1
|
Duque-Granda D, Vivero-Gómez RJ, Junca H, Cadavid-Restrepo G, Moreno-Herrera CX. Interaction and effects of temperature preference under a controlled environment on the diversity and abundance of the microbiome in Lutzomyia longipalpis (Diptera: Psychodidae). BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00857. [PMID: 39328926 PMCID: PMC11424975 DOI: 10.1016/j.btre.2024.e00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
Characterization of the temperature effects on the abundance and richness of the microbiota of Lutzomyia longipalpis, insect vector of Leishmania infantum in America, is an aspect of pivotal importance to understand the interactions between temperature, bacteria, and Leishmania infection. We developed and used a customized device with a temperature gradient (21-34 °C) to assess the temperature preferences of wild females of Lu. longipalpis collected in a rural area (Ricaurte, Cundinamarca, Colombia). Each replicate consisted of 50 females exposed to the gradient for an hour. At the end of the exposure time, insects were collected and separated by the temperature ranges selected varying from 21 °C to 34 °C. They were organized in 17 pools from which total DNA extracts were obtained, and samples were subjected to 16S rRNA amplicon sequencing analyzes. The most abundant phyla across the different temperature ranges were Proteobacteria (17.22-90.73 %), Firmicutes (5.99-77.21 %) and Actinobacteria (1.56-59.85 %). Results also showed an abundance (30 % to 57.36 %) of Pseudomonas (mainly at temperatures of 21-29 °C and 34 °C) that decreased to 6.55 %-13.20 % at temperatures of 31-33 °C, while Bacillus increase its abundance to 67.24 % at 29-33 °C. Serratia also had a greater representation (49.79 %), specifically in sand flies recovered at 25-27 °C. No significant differences were found at α-diversity level when comparing richness using the Shannon-Wiener, Simpson, and Chao1 indices, while β-diversity differences were found using the Bray-Curtis index (F-value of 3.5073, p-value < 0.013, R-squared of 0,4889), especially in the groups of Lu. longipalpis associated at higher temperatures (29-33 °C). It was also possible to detect the presence of endosymbionts such as Spiroplasma and Arsenophonus in the range of 29-33 °C. Rickettsia was only detected in Lu. longipalpis sand flies recovered between 25-27 °C. It was possible to characterize Lu. longipalpis microbiota in response to intraspecific temperature preferences and observe changes in bacterial communities and endosymbionts at different ranges of said environmental variable, which may be important in its vector competence and environmental plasticity to adapt to new climate change scenarios.
Collapse
Affiliation(s)
- Daniela Duque-Granda
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Procesos Moleculares, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia sede Medellín, Street 59A #63-20, Medellín 050003, Colombia
| | - Rafael José Vivero-Gómez
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Procesos Moleculares, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia sede Medellín, Street 59A #63-20, Medellín 050003, Colombia
| | - Howard Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div. Ecogenomics & Holobionts, Microbiomas Foundation, LT11A, 250008, Chia, Colombia
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Procesos Moleculares, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia sede Medellín, Street 59A #63-20, Medellín 050003, Colombia
| | - Claudia Ximena Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Procesos Moleculares, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia sede Medellín, Street 59A #63-20, Medellín 050003, Colombia
| |
Collapse
|
2
|
