1
|
Chien MH, Chen CY, Yeh CL, Huang HY, Chou HY, Chen YW, Lin CP. Biofabricated poly (γ-glutamic acid) bio-ink reinforced with calcium silicate exhibiting superior mechanical properties and biocompatibility for bone regeneration. J Dent Sci 2024; 19:479-491. [PMID: 38303841 PMCID: PMC10829714 DOI: 10.1016/j.jds.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/04/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose The modification in 3D hydrogels, tissue engineering, and biomaterials science has enabled us to fabricate novel substitutes for bone regeneration. This study aimed to combine different biomaterials by 3D technique to fabricate a promising all-rounded hydrogel for bone regeneration. Materials and methods In this study, glycidyl methacrylate (GMA)-modified poly γ-glutamic acid (γ-PGA-GMA) hydrogels with calcium silicate (CS) hydrogel of different concentrations were fabricated by a 3D printing technique, and their biocompatibility and capability in bone regeneration were also evaluated. Results The results showed that CS γ-PGA-GMA could be successfully fabricated, and the presence of CS enhanced the rheological and mechanical properties of γ-PGA-GMA hydrogels, thus making them more adept at 3D printing and implantations. SEM images of the surface structure showed that higher CS concentrations (5% and 10%) contributed to denser surface architectures, thus achieving improved cellular adhesion and stem cell proliferation. Furthermore, higher concentrations of CS resulted in elevated expressions of osteogenic-related markers such as alkaline phosphatase (ALP) and osteocalcin (OC), as well as enhanced calcium deposition represented by the increased Alizarin Red S staining. In vivo studies referring to critical defects of rabbit femur further showed that the existence of hydrogels alone was able to induce partial bone regeneration, demonstrated by the results from quantitative and qualitative analysis of micro-CT scans. However, CS alterations caused significant increases in bone regeneration, as indicated by micro-CT and histological staining. Conclusion These results robustly suggest combining different biomaterials is crucial to producing a well-rounded hydrogel for tissue regeneration. We hope this study could be applied as a platform for others to brainstorm potential out-of-the-box solutions, contributing to developing high-potential biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Ming-Hui Chien
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Liang Yeh
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Huang
- Graduate Institute of Dental Science and Oral Health Industries, China Medical University, Taichung, Taiwan
| | - Han-Yi Chou
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Kiakojoori K, Najafi F, Torshabi M, Kazemi S, Rabiee SM, Nojehdehian H. Synthesis and characterization of a calcium phosphate bone cement with quercetin-containing PEEK/PLGA microparticles. Biomed Mater 2022; 18. [PMID: 36327455 DOI: 10.1088/1748-605x/ac9ffe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
This study aimed to describe the synthesis and characterization of a calcium phosphate cement (CPC) with polyetheretherketone/poly (lactic-co-glycolic) acid (PEEK/PLGA) micro-particles containing quercetin. CPC powder was synthesized by mixing dicalcium phosphate anhydrate and tetracalcium phosphate. To synthesize PEEK/PLGA microparticles, PLGA85:15 was mixed with 90 wt% PEEK. The weight ratio of quercetin/PLGA/PEEK was 1:9:90 wt%. PEEK/PLGA/quercetin microparticles with 3, 5, and 6 wt% was added to CPC. The setting time, compressive strength, drug release profile, solubility, pH, and porosity of synthesized cement were evaluated. The morphology and physicochemical properties of particles was analyzed by scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and inductively coupled plasma. Cytotoxicity was assessed by the methyl thiazolyl tetrazolium assay using dental pulp stem cells. Expression of osteoblastic differentiation genes was evaluated by real-time polymerase chain reaction. Data were analyzed by one-way ANOVA and Tukey's test (alpha = 0.05). The setting time of 3 wt% CPC was significantly longer than 5 and 6 wt% CPC (P< 0.001). The 6 wt% CPC had significantly higher compressive strength than other groups (P= 0.001). The release of quercetin from CPCs increased for 5 d, and then reached a plateau. XRD and FTIR confirmed the presence of hydroxyapatite in cement composition. Significantly higher expression of osteocalcin (OCN) and osteopontin (OPN) was noted in 3 wt% and 6 wt% CPCs. Addition of quercetin-containing PEEK/PLGA microparticles to CPC enhanced its compressive strength, decreased its setting time, enabled controlled drug release, and up-regulated OPN and OCN.
Collapse
Affiliation(s)
- Kiana Kiakojoori
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Sayed Mahmood Rabiee
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Hanieh Nojehdehian
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kim Y, Uyama E, Sekine K, Kawano F, Hamada K. Effects of poloxamer additives on strength, injectability, and shape stability of beta-tricalcium phosphate cement modified using ball-milling. J Mech Behav Biomed Mater 2022; 130:105182. [PMID: 35305410 DOI: 10.1016/j.jmbbm.2022.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
Abstract
A new CPC was developed in this study using a β-TCP powder mechano-chemically modified by ball-milling. The prototype CPC exhibits excellent fluidity for easy injection into bone defects; however, there is a risk of leakage from the defects immediately after implantation due to its high fluidity. The addition of poloxamer, an inverse thermoresponsive gelling agent, into CPC optimizes the fluidity. At lower temperatures, it forms a sol and maintains good injectability, whereas at the human body temperature, it transforms to a gel, reducing the fluidity and risk of leakage. In this study, the effects of poloxamer addition of 3, 5, and 10 mass% on the injectability, shape stability, and strength of the prototype CPC were evaluated. The calculated injectability of the prototype CPC pastes containing three different poloxamer contents was higher than that of the CPC paste without poloxamer for 15 min at 37 °C. Furthermore, the shape stability immediately after injection of the three CPC pastes with poloxamer was higher than that of the CPC paste without poloxamer. After 1 week of storage at 37 °C, the compressive strength and diametral tensile strength of the CPC compacts containing 10 mass% poloxamer were similar to those of the CPC compact without poloxamer. Additionally, the CPC compacts containing 10 mass% poloxamer exhibited clear plastic deformation after fracture. These results indicate that the addition of poloxamer to the prototype CPC could reduce the risk of leakage from bone defects and improve the fracture toughness with maintaining the injectability and strength.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan.
