1
|
Baltrušis P, Höglund J. Digital PCR: modern solution to parasite diagnostics and population trait genetics. Parasit Vectors 2023; 16:143. [PMID: 37098569 PMCID: PMC10131454 DOI: 10.1186/s13071-023-05756-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/23/2023] [Indexed: 04/27/2023] Open
Abstract
The use of polymerase chain reaction (PCR)-based diagnostic approaches has steadily increased in the field of parasitology in recent decades. The most recent large-scale technological modification of the PCR formula, also known as third-generation PCR, came in the form of digital PCR (dPCR). Currently, the most common form of dPCR on the market is digital droplet PCR (ddPCR). Unlike quantitative real-time PCR (qPCR), the digital format allows for highly sensitive, absolute quantification of nucleic acid targets and does not require external standards to be included in the developed assays. Dividing each sample into thousands of compartments and using statistical models also eliminates the need for technical replicates. With unprecedented sensitivity and enforcement of binary endpoint reactions, ddPCR not only allows the use of tiny sample volumes (especially important when working with limited amounts of DNA) but also minimises the impact of variations in amplification efficiency and the presence of inhibitors. As ddPCR is characterised by excellent features such as high throughput, sensitivity and robust quantification, it is widely used as a diagnostic tool in clinical microbiology. Due to recent advances, both the theoretical background and the practical, current applications related to the quantification of nucleic acids of eukaryotic parasites need to be updated. In this review, we present the basics of this technology (particularly useful for new users) and consolidate recent advances in the field with a focus on applications to the study of helminths and protozoan parasites.
Collapse
Affiliation(s)
- Paulius Baltrušis
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
2
|
Mancusi A, Giordano A, Bosco A, Girardi S, Proroga YTR, Morena L, Pinto R, Sarnelli P, Cringoli G, Rinaldi L, Capuano F, Maurelli MP. Development of a droplet digital polymerase chain reaction tool for the detection of Toxoplasma gondii in meat samples. Parasitol Res 2022; 121:1467-1473. [PMID: 35230549 PMCID: PMC8993784 DOI: 10.1007/s00436-022-07477-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
Toxoplasmosis is a zoonotic disease caused by the protozoan parasite Toxoplasma gondii. Infection in humans has usually been related to the consumption of raw, undercooked or cured meat. The aim of this study was to develop a droplet digital polymerase chain reaction (ddPCR)-based assay for the detection and quantification of T. gondii in meat samples. To optimize the ddPCR, T.gondii reference DNA aliquots at five known concentrations: 8000 cg/µl, 800 cg/µl, 80 cg/µl, 8 cg/µl were used. Moreover, results obtained by ddPCR and quantitative PCR (qPCR) were compared using 80 known samples (40 positive and 40 negative), as well as 171 unknown diaphragm tissue samples collected at slaughterhouses. The ddPCR showed a sensitivity of 97.5% and a specificity of 100%, with a detection limit of 8 genomic copy/µl of T. gondii. A nearly perfect agreement (κ = 0.85) was found between results obtained by ddPCR and qPCR for both positive and negative known samples analysed. On the 171 diaphragm tissue samples from field, 7.6% resulted positive by ddPCR and only 1.2% by qPCR. Therefore, this innovative method could be very useful for the detection of T. gondii in meat samples, aiming to prevent human infections.
Collapse
Affiliation(s)
- Andrea Mancusi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, NA), Italy
| | - Angela Giordano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, NA), Italy
| | - Antonio Bosco
- Unit of Parasitology and Parasitic Diseases, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Santa Girardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, NA), Italy
| | | | - Luigi Morena
- Centro Di Riferimento Regionale Sanità Animale (CReSan), Salerno, Italy
| | - Renato Pinto
- UOD Prevenzione E Sanità Pubblica Veterinaria Regione Campania, Naples, Italy
| | - Paolo Sarnelli
- UOD Prevenzione E Sanità Pubblica Veterinaria Regione Campania, Naples, Italy
| | - Giuseppe Cringoli
- Unit of Parasitology and Parasitic Diseases, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
- Centro Di Riferimento Regionale Sanità Animale (CReSan), Salerno, Italy
| | - Laura Rinaldi
- Unit of Parasitology and Parasitic Diseases, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
- Centro Di Riferimento Regionale Sanità Animale (CReSan), Salerno, Italy
| | - Federico Capuano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, NA), Italy
| | - Maria Paola Maurelli
- Unit of Parasitology and Parasitic Diseases, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy.
| |
Collapse
|
3
|
Wichianchot S, Hongsrichan N, Maneeruttanarungroj C, Pinlaor S, Iamrod K, Purisarn A, Donthaisong P, Karanis P, Nimsuphan B, Rucksaken R. A newly developed droplet digital PCR for Ehrlichia canis detection: comparisons to conventional PCR and blood smear techniques. J Vet Med Sci 2022; 84:831-840. [PMID: 35473801 PMCID: PMC9246678 DOI: 10.1292/jvms.22-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Canine monocytic ehrlichiosis caused by Ehrlichia canis infection is a life-threatening vector-borne disease in dogs worldwide. Routine blood smear has very low sensitivity and cannot accurately provide a quantitative result. Conventional PCR (cPCR) and real-time PCR (qPCR) are widely used as molecular methods for E. canis detection. qPCR is quantitative but relies on standard curves of known samples. To overcome this difficulty, this study developed a new E. canis quantitative detection method, using droplet digital polymerase chain reaction (ddPCR). ddPCR was evaluated against cPCR and blood smears. PCR amplicons and genomic DNA (gDNA) from 12 microscopic positive samples were used to identify the limits of detection (LODs) in ddPCR and cPCR. Our ddPCR was assessed in 92 field samples, it was compared with cPCR and blood smears. ddPCR showed LOD = 1.6 copies/reaction, or 78 times more sensitive than cPCR (LOD = 126 copies/reaction), using PCR amplicons as a template, whereas both ddPCR and cPCR had equal LODs at 0.02 ng gDNA/reaction. In addition, ddPCR had 100% sensitivity and 75% specificity for E. canis detection compared to cPCR and no cross-reaction with other blood pathogens was observed. ddPCR identified more positive samples than cPCR and blood smear. ddPCR improved the overall performance of E. canis detection, with a better LOD and comparable sensitivity and specificity to cPCR. The technique might be helpful for diagnosis of E. canis in light infection, evaluating the number of E. canis and follow-up after treatment.
Collapse
Affiliation(s)
- Sakulchit Wichianchot
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University
| | | | - Cherdsak Maneeruttanarungroj
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang.,Bioenergy Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University
| | - Kantapong Iamrod
- Department of Parasitology, Faculty of Medicine, Khon Kaen University
| | - Andaman Purisarn
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University
| | - Peerawich Donthaisong
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital Cologne.,University of Nicosia Medical School, Department of Basic and Clinical Sciences
| | - Burin Nimsuphan
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University
| | - Rucksak Rucksaken
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University
| |
Collapse
|