Rodrigues BL, de Oliveira AG, da Silva LEH, Vasconcelos Dos Santos T, de Oliveira LDNC, Rêgo FD, de Andrade AJ, Maia GB, de Souza Pinto I, Andrade Filho JD, Galati EAB. Hidden diversity in anthropophilic sand flies of the Monticola Series (Diptera, Psychodidae). Sci Rep 2024; 14:27215. [PMID: 39516507 PMCID: PMC11549381 DOI: 10.1038/s41598-024-77249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The Monticola series comprises two anthropophilic and widely distributed species in Brazil: Pintomyia (Pifanomyia) monticola (Costa Lima, 1932) and Pintomyia (Pifanomyia) misionensis (Castro, 1959). They mainly occur in the Atlantic Rainforest, and it is known that Pi. monticola comprises at least two well-structured genetic lineages regarding a fragment of the cytochrome c oxidase subunit I (COI) gene. Here, we aim to elucidate the taxonomic status of this group using integrative taxonomy tools. Collections were performed in nine localities of four Brazilian states, and COI fragments were sequenced and merged with publicly available data. Several single-locus species delimitation algorithms, genetic distance metrics, phylogenetic trees, and haplotype networks were used to uncover cryptic diversity and population structure within Pi. monticola and Pi. misionensis. The resulting genetic clusters were then tested for morphological differences through linear and geometric morphometry of several characters. We analyzed 152 COI sequences, comprising 48 haplotypes. The maximum intraspecific p distances were 8.21% (mean 4.17%) and 9.12% (mean 4.4%) for Pi. monticola and Pi. misionensis, respectively, while interspecific ones ranged from 10.94 to 14.09% (mean 12.33%). Phylogenetic gene trees showed well-supported clades for both species, with clear structuring patterns within them. Species-delimitation algorithms split our dataset into at least three putative species for each taxon. Moreover, population structure analysis showed a strong correlation between Atlantic Forest areas of endemism as sources of molecular variation in Pi. monticola. Morphometric analyses were significant for wing shape variation and some linear measurements (mainly of the head) when comparing specimens of different genetic clusters for both taxa. These results indicate strong genetic structuring of Monticola series species, confirmed by morphometry, indicating two possible cryptic species complexes.
Collapse
Affiliation(s)
| | - Alessandra Gutierrez de Oliveira
- School of Public Health, University of São Paulo (FSP USP), São Paulo, Brazil
- Institute of Biosciences, Federal University of Mato Grosso do Sul (INBIO UFMS), Campo Grande, MS, Brazil
| | | | | | | | - Felipe Dutra Rêgo
- Leishmaniasis Study Group, René Rachou Institute, Oswaldo Cruz Foundation (IRR), Belo Horizonte, MG, Brazil
| | | | | | - Israel de Souza Pinto
- Federal Institute of Education, Science and Technology of Espírito Santo (IFES), Ibatiba, ES, Brazil
| | | | | |
Collapse
|
3
|
Ducker C, Baines C, Guy J, Euzébio Goulart Santana A, Pickett JA, Oldham NJ. A diterpene synthase from the sandfly Lutzomyia longipalpis produces the pheromone sobralene. Proc Natl Acad Sci U S A 2024; 121:e2322453121. [PMID: 38470919 PMCID: PMC10962984 DOI: 10.1073/pnas.2322453121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
The phlebotomine sandfly, Lutzomyia longipalpis, a major vector of the Leishmania parasite, uses terpene pheromones to attract conspecifics for mating. Examination of the L. longipalpis genome revealed a putative terpene synthase (TPS), which-upon heterologous expression in, and purification from, Escherichia coli-yielded a functional enzyme. The TPS, termed LlTPS, converted geranyl diphosphate (GPP) into a mixture of monoterpenes with low efficiency, of which β-ocimene was the major product. (E,E)-farnesyl diphosphate (FPP) principally produced small amounts of (E)-β-farnesene, while (Z,E)- and (Z,Z)-FPP yielded a mixture of bisabolene isomers. None of these mono- and sesquiterpenes are known volatiles of L. longipalpis. Notably, however, when provided with (E,E,E)-geranylgeranyl diphosphate (GGPP), LlTPS gave sobralene as its major product. This diterpene pheromone is released by certain chemotypes of L. longipalpis, in particular those found in the Ceará state of Brazil. Minor diterpene components were also seen as products of the enzyme that matched those seen in a sandfly pheromone extract.