| | - Emi Uyama
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Fumiaki Kawano
- Department of Comprehensive Dentistry, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Kenichi Hamada
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| |
Collapse
|
4
|
3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments. Acta Biomater 2021; 134:744-759. [PMID: 34358699 DOI: 10.1016/j.actbio.2021.07.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023]
Abstract
Porosity plays a key role on the osteogenic performance of bone scaffolds. Direct Ink Writing (DIW) allows the design of customized synthetic bone grafts with patient-specific architecture and controlled macroporosity. Being an extrusion-based technique, the scaffolds obtained are formed by arrays of cylindrical filaments, and therefore have convex surfaces. This may represent a serious limitation, as the role of surface curvature and more specifically the stimulating role of concave surfaces in osteoinduction and bone growth has been recently highlighted. Hence the need to design strategies that allow the introduction of concave pores in DIW scaffolds. In the current study, we propose to add gelatin microspheres as a sacrificial material in a self-setting calcium phosphate ink. Neither the phase transformation responsible for the hardening of the scaffold nor the formation of characteristic network of needle-like hydroxyapatite crystals was affected by the addition of gelatin microspheres. The partial dissolution of the gelatin resulted in the creation of spherical pores throughout the filaments and exposed on the surface, increasing filament porosity from 0.2 % to 67.9 %. Moreover, the presence of retained gelatin proved to have a significant effect on the mechanical properties, reducing the strength but simultaneously giving the scaffolds an elastic behavior, despite the high content of ceramic as a continuous phase. Notwithstanding the inherent difficulty of in vitro cultures with this highly reactive material an enhancement of MG-63 cell proliferation, as well as better spreading of hMSCs was recorded on the developed scaffolds. STATEMENT OF SIGNIFICANCE: Recent studies have stressed the role that concave surfaces play in tissue regeneration and, more specifically, in osteoinduction and osteogenesis. Direct ink writing enables the production of patient-specific bone grafts with controlled architecture. However, besides many advantages, it has the serious limitation that the surfaces obtained are convex. In this article, for the first time we develop a strategy to introduce concave pores in the printed filaments of biomimetic hydroxyapatite by incorporation and partial dissolution of gelatin microspheres. The retention of part of the gelatin results in a more elastic behavior compared to the brittleness of hydroxyapatite scaffolds, while the needle-shaped nanostructure of biomimetic hydroxyapatite is maintained and gelatin-coated concave pores on the surface of the filaments enhance cell spreading.
Collapse
|
5
|
The Development of Light-Curable Calcium-Silicate-Containing Composites Used in Odontogenic Regeneration. Polymers (Basel) 2021; 13:polym13183107. [PMID: 34578012 PMCID: PMC8468725 DOI: 10.3390/polym13183107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Pulp regeneration is one of the most successful areas in the field of tissue regeneration, despite its current limitations. The biocompatibility of endodontic biomaterials is essential in securing the oral microenvironment and supporting pulp tissue regeneration. Therefore, the objective of this study was to investigate the new light-curable calcium silicate (CS)-containing polyethylene glycol diacrylate (PEGDA) biocomposites’ regulation of human dental pulp stem cells (hDPSCs) in odontogenic-related regeneration. The CS-containing PEGDA (0 to 30 wt%) biocomposites are applied to endodontics materials to promote their mechanical, bioactive, and biological properties. Firstly, X-ray diffraction and Fourier-transform infrared spectroscopy showed that the incorporation of CS increased the number of covalent bonds in the PEGDA. The diameter tension strength of the CS-containing PEGDA composite was significantly higher than that of normal PEGDA, and a different microstructure was detected on the surface. Samples were analyzed for their surface characteristics and Ca/Si ion-release profiles after soaking in simulated body fluid for different periods of time. The CS30 group presented better hDPSC adhesion and proliferation in comparison with CS0. Higher values of odontogenic-related biomarkers were found in hDPSCs on CS30. Altogether, these results prove the potential of light-curable CS-containing PEGDA composites as part of a ‘point-of-care’ strategy for application in odontogenesis-related regeneration.
Collapse
|
6
|
Montelongo SA, Chiou G, Ong JL, Bizios R, Guda T. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:94. [PMID: 34390404 PMCID: PMC8364524 DOI: 10.1007/s10856-021-06569-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/30/2021] [Indexed: 05/17/2023]
Abstract
Beta-tricalcium phosphate (β-TCP)-based bioinks were developed to support direct-ink 3D printing-based manufacturing of macroporous scaffolds. Binding of the gelatin:β-TCP ink compositions was optimized by adding carboxymethylcellulose (CMC) to maximize the β-TCP content while maintaining printability. Post-sintering, the gelatin:β-TCP:CMC inks resulted in uniform grain size, uniform shrinkage of the printed structure, and included microporosity within the ceramic. The mechanical properties of the inks improved with increasing β-TCP content. The gelatin:β-TCP:CMC ink (25:75 gelatin:β-TCP and 3% CMC) optimized for mechanical strength was used to 3D print several architectures of macroporous scaffolds by varying the print nozzle tip diameter and pore spacing during the 3D printing process (compressive strength of 13.1 ± 2.51 MPa and elastic modulus of 696 ± 108 MPa was achieved). The sintered, macroporous β-TCP scaffolds demonstrated both high porosity and pore size but retained mechanical strength and stiffness compared to macroporous, calcium phosphate ceramic scaffolds manufactured using alternative methods. The high interconnected porosity (45-60%) and fluid conductance (between 1.04 ×10-9 and 2.27 × 10-9 m4s/kg) of the β-TCP scaffolds tested, and the ability to finely tune the architecture using 3D printing, resulted in the development of novel bioink formulations and made available a versatile manufacturing process with broad applicability in producing substrates suitable for biomedical applications.
