, currently unsuited for use in most endemic settings. As such, in this study, we assessed the use of a rapid and portable S. haematobium recombinase polymerase amplification (Sh-RPA) isothermal molecular diagnostic assay, coupled with simplified sample preparation methodologies, to detect S. haematobium DNA using CVL and VSS samples provided by patients in Zambia. METHODOLOGY/PRINCIPAL FINDINGS VSS and CVL samples were screened for FGS using a previously developed Sh-RPA assay. DNA was isolated from VSS and CVL samples using the QIAamp Mini kit (n = 603 and 527, respectively). DNA was also isolated from CVL samples using two rapid and portable DNA extraction methods: 1) the SpeedXtract Nucleic Acid Kit (n = 223) and 2) the Extracta DNA Tissue Prep Kit (n = 136). Diagnostic performance of the Sh-RPA using VSS DNA extacts (QIAamp Mini kit) as well as CVL DNA extracts (QIAamp Mini kit, SpeedXtract Nucleic Acid Kit and Extracta DNA Tissue Prep Kit) was then compared to a real-time PCR reference test. Results suggest that optimal performance may be achieved when the Sh-RPA is used with PuVSS samples (sensitivity 93.3%; specificity 96.6%), however no comparisons between different DNA extraction methods using VSS samples could be carried out within this study. When using CVL samples, sensitivity of the Sh-RPA ranged between 71.4 and 85.7 across all three DNA extraction methods when compared to real-time PCR using CVL samples prepared using the QIAamp Mini kit. Interestingly, of these three DNA extraction methods, the rapid and portable SpeedXtract method had the greatest sensitivity and specificity (85.7% and 98.1%, respectively). Specificity of the Sh-RPA was >91% across all comparisons. CONCLUSIONS/SIGNIFICANCE These results supplement previous findings, highlighting that the use of genital self-swab sampling for diagnosing FGS should be explored further whilst also demonstrating that rapid and portable DNA isolation methods can be used to detect S. haematobium DNA within clinical samples using RPA. Although further development and assessment is needed, it was concluded that the Sh-RPA, coupled with simplified sample preparation, shows excellent promise as a rapid and sensitive diagnostic tool capable of diagnosing FGS at the point-of-care in resource-poor schistosomiasis-endemic settings.
Collapse
Affiliation(s)
- John Archer
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, United Kingdom
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| | - Farhan K. Patwary
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Amy S. Sturt
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Emily L. Webb
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | | | - Tobias Mweene
- School of Medicine, University of Zambia, Zambart, Lusaka, Zambia
| | - Richard J. Hayes
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Helen Ayles
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- School of Medicine, University of Zambia, Zambart, Lusaka, Zambia
| | - Eric A. T. Brienen
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bonnie L. Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, United Kingdom
| | - Amaya L. Bustinduy
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
8
|
Guo Q, Zhou K, Chen C, Yue Y, Shang Z, Zhou K, Fu Z, Liu J, Lin J, Xia C, Tang W, Cong X, Sun X, Hong Y. Development of a Recombinase Polymerase Amplification Assay for Schistosomiasis Japonica Diagnosis in the Experimental Mice and Domestic Goats. Front Cell Infect Microbiol 2021; 11:791997. [PMID: 34869085 PMCID: PMC8635165 DOI: 10.3389/fcimb.2021.791997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Although the prevalence of schistosomiasis japonica has declined gradually in China, more accurate and sensitive diagnostic methods are urgently needed for the prevention and control of this disease. Molecular diagnostic methods are advantageous in terms of sensitivity and specificity, but they are time-consuming and require expensive instruments and skilled personnel, which limits their application in low-resource settings. In this study, an isothermal DNA amplification assay and recombinase polymerase amplification (RPA) combined with lateral flow dipstick (LFD) were set up. It was used to detect S. japonicum infections in experimental mice and domestic goats by amplifying a specific DNA fragment of S. japonicum. The lower limit of detection for the LFD-RPA assay was evaluated using dilutions of plasmid containing the target sequence. Cross-reactivity was evaluated using genomic DNA from eight other parasites. The effectiveness of the LFD-RPA assay was verified by assessing 36 positive plasma samples and 36 negative plasma samples from mice. The LFD-RPA assay and real-time PCR were also used to assess 48 schistosomiasis japonica-positive plasma samples and 53 negative plasma samples from goats. The LFD-RPA assay could detect 2.6 femtogram (fg) of S. japonicum target DNA (~39 fg genomic DNA of S. japonicum), only 10-fold less sensitive than real-time PCR assay. There was no cross-reactivity with DNA from the other eight parasites, such as Haemonchus contortus and Spirometra. The whole amplification process could be completed within 15 min at 39°C, and the results can be observed easily using the LFD. The sensitivity and specificity of the LFD-RPA assay were 97.22% (35/36, 95% CI, 85.47%-99.93%) and 100% (36/36, 95% CI, 90.26%-100%) in mice, and 93.75% (45/48, 95% CI, 82.80%-98.69%) and 100% (53/53, 95% CI, 93.28%-100%) in goats. By comparison, the sensitivity and specificity of real-time PCR were 100% (36/36, 95% CI, 90.26%-100%) and 100% (36/36, 95% CI, 90.26%-100%) for mice, and 97.92% (47/48, 95% CI, 88.93%-99.95%) and 100% (53/53, 95% CI, 93.28%-100%) for goats. The LFD-RPA assay exhibits high sensitivity and specificity for the diagnosis of schistosomiasis japonica, and it is an alternative method for diagnosis schistosomiasis japonica in low resource setting.
Collapse
Affiliation(s)
- Qinghong Guo
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kerou Zhou
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cheng Chen
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongcheng Yue
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Shang
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Keke Zhou
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiaojiao Lin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chenyang Xia
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Wenqiang Tang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Xiaonan Cong
- Huancui Development Center for Animal Husbandry, Weihai, China
| | - Xuejun Sun
- Huancui Development Center for Animal Husbandry, Weihai, China
| | - Yang Hong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|