Collapse
Affiliation(s)
- Charles Ducker
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, United Kingdom
| | - Cameron Baines
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, United Kingdom
| | - Jennifer Guy
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, United Kingdom
| | | | - John A. Pickett
- School of Chemistry, Cardiff University, CardiffCF10 3AT, United Kingdom
| | - Neil J. Oldham
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, United Kingdom
| |
Collapse
|
4
|
Rodrigues BL, da Silva Costa G, Godoy RE, Pereira Júnior AM, Cella W, Ferreira GEM, de Medeiros JF, Shimabukuro PHF. Molecular and morphometric study of Brazilian populations of Psychodopygus davisi. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:83-98. [PMID: 37867259 DOI: 10.1111/mve.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
In this study, we analysed the molecular and morphometric differences of several populations of the putative sand fly vector Psychodopygus davisi (Root, 1934) (Diptera, Psychodidae, Phlebotominae) in Brazil. We amplified the 658 base pair fragments of the DNA barcoding region-cytochrome c oxidase subunit 1 (COI) gene-for 57 specimens of P. davisi and three specimens of Psychodopygus claustrei (Abonnenc, Léger & Fauran, 1979). We merged our data with public sequences of the same species available from GenBank. Then, the combined dataset-87 sequences and 20 localities-was analysed using population structure analysis and different species delimitation approaches. Geometric morphometry of wings was performed for 155 specimens of P. davisi populations from the North, Midwest and Southeast Brazilian regions, analysing the differences in centroid sizes and canonical variates. Molecular analysis indicated high intraspecific genetic distance values for P. davisi (maximum p distance = 5.52%). All algorithms identified P. davisi and P. claustrei as distinct molecular taxonomic units, despite the low interspecific distance (p distance to the nearest neighbour = 4.79%). P. davisi sequences were split into four genetic clusters by population structure analysis and at least five genetic lineages using intermediate scenarios of the species delimitation algorithms. The species validation analysis of BPP strongly supported the five-species model in our dataset. We found high genetic diversity in this taxon, which is in agreement with its wide geographic distribution in Brazil. Furthermore, the wing analysis showed that specimens from the Southeast Region of Brazil are different from those in the North and the Midwest. The evolutionary patterns of P. davisi populations in Brazil suggest the presence of candidate species, which need to be validated in future studies using a more comprehensive approach with both genomic data and morphological characters.
Collapse
Affiliation(s)
- Bruno Leite Rodrigues
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública da Universidade de São Paulo (FSP/USP), São Paulo, Brazil
| | - Glaucilene da Silva Costa
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Brazil
- Laboratório Central de Saúde Pública do Estado de Rondônia, LACEN-RO, Porto Velho, Brazil
| | | | | | - Wilsandrei Cella
- Programa de Pós Graduação em Ciência Animal com Ênfase em Produtos Bioativos, Universidade Paranaense, Paraná, Brazil
- Universidade do Estado do Amazonas (UEA), Tefé, Brazil
| | - Gabriel Eduardo Melim Ferreira
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Brazil
- Laboratório de Epidemiologia Genética, Fiocruz Rondônia, Porto Velho, Brazil
| | - Jansen Fernandes de Medeiros
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Brazil
- Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Brazil
| | - Paloma Helena Fernandes Shimabukuro
- Grupo de Estudos em Leishmanioses, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
- Coleção de Flebotomíneos (Fiocruz/COLFLEB), Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Posada-López L, Rodrigues BL, Velez ID, Uribe S. Improving the COI DNA barcoding library for Neotropical phlebotomine sand flies (Diptera: Psychodidae). Parasit Vectors 2023; 16:198. [PMID: 37308979 DOI: 10.1186/s13071-023-05807-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