Collapse
Affiliation(s)
- Sergio A Montelongo
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Gennifer Chiou
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Joo L Ong
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Rena Bizios
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
7
|
Lin YT, Hsu TT, Liu YW, Kao CT, Huang TH. Bidirectional Differentiation of Human-Derived Stem Cells Induced by Biomimetic Calcium Silicate-Reinforced Gelatin Methacrylate Bioink for Odontogenic Regeneration. Biomedicines 2021; 9:biomedicines9080929. [PMID: 34440133 PMCID: PMC8394247 DOI: 10.3390/biomedicines9080929] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Tooth loss or damage is a common problem affecting millions of people worldwide, and it results in significant impacts on one’s quality of life. Dental regeneration with the support of stem cell-containing scaffolds has emerged as an alternative treatment strategy for such cases. With this concept in mind, we developed various concentrations of calcium silicate (CS) in a gelatin methacryloyl (GelMa) matrix and fabricated human dental pulp stem cells (hDPSCs)-laden scaffolds via the use of a bioprinting technology in order to determine their feasibility in promoting odontogenesis. The X-ray diffraction and Fourier transform-infrared spectroscopy showed that the incorporation of CS increased the number of covalent bonds in the GelMa hydrogels. In addition, rheological analyses were conducted for the different concentrations of hydrogels to evaluate their sol–gel transition temperature. It was shown that incorporation of CS improved the printability and printing quality of the scaffolds. The printed CS-containing scaffolds were able to release silicate (Si) ions, which subsequently significantly enhanced the activation of signaling-related markers such as ERK and significantly improved the expression of odontogenic-related markers such as alkaline phosphatase (ALP), dentin matrix protein-1 (DMP-1), and osteocalcin (OC). The calcium deposition assays were also significantly enhanced in the CS-containing scaffold. Our results demonstrated that CS/GelMa scaffolds were not only enhanced in terms of their physicochemical behaviors but the odontogenesis of the hDPSCs was also promoted as compared to GelMa scaffolds. These results demonstrated that CS/GelMa scaffolds can serve as cell-laden materials for future clinical applications and use in dentin regeneration.
Collapse
Affiliation(s)
- Yi-Ting Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-T.L.); (C.-T.K.)
| | - Tuan-Ti Hsu
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan; (T.-T.H.); (Y.-W.L.)
| | - Yu-Wei Liu
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan; (T.-T.H.); (Y.-W.L.)
| | - Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-T.L.); (C.-T.K.)
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-T.L.); (C.-T.K.)
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-22967979 (ext. 3700)
| |
Collapse
|
8
|
Chen CY, Shie MY, Lee AKX, Chou YT, Chiang C, Lin CP. 3D-Printed Ginsenoside Rb1-Loaded Mesoporous Calcium Silicate/Calcium Sulfate Scaffolds for Inflammation Inhibition and Bone Regeneration. Biomedicines 2021; 9:biomedicines9080907. [PMID: 34440111 PMCID: PMC8389633 DOI: 10.3390/biomedicines9080907] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022] Open
Abstract
Bone defects are commonly found in the elderly and athletic population due to systemic diseases such as osteoporosis and trauma. Bone scaffolds have since been developed to enhance bone regeneration by acting as a biological extracellular scaffold for cells. The main advantage of a bone scaffold lies in its ability to provide various degrees of structural support and growth factors for cellular activities. Therefore, we designed a 3D porous scaffold that can not only provide sufficient mechanical properties but also carry drugs and promote cell viability. Ginsenoside Rb1 (GR) is an extract from panax ginseng, which has been used for bone regeneration and repair since ancient Chinese history. In this study, we fabricated scaffolds using various concentrations of GR with mesoporous calcium silicate/calcium sulfate (MSCS) and investigated the scaffold’s physical and chemical characteristic properties. PrestoBlue, F-actin staining, and ELISA were used to demonstrate the effect of the GR-contained MSCS scaffold on cell proliferation, morphology, and expression of the specific osteogenic-related protein of human dental pulp stem cells (hDPSCs). According to our data, hDPSCs cultivated in GR-contained MSCS scaffold had preferable abilities of proliferation and higher expression of the osteogenic-related protein and could effectively inhibit inflammation. Finally, in vivo performance was assessed using histological results that revealed the GR-contained MSCS scaffolds were able to further achieve more effective hard tissue regeneration than has been the case in the past. Taken together, this study demonstrated that a GR-containing MSCS 3D scaffold could be used as a potential alternative for future bone tissue engineering studies and has good potential for clinical use.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan;
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 406040, Taiwan; (M.-Y.S.); (C.C.)
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
| | - Alvin Kai-Xing Lee
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan;
- School of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Yun-Ting Chou
- Graduate Institute of Dental Science and Oral Health Industries, China Medical University, Taichung 406040, Taiwan;
| | - Chun Chiang
- School of Dentistry, China Medical University, Taichung City 406040, Taiwan; (M.-Y.S.); (C.C.)
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan;
- Department of Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: ; Tel.: +886-2-23831346
| |
Collapse
|
9
|
Therapeutic Effects of the Addition of Fibroblast Growth Factor-2 to Biodegradable Gelatin/Magnesium-Doped Calcium Silicate Hybrid 3D-Printed Scaffold with Enhanced Osteogenic Capabilities for Critical Bone Defect Restoration. Biomedicines 2021; 9:biomedicines9070712. [PMID: 34201589 PMCID: PMC8301337 DOI: 10.3390/biomedicines9070712] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
Worldwide, the number of bone fractures due to traumatic and accidental injuries is increasing exponentially. In fact, repairing critical large bone defects remains challenging due to a high risk of delayed union or even nonunion. Among the many bioceramics available for clinical use, calcium silicate-based (CS) bioceramics have gained popularity due to their good bioactivity and ability to stimulate cell behavior. In order to improve the shortcomings of 3D-printed ceramic scaffolds, which do not easily carry growth factors and do not provide good tissue regeneration effects, the aim of this study was to use a gelatin-coated 3D-printed magnesium-doped calcium silicate (MgCS) scaffold with genipin cross-linking for regulating degradation, improving mechanical properties, and enhancing osteogenesis behavior. In addition, we consider the effects of fibroblast growth factor-2 (FGF-2) loaded into an MgCS scaffold with and without gelatin coating. Furthermore, we cultured the human Wharton jelly-derived mesenchymal stem cells (WJMSC) on the scaffolds and observed the biocompatibility, alkaline phosphatase activity, and osteogenic-related markers. Finally, the in vivo performance was assessed using micro-CT and histological data that revealed that the hybrid bioscaffolds were able to further achieve more effective bone tissue regeneration than has been the case in the past. The above results demonstrated that this type of processing had great potential for future clinical applications and studies and can be used as a potential alternative for future bone tissue engineering research, as well as having good potential for clinical applications.
Collapse
|
10
|
Shimatani A, Toyoda H, Orita K, Ibara Y, Yokogawa Y, Nakamura H. A bone replacement-type calcium phosphate cement that becomes more porous in vivo by incorporating a degradable polymer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:77. [PMID: 34156560 PMCID: PMC8219573 DOI: 10.1007/s10856-021-06555-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
This study investigated whether mixing low viscosity alginic acid with calcium phosphate cement (CPC) causes interconnected porosity in the CPC and enhances bone replacement by improving the biological interactions. Furthermore, we hypothesized that low viscosity alginic acid would shorten the setting time of CPC and improve its strength. CPC samples were prepared with 0, 5, 10, and 20% low viscosity alginic acid. After immersion in acetate buffer, possible porosification in CPC was monitored in vitro using scanning electron microscopy (SEM), and the setting times and compressive strengths were measured. In vivo study was conducted by placing CPC in a hole created on the femur of New Zealand white rabbit. Microcomputed tomography and histological examination were performed 6 weeks after implantation. SEM images confirmed that alginic acid enhanced the porosity of CPC compared to the control, and the setting time and compressive strength also improved. When incorporating a maximum amount of alginic acid, the new bone mass was significantly higher than the control group (P = 0.0153). These biological responses are promising for the translation of these biomaterials and their commercialization for clinic applications.
Collapse
Affiliation(s)
- Akiyoshi Shimatani
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Hiromitsu Toyoda
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuta Ibara
- Department of Mechanical & Physical Engineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshiyuki Yokogawa
- Department of Mechanical & Physical Engineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
11
|
Dabiri SMH, Lagazzo A, Aliakbarian B, Mehrjoo M, Finocchio E, Pastorino L. Fabrication of alginate modified brushite cement impregnated with antibiotic: Mechanical, thermal, and biological characterizations. J Biomed Mater Res A 2019; 107:2063-2075. [PMID: 31081994 DOI: 10.1002/jbm.a.36719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/07/2022]
Abstract
Treatment of postsurgical infections, associated with orthopedic surgeries, has been a major concern for orthopedics. Several strategies including systematic and local administration of antibiotics have been proposed to this regard. The present work focused on fabricating alginate (Alg) modified brushite (Bru) cements, which could address osteogeneration and local antibiotic demands. To find the proper method of drug incorporation, Gentamicin sulfate (Gen) was loaded into the samples in the form of solution or powder. Several characterization tests including compression test, morphology, cytotoxicity, and cell adhesion assays were carried out to determine the proper concentration of Alg as a modifier of the Bru cement. The results indicated that addition of 1 wt% Alg led to superior mechanical and biological properties of the cement. Moreover, Alg addition changed the morphology of the cement from plate and needle-like structures to petal-like structure. Fourier transform infrared spectroscopy results confirmed the successful loading of Gen on the cements, specifically when Gen solution was used, and X-Ray Diffractometer result indicated that Gen caused a decrease in crystalline size. Furthermore, thermal analysis revealed that Gen-loaded sample had more stable structure as the transformation temperature slightly shifted to a higher one. The stability study confirmed the chemical stability and adequate mechanical performance of the cements within 1 month of soaking time. Finally, the addition of Alg has a positive impact on the release behavior at low concentration of Gen solution so that 20% decrease within 2 weeks of release experiment was remarkably detected.