Sand fly species are traditionally identified using morphological traits, though this method is hampered by the presence of cryptic species. DNA barcoding is a widely used tool in the case of insects of medical importance, where it is necessary to know quickly which species are present in a transmission area. Here, we assess the usefulness of mitochondrial cytochrome c oxidase subunit I (COI) DNA barcoding as a practical tool for species identification, correct assignment of isomorphic females, and to evaluate the detection of cryptic diversity that occurs in the same species. A fragment of the COI gene was used to generate 156 new barcode sequences for sand flies from different countries of the Neotropical region, mainly Colombia, which had been identified morphologically as 43 species. The sequencing of the COI gene allowed the detection of cryptic diversity within species and correctly associated isomorphic females with males identified by morphology. The maximum intraspecific genetic distances ranged from 0 to 8.32% and 0 to 8.92% using uncorrected p distances and the Kimura 2-parameter (K2P) model, respectively. The minimum interspecific distance (nearest neighbor) for each species ranged from 1.5 to 14.14% and 1.51 to 15.7% using p and K2P distances, respectively. Three species had more than 3% maximum intraspecific distance: Psychodopygus panamensis, Micropygomyia cayennensis cayennensis, and Pintomyia evansi. They also were split into at least two molecular operational taxonomic units (MOTUs) each, using different species delimitation algorithms. Regarding interspecific genetic distances, the species of the genera Nyssomyia and Trichophoromyia generated values lower than 3% (except Nyssomyia ylephiletor and Ny. trapidoi). However, the maximum intraspecific distances did not exceed these values, indicating the presence of a barcode gap despite their proximity. Also, nine sand fly species were DNA barcoded for the first time: Evandromyia georgii, Lutzomyia sherlocki, Ny. ylephiletor, Ny. yuilli pajoti, Psathyromyia punctigeniculata, Sciopemyia preclara, Trichopygomyia triramula, Trichophoromyia howardi, and Th. velezbernali. The COI DNA barcode analysis enabled the correct delimitation of several Neotropical sand fly species from South and Central America and raised questions about the presence of cryptic species for some taxa, which should be further assessed.
Collapse
Affiliation(s)
- Laura Posada-López
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia.
- Programa de Pós-graduação em Saúde Pública, Faculdade de Saúde Pública (FSP/USP), São Paulo, SP, Brasil.
| | - Bruno Leite Rodrigues
- Programa de Pós-graduação em Saúde Pública, Faculdade de Saúde Pública (FSP/USP), São Paulo, SP, Brasil
| | - Ivan Dario Velez
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia
| | - Sandra Uribe
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Campus, Medellín, Colombia
| |
Collapse
|
6
|
Cuervo PF, Artigas P, Lorenzo-Morales J, Bargues MD, Mas-Coma S. Ecological Niche Modelling Approaches: Challenges and Applications in Vector-Borne Diseases. Trop Med Infect Dis 2023; 8:tropicalmed8040187. [PMID: 37104313 PMCID: PMC10141209 DOI: 10.3390/tropicalmed8040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Vector-borne diseases (VBDs) pose a major threat to human and animal health, with more than 80% of the global population being at risk of acquiring at least one major VBD. Being profoundly affected by the ongoing climate change and anthropogenic disturbances, modelling approaches become an essential tool to assess and compare multiple scenarios (past, present and future), and further the geographic risk of transmission of VBDs. Ecological niche modelling (ENM) is rapidly becoming the gold-standard method for this task. The purpose of this overview is to provide an insight of the use of ENM to assess the geographic risk of transmission of VBDs. We have summarised some fundamental concepts and common approaches to ENM of VBDS, and then focused with a critical view on a number of crucial issues which are often disregarded when modelling the niches of VBDs. Furthermore, we have briefly presented what we consider the most relevant uses of ENM when dealing with VBDs. Niche modelling of VBDs is far from being simple, and there is still a long way to improve. Therefore, this overview is expected to be a useful benchmark for niche modelling of VBDs in future research.