Collapse
Affiliation(s)
- S M Hossein Dabiri
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genova, Genoa, Italy.,Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia, Canada
| | - Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering, University of Genova, Genoa, Italy
| | - Bahar Aliakbarian
- Department of Supply Chain Management, Eli College of Business, The Axia Institute, Michigan State University, Midland, Michigan
| | - Morteza Mehrjoo
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.,Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Elisabetta Finocchio
- Department of Civil, Chemical and Environmental Engineering, University of Genova, Genoa, Italy
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genova, Genoa, Italy
| |
Collapse
|
12
|
Shu X, Feng J, Feng J, Huang X, Li L, Shi Q. Combined delivery of bone morphogenetic protein-2 and insulin-like growth factor-1 from nano-poly (γ-glutamic acid)/β-tricalcium phosphate-based calcium phosphate cement and its effect on bone regeneration in vitro. J Biomater Appl 2018; 32:547-560. [PMID: 29113568 DOI: 10.1177/0885328217737654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, nano-doped calcium phosphate cement delivery systems (poly (γ-glutamic acid)/β-tricalcium phosphate/calcium phosphate ceramics and nano (γ-glutamic acid)/β-tricalcium phosphate/calcium phosphate ceramic) were fabricated, and low doses (10 µg/g) of two growth factors, insulin-like growth factor-1 and bone morphogenetic protein-2, were encapsulated then sequentially released. We characterized the delivery systems using Fourier transform infrared spectroscopy and X-ray diffraction and measured washout resistance and compressive strength, and thus optimized the most appropriate proportioning of delivery systems for the two growth factors. One of the growth factors was absorbed by the nano-poly (γ-glutamic acid)/β-tricalcium phosphate, which was then mixed into the calcium phosphate ceramic solid phase to create a new solid phase calcium phosphate ceramic. Nano-poly (γ-glutamic acid)/β-tricalcium phosphate/calcium phosphate ceramic carriers were then prepared by blending the new calcium phosphate ceramic solid phase powder with a solution of the remaining growth factor. The effects of different release patterns (studying sequential behavior) of insulin-like growth factor-1 and bone morphogenetic protein-2 on osteogenic proliferation and differentiation of the MC3t3-E1 mouse osteoblast cell were investigated. This combinational delivery system provided a controlled release of the two growth factors, in which nano-doping significantly affected their release kinetics. The incorporation of dual growth factors could potentially stimulate bone healing and promoting bone ingrowth processes at a low dose.
Collapse
Affiliation(s)
- Xiulin Shu
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| | - Jin Feng
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| | - Jing Feng
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| | - Xiaomo Huang
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| | - Liangqiu Li
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| | - Qingshan Shi
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| |
Collapse
|
13
|
Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. Int J Pharm 2018; 536:241-250. [DOI: 10.1016/j.ijpharm.2017.11.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/20/2023]
|
14
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:585-595. [DOI: 10.1016/j.msec.2016.12.101] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022]
|
16
|
Huang SH, Hsu TT, Huang TH, Lin CY, Shie MY. Fabrication and characterization of polycaprolactone and tricalcium phosphate composites for tissue engineering applications. J Dent Sci 2016; 12:33-43. [PMID: 30895021 PMCID: PMC6395261 DOI: 10.1016/j.jds.2016.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
Background/purpose β-Tricalcium phosphate (β-TCP) is an osteoconductive material which has been used for clinical purposes for several years, as is polycaprolactone (PCL), which has already been approved for a number of medical and drug delivery devices. In this study we have incorporated various concentrations of β-TCP into PCL with the aim of developing an injectable, mechanically strong, and biodegradable material which can be used for medical purposes without organic solvents. Materials and methods This study assesses the physical and chemical properties of this material, evaluates the in vitro bioactivity of the PCL/β-TCP composites, and analyzes cell proliferation and osteogenic differentiation when using human bone marrow mesenchymal stem cells (hBMSCs). Results The results show that weight losses of approximately 5.3%, 12.1%, 18.6%, and 25.2%, were observed for the TCP0, TCP10, TCP30, and TCP50 composites after immersion in simulated body fluid for 12 weeks, respectively, indicating significant differences (P < 0.05). In addition, PCL/β-TCP composites tend to have lower contact angles (47 ± 1.5° and 58 ± 1.7° for TCP50 and TCP30, respectively) than pure PCL (85 ± 1.3°), which are generally more hydrophilic. After 7 days, a significant (22% and 34%, respectively) increase (P < 0.05) in alkaline phosphatase level was measured for TCP30 and TCP50 in comparison with the pure PCL. Conclusion PCL/TCP is biocompatible with hBMSCs. It not only promotes proliferation of hBMSCs but also helps to differentiate reparative hard tissue. We suggest 50% (weight) PCL-containing β-TCP biocomposites as the best choice for hard tissue repair applications.
Collapse
Affiliation(s)
- Shu-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan
| | - Tuan-Ti Hsu
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Cheng-Yao Lin
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan.,School of Dentistry, China Medical University, Taichung City, Taiwan
| |
Collapse
|
17
|
Teotia AK, Gupta A, Raina DB, Lidgren L, Kumar A. Gelatin-Modified Bone Substitute with Bioactive Molecules Enhance Cellular Interactions and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10775-10787. [PMID: 27077816 DOI: 10.1021/acsami.6b02145] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, we have synthesized injectable bone cement incorporated with gelatin to enhance cellular interaction. Human osteosarcoma Saos-2 cells derived bone morphogenetic proteins (BMP's) and a bisphosphonate (zoledronic acid (0.2 mM)) were also incorporated to cement. In vitro studies conducted using Saos-2 demonstrated enhanced cell proliferation on gelatin (0.2%w/v) cement. The differentiation of C2C12 mouse myoblast cells into bone forming cells showed 6-fold increase in ALP levels on gelatin cement. Polymerase chain reaction (PCR) for bone biomarkers showed osteoinductive potential of gelatin cement. We investigated efficacy for local delivery of these bioactive molecules in enhancing bone substitution qualities of bone cements by implanting in 3.5 mm critical size defect in tibial metaphysis of wistar rats. The rats were sacrificed after 12 weeks and 16 weeks post implantation. X-ray, micro-CT, histology, and histomorphometry analysis were performed to check bone healing. The cement materials slowly resorbed from the defect site leaving HAP creating porous matrix providing surface for bone formation. The materials showed high biocompatibility and initial bridging was observed in all the animals but maximum bone formation was observed in animals implanted with cement incorporated with zoledronic acid followed by cement with BMP's compared to other groups.
Collapse
Affiliation(s)
- Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Ankur Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Deepak Bushan Raina
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
- Department of Orthopedics, Clinical Sciences, Lund, Lund University , Lund 221 85, Sweden
| | - Lars Lidgren
- Department of Orthopedics, Clinical Sciences, Lund, Lund University , Lund 221 85, Sweden
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
18
|
Huang SH, Chen YJ, Kao CT, Lin CC, Huang TH, Shie MY. Physicochemical properties and biocompatibility of silica doped β-tricalcium phosphate for bone cement. J Dent Sci 2015. [DOI: 10.1016/j.jds.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
19
|
Wu BC, Youn SC, Kao CT, Huang SC, Hung CJ, Chou MY, Huang TH, Shie MY. The effects of calcium silicate cement/fibroblast growth factor-2 composite on osteogenesis accelerator in human dental pulp cells. J Dent Sci 2015. [DOI: 10.1016/j.jds.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
20
|
Huang MH, Kao CT, Chen YW, Hsu TT, Shieh DE, Huang TH, Shie MY. The synergistic effects of Chinese herb and injectable calcium silicate/β-tricalcium phosphate composite on an osteogenic accelerator in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:161. [PMID: 25786397 DOI: 10.1007/s10856-015-5484-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
This study investigates the physicochemical and biological effects of traditional Chinese medicines on the β-tricalcium phosphate (β-TCP)/calcium silicate (CS) composites of bone cells using human dental pulp cell. CS is an osteoconductive and bioactive material. For this research we have combined β-TCP and CS and check its effectiveness, a series of β-TCP/CS composites with different ratios of Xu Duan (XD) were prepared to make new bioactive and biodegradable biocomposites for bone repair. XD has been used in Traditional Chinese Medicine for hundreds of years as an antiosteoporosis, tonic and antiaging agent for the therapy of low back pain, traumatic hematoma, threatened abortion and bone fractures. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of XD released from β-TCP/CS composites and in vitro human dental pulp cell (hDPCs) and studied its behavior. The results show the XD-contained paste did not give any demixing when the weight ratio of XD increased to 5-10 % due to the filter-pressing effect during extrusion through the syringe. After immersion in SBF, the microstructure image showed a dense bone-like apatite layer covered on the β-TCP/CS/XD composites. In vitro cell experiments shows that the XD-rich composites promote human dental pulp cells (hDPCs) proliferation and differentiation. However, when the XD quantity in the composite is more than 5 %, the amount of cells and osteogenesis protein of hDPCs were stimulated by XD released from β-TCP/CS composites. The combination of XD in degradation of β-TCP and osteogenesis of CS gives strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials.
Collapse
Affiliation(s)
- Ming-Hsien Huang
- Institute of Oral Science, Chung Shan Medical University, Taichung City, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Chiu CK, Lee DJ, Chen H, Chow LC, Ko CC. In-situ hybridization of calcium silicate and hydroxyapatite-gelatin nanocomposites enhances physical property and in vitro osteogenesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:92. [PMID: 25649517 DOI: 10.1007/s10856-015-5456-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/01/2015] [Indexed: 06/04/2023]
Abstract
Low mechanical strengths and inadequate bioactive material-tissue interactions of current synthetic materials limit their clinical applications in bone regeneration. Here, we demonstrate gelatin modified siloxane-calcium silicate (GEMOSIL-CS), a nanocomposite made of gelatinous hydroxyapatite with in situ pozzolanic formation of calcium silicate (CS) interacting among gelatin, silica and Calcium Hydroxide (Ca(OH)2). It is shown the formation of CS matrices, which chemically bonds to the gelatinous hydroxyapatite, provided hygroscopic reinforcement mechanism and promoted both in vitro and in vivo osteogenic properties of GEMOSIL-CS. The formation of CS was identified by Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction. The interfacial bindings within nanocomposites were studied by FTIR and thermogravimetric analysis. Both gelatin and CS have been found critical to the structure integrity and mechanical strengths (93 MPa in compressive strength and 58.9 MPa in biaxial strength). The GEMOSIL-CS was biocompatible and osteoconductive as result of type I collagen secretion and mineralized nodule formation from MC3T3 osteoblasts. SEM and TEM indicated the secretion of collagen fibers and mineral particles as the evidence of mineralization in the early stage of osteogenic differentiation. In vivo bone formation capability was performed by implanting GEMOSIL-CS into rat calvarial defects for 12 weeks and the result showed comparable new bone formation between GEMOSIL-CS group (20%) and the control (20.19%). The major advantage of GEMOSIL-CS composites is in situ self-hardening in ambient or aqueous environment at room temperature providing a simple, fast and cheap method to produce porous scaffolds.