Collapse
Affiliation(s)
- Pablo Fernando Cuervo
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
- Correspondence:
| | - Patricio Artigas
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
| | - Jacob Lorenzo-Morales
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Canary Islands, Spain
| | - María Dolores Bargues
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
| | - Santiago Mas-Coma
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
| |
Collapse
|
7
|
Cabrera A, Pita S, González T, Viera A, Verger L, Piegas S, Willat G, Fresia P, Basmadjián Y. Genetic variability highlights the invasion route of the Lutzomyia longipalpis complex, the main vector of Visceral Leishmaniasis in Uruguay. Zoonoses Public Health 2023. [PMID: 36898974 DOI: 10.1111/zph.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023]
Abstract
In the Americas, the sandfly Lutzomyia longipalpis is the main vector of the parasitic protozoa Leishmania infantum, the etiological agent of visceral leishmaniasis (VL). The Lu. longipalpis species complex is currently discontinuously distributed across the Neotropical region, from Mexico to the north of Argentina and Uruguay. During its continental spreading, it must have adapted to several biomes and temperature amplitudes, when founder events should have contributed to the high genetic divergence and geographical structure currently observed, reinforcing the speciation process. The first report of Lu. longipalpis in Uruguay was in 2010, calling the attention of Public Health authorities. Five years later, the parasite Le. infantum was recorded and in 2015 the first case of VL in canids was reported. Hitherto seven human cases by VL have been reported in Uruguay. Here, we publish the first DNA sequences from the mitochondrial genes ND4 and CYTB of Lu. longipalpis collected in Uruguay, and we used these molecular markers to investigate their genetic variability and population structure. We described four new ND4 haplotypes in a total of 98 (4/98) and one CYTB in a total of 77 (1/77). As expected, we were able to establish that the Lu. longipalpis collected in two localities (i.e. Salto and Bella Unión) from the north of Uruguay are closely related to the populations from neighbouring countries. We also propose that the possible route for the vector arrival to the region may have been through vegetation and forest corridors of the Uruguay River system, as well as it may have benefited from landscape modifications generated by commercial forestation. The ecological-scale processes shaping Lu. longipalpis populations, the identification of genetically homogeneous groups and the gene flow among them must be carefully investigated by using highly sensible molecular markers (i.e. genome wide SNPs) since it will help to the understanding of VL transmission and contribute to the planification of public policies on its control.
Collapse
Affiliation(s)
- Andrés Cabrera
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay.,Laboratorio de Interacciones Hospedero-Patógeno, Institut Pasteur Montevideo, Montevideo, Uruguay.,Unidad de Microbiología, Departamento de Patobiología, Facultad de Veterinaria, UdelaR, Montevideo, Uruguay
| | - Sebastián Pita
- Laboratorio de Interacciones Hospedero-Patógeno, Institut Pasteur Montevideo, Montevideo, Uruguay.,Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Telma González
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Ana Viera
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Lorenzo Verger
- Ministerio de Salud Pública, Uruguay, Montevideo, Uruguay
| | - Sofia Piegas
- Ministerio de Salud Pública, Uruguay, Montevideo, Uruguay
| | | | - Pablo Fresia
- Unidad Mixta Pasteur+INIA (UMPI), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Yester Basmadjián
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| |
Collapse
|
8
|
Mitochondrial COI and Cytb gene as valid molecular identification marker of sandfly species (Diptera: Psychodidae) in China. Acta Trop 2023; 238:106798. [PMID: 36529191 DOI: 10.1016/j.actatropica.2022.106798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The accurate identification of sandfly species is crucial because some species transmit medically significant diseases, including leishmaniasis, bartonellosis and sandfly fever. However, due to the high similarity of the external morphology in sandfly species, identification can only be performed using internal morphological characteristics after dissection, which is time consuming and requires highly experienced staff. Thus, the introduction of suitable molecular markers may solve these identification problems. This study screened suitable DNA barcodes to identify common sandfly species in China. The phlebotomine sandflies were collected from Sichuan, Henan and Hainan Provinces