Collapse
Affiliation(s)
- Chi-Kai Chiu
- NC Oral Health Institute, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC, 27599, USA,
| | | | | | | | | |
Collapse
|
22
|
Perez RA, Shin SH, Han CM, Kim HW. Bioactive injectables based on calcium phosphates for hard tissues: A recent update. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0096-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
23
|
Castilho M, Rodrigues J, Pires I, Gouveia B, Pereira M, Moseke C, Groll J, Ewald A, Vorndran E. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication 2015; 7:015004. [PMID: 25562119 DOI: 10.1088/1758-5090/7/1/015004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of polymer-calcium phosphate composite scaffolds with tailored architectures and properties has great potential for bone regeneration. Herein, we aimed to improve the functional performance of brittle ceramic scaffolds by developing a promising biopolymer-ceramic network. For this purpose, two strategies, namely, direct printing of a powder composition consisting of a 60:40 mixture of α/β-tricalcium phosphate (TCP) powder and alginate powder or vacuum infiltration of printed TCP scaffolds with an alginate solution, were tracked. Results of structural characterization revealed that the scaffolds printed with 2.5 wt% alginate-modified TCP powders presented a uniformly distributed and interfusing alginate TCP network. Mechanical results indicated a significant increase in strength, energy to failure and reliability of powder-modified scaffolds with an alginate content in the educts of 2.5 wt% when compared to pure TCP, as well as to TCP scaffolds containing 5 wt% or 7.5 wt% in the educts, in both dry and wet states. Culture of human osteoblast cells on these scaffolds also demonstrated a great improvement of cell proliferation and cell viability. While in the case of powder-mixed alginate TCP scaffolds, isolated alginate gels were formed between the calcium phosphate crystals, the vacuum-infiltration strategy resulted in the covering of the surface and internal pores of the TCP scaffold with a thin alginate film. Furthermore, the prediction of the scaffolds' critical fracture conditions under more complex stress states by the applied Mohr fracture criterion confirmed the potential of the powder-modified scaffolds with 2.5 wt% alginate in the educts as structural biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Miguel Castilho
- LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal. Altakitin SA, Loures, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen YW, Yeh CH, Shie MY. Stimulatory effects of the fast setting and suitable degrading Ca–Si–Mg cement on both cementogenesis and angiogenesis differentiation of human periodontal ligament cells. J Mater Chem B 2015; 3:7099-7108. [PMID: 32262712 DOI: 10.1039/c5tb00713e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this study is to develop a fast setting and suitable degrading Mg–calcium silicate cement (Mg–CS) and a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLCs).
Collapse
Affiliation(s)
- Yi-Wen Chen
- 3D Printing Medical Research Center
- China Medical University Hospital
- Taichung City
- Taiwan
| | - Chia-Hung Yeh
- 3D Printing Medical Research Center
- China Medical University Hospital
- Taichung City
- Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center
- China Medical University Hospital
- Taichung City
- Taiwan
| |
Collapse
|
25
|
Su YF, Lin CC, Huang TH, Chou MY, Yang JJ, Shie MY. Osteogenesis and angiogenesis properties of dental pulp cell on novel injectable tricalcium phosphate cement by silica doped. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:672-80. [PMID: 25063168 DOI: 10.1016/j.msec.2014.05.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022]
Abstract
β-Tricalcium phosphate (β-TCP) is an osteoconductive material in clinical. In this study, we have doped silica (Si) into β-TCP and enhanced its bioactive and osteostimulative properties. To check its effectiveness, a series of Si-doped with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of the diametral tensile strength, ions released and weight loss of cements was considered after immersion. In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on Si-doped β-TCP cements. The results showed that setting time and injectability of the Si-doped β-TCP cements were decreased as the Si content was increased. At the end of the immersion point, weight losses of 30.1%, 36.9%, 48.1%, and 55.3% were observed for the cement doping 0%, 10%, 20%, and 30% Si into β-TCP cements, respectively. In vitro cell experiments show that the Si-rich cements promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the Si-doped in the cement is more than 20%, the amount of cells and osteogenesis protein of hDPCs was stimulated by Si released from Si-doped β-TCP cements. The degradation of β-TCP and osteogenesis of Si gives a strong reason to believe that these Si-doped β-TCP cements may prove to be promising bone repair materials.
Collapse
Affiliation(s)
- Ying-Fang Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Chang Lin
- Department of Anatomy, Chung Shan Medical University, Taichung City, Taiwan.
| | - Tsui-Hsien Huang
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yung Chou
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Jaw-Ji Yang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan.
| | - Ming-You Shie
- Department of Anatomy, Chung Shan Medical University, Taichung City, Taiwan.
| |
Collapse
|
26
|
Su CC, Kao CT, Hung CJ, Chen YJ, Huang TH, Shie MY. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:156-63. [DOI: 10.1016/j.msec.2014.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/15/2013] [Accepted: 01/05/2014] [Indexed: 01/12/2023]
|
27
|
Liu CH, Huang TH, Hung CJ, Lai WY, Kao CT, Shie MY. The synergistic effects of fibroblast growth factor-2 and mineral trioxide aggregate on an osteogenic acceleratorin vitro. Int Endod J 2014; 47:843-53. [DOI: 10.1111/iej.12227] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/02/2013] [Indexed: 11/28/2022]
Affiliation(s)
- C.-H. Liu
- School of Dentistry; Chung Shan Medical University; Taichung City Taiwan
| | - T.-H. Huang
- School of Dentistry; Chung Shan Medical University; Taichung City Taiwan
- Department of Dentistry; Chung Shan Medical University Hospital; Taichung City Taiwan
| | - C.-J. Hung
- School of Dentistry; Chung Shan Medical University; Taichung City Taiwan
- Department of Dentistry; Chung Shan Medical University Hospital; Taichung City Taiwan
| | - W.-Y. Lai
- School of Dentistry; Chung Shan Medical University; Taichung City Taiwan
- Department of Dentistry; Chung Shan Medical University Hospital; Taichung City Taiwan
| | - C.-T. Kao
- School of Dentistry; Chung Shan Medical University; Taichung City Taiwan
- Department of Dentistry; Chung Shan Medical University Hospital; Taichung City Taiwan
| | - M.-Y. Shie
- Institute of Oral Science; Chung Shan Medical University; Taichung City Taiwan
| |
Collapse
|
28
|
Maazouz Y, Montufar EB, Guillem-Marti J, Fleps I, Öhman C, Persson C, Ginebra MP. Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J Mater Chem B 2014; 2:5378-5386. [DOI: 10.1039/c4tb00438h] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new self-setting ceramic ink was developed for robocasting of biomimetic hydroxyapatite scaffolds, based on alpha-tricalcium phosphate and gelatine. After setting a biomimetic hydroxyapatite is obtained, with higher reactivity and resorbability than high-temperature sintered hydroxyapatite. The setting reaction of the ink results in a significant increase of the mechanical properties of the scaffolds.