from 2014 to 2016. The species were identified by the morphological characteristics of the pharyngeal armature and spermatheca. The genomic DNA of sandfly was extracted individually, and mitochondrial DNA (mtDNA) cytochrome C oxidase subunit I (COI) and cytochrome B (Cytb) as well as the 18S subunit of ribosomal DNA (rDNA) were amplified using polymerase chain reaction (PCR). Additionally, intraspecific and interspecific differences (p-distance) were calculated to evaluate the feasibility of the three gene fragments as a DNA barcode. The phylogeny trees of all sandfly species in this study were constructed using neighbor joining (NJ) method. Six species were identified by the morphological features, belonging to Phlebotomus and Sergentomyia, as Ph. chinensis s. l., Ph. stantoni, Se. bailyi, Se. iyengari, Se. squamirostris, and Se. squamipleuris. Analysis based on three gene fragments revealed some degree of intraspecific polymorphism among these sandfly species in China. The largest intraspecific variation occurred in Ph. chinensis s. l. (mtDNA COI, p-distance = 0.042; mtDNA Cytb, p-distance = 0.071), but the 18S rDNA fragment showed a small variation (p-distance = 0.005). The ranges of interspecific p-distances for mtDNA COI and mtDNA Cytb were 0.138 - 0.231 and 0.128 - 0.274, respectively. However, the interspecific p-distances of 18S rDNA are relatively low ranging from 0.003 to 0.055. Both mitochondrial COI and Cytb gene fragments are valid molecular identification markers in theses sandfly species. The topological structure of phylogeny trees based on mtDNA COI, mtDNA Cytb and 18S rDNA genes were all consistent with morphological classification. And we also found there were significant intraspecies differences within Ph. chinensis s. l. (0.006-0.071) and Se. bailyi (0.002-0.032) based on mtDNA Cytb gene fragment. Sequence alignment data suggested that Ph. chinensis s. l. from Sichuan should be Ph. sichuanensis, and the sandfly specimen collected from Henan was Ph. chinensis s. s.. There could be cryptic species in Se. bailyi from China.
Collapse
|
9
|
de Souza Fernandes W, de Oliveira Moura Infran J, Falcão de Oliveira E, Etelvina Casaril A, Petilim Gomes Barrios S, Lopes de Oliveira SL, Gutierrez de Oliveira A. Phlebotomine Sandfly (Diptera: Psychodidae) Fauna and The Association Between Climatic Variables and The Abundance of Lutzomyia longipalpis sensu lato in an Intense Transmission Area for Visceral Leishmaniasis in Central Western Brazil. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:997-1007. [PMID: 35139201 DOI: 10.1093/jme/tjac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 06/14/2023]
Abstract
The presence, abundance, and distribution of sandflies are strongly influenced by climate and environmental changes. This study aimed to describe the sandfly fauna in an intense transmission area for visceral leishmaniasis and to evaluate the association between the abundance of Lutzomyia longipalpis sensu lato (Lutz & Neiva 1912) (Diptera: Psychodidae) and climatic variables. Captures were carried out 2 yr (July 2017 to June 2019) with automatic light traps in 16 sites of the urban area of Campo Grande, Mato Grosso do Sul state. The temperature (°C), relative humidity (%), precipitation (mm3), and wind speed (km/h) were obtained by a public domain database. The Wilcoxon test compared the absolute frequencies of the species by sex. The association between climatic variables and the absolute frequency of Lu. longipalpis s.l. was assessed using the Spearman's correlation coefficient. A total of 1,572 sandflies into four species were captured. Lutzomyia longipalpis s.l. was the most abundant species and presented a significant correlation with the average temperature, humidity, and wind speed in different periods. Lutzomyia longipalpis s.l. was captured in all months, showing its plasticity in diverse weather conditions. We emphasize the importance of regular monitoring of vectors and human and canine cases, providing data for surveillance and control actions to continue to be carried out in the municipality.
Collapse
Affiliation(s)
- Wagner de Souza Fernandes
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Jucelei de Oliveira Moura Infran
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Everton Falcão de Oliveira
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
- Instituto Integrado de Saúde (INISA), Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Aline Etelvina Casaril
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Suellem Petilim Gomes Barrios
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Samuel Lucas Lopes de Oliveira
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Alessandra Gutierrez de Oliveira
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| |
Collapse
|