Collapse
Affiliation(s)
- Y. Maazouz
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgical Engineering
- Technical University of Catalonia
- , Spain
- Biomedical Research Networking Center in Bioengineering
| | - E. B. Montufar
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgical Engineering
- Technical University of Catalonia
- , Spain
- Biomedical Research Networking Center in Bioengineering
| | - J. Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgical Engineering
- Technical University of Catalonia
- , Spain
- Biomedical Research Networking Center in Bioengineering
| | - I. Fleps
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgical Engineering
- Technical University of Catalonia
- , Spain
| | - C. Öhman
- Division of Applied Materials Science
- Department of Engineering Sciences
- Uppsala University
- Sweden
| | - C. Persson
- Division of Applied Materials Science
- Department of Engineering Sciences
- Uppsala University
- Sweden
| | - M. P. Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgical Engineering
- Technical University of Catalonia
- , Spain
- Biomedical Research Networking Center in Bioengineering
| |
Collapse
|
29
|
Dorozhkin SV. Self-setting calcium orthophosphate formulations. J Funct Biomater 2013; 4:209-311. [PMID: 24956191 PMCID: PMC4030932 DOI: 10.3390/jfb4040209] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.
Collapse
|
30
|
Shih TC, Teng NC, Wang PD, Lin CT, Yang JC, Fong SW, Lin HK, Chang WJ. In vivo evaluation of resorbable bone graft substitutes in beagles: histological properties. J Biomed Mater Res A 2013; 101:2405-11. [PMID: 23526767 DOI: 10.1002/jbm.a.34540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/30/2012] [Accepted: 11/19/2012] [Indexed: 11/07/2022]
Abstract
Calcium phosphate cement (CPC) is a promising material for use in minimally invasive surgery for bone defect repairs due to its bone-like apatitic final setting product, biocompatibility, bioactivity, self-setting characteristics, low setting temperature, adequate stiffness, and easy shaping into complicated geometrics. However, even though CPC is stable in vivo, the resorption rate of this bone cement is very slow and its long setting time poses difficulties for clinical use. Calcium sulfate dehydrate (CSD) has been used as a filler material and/or as a replacement for cancellous bone grafts due to its biocompatibility. However, it is resorbed too quickly to be optimal for bone regeneration. This study examines the invivo response of a hydroxyapatite (HA), [apatitic phase (AP)]/calcium sulfate (CSD) composite using different ratios in the mandibular premolar sockets of beagles. The HA (AP)/CSD composite materials were prepared in the ratios of 30/70, 50/50, and 70/30 and then implanted into the mandibular premolar sockets for terms of 5 and 10 weeks. The control socket was left empty. The study shows better new bone morphology and more new bone area in the histological and the histomorphometric study of the HA (AP)/CSD in the 50/50 ratio.
Collapse
Affiliation(s)
- Tsai-Chin Shih
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sugawara A, Asaoka K, Ding SJ. Calcium phosphate-based cements: clinical needs and recent progress. J Mater Chem B 2013; 1:1081-1089. [DOI: 10.1039/c2tb00061j] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 2012; 8:1401-21. [PMID: 22127225 DOI: 10.1016/j.actbio.2011.11.017] [Citation(s) in RCA: 490] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/04/2011] [Accepted: 11/13/2011] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications.
Collapse
|
33
|
Perez RA, Kim HW, Ginebra MP. Polymeric additives to enhance the functional properties of calcium phosphate cements. J Tissue Eng 2012; 3:2041731412439555. [PMID: 22511991 PMCID: PMC3324842 DOI: 10.1177/2041731412439555] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The vast majority of materials used in bone tissue engineering and regenerative medicine are based on calcium phosphates due to their similarity with the mineral phase of natural bone. Among them, calcium phosphate cements, which are composed of a powder and a liquid that are mixed to obtain a moldable paste, are widely used. These calcium phosphate cement pastes can be injected using minimally invasive surgery and adapt to the shape of the defect, resulting in an entangled network of calcium phosphate crystals. Adding an organic phase to the calcium phosphate cement formulation is a very powerful strategy to enhance some of the properties of these materials. Adding some water-soluble biocompatible polymers in the calcium phosphate cement liquid or powder phase improves physicochemical and mechanical properties, such as injectability, cohesion, and toughness. Moreover, adding specific polymers can enhance the biological response and the resorption rate of the material. The goal of this study is to overview the most relevant advances in this field, focusing on the different types of polymers that have been used to enhance specific calcium phosphate cement properties.
Collapse
Affiliation(s)
- Roman A Perez
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, South Korea
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
34
|
Kim SY, Jeon SH. Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements. J IND ENG CHEM 2012. [DOI: 10.1016/j.jiec.2011.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Cai S, Zhai Y, Xu G, Lu S, Zhou W, Ye X. Preparation and properties of calcium phosphate cements incorporated gelatin microspheres and calcium sulfate dihydrate as controlled local drug delivery system. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2487-2496. [PMID: 21894539 DOI: 10.1007/s10856-011-4432-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
To develop high macroporous and degradable bone cements which can be used as the substitute of bone repairing and drug carriers, cross-linked gelatin microspheres (GMs) and calcium sulfate dihydrate (CSD) powder were incorporated into calcium phosphate bone cement (CPC) to induce macropores, adjust drug release and control setting time of α-TCP-liquid mixtures after degradation of GMs and dissolution of CSD. In this study, CSD was introduced into CPC/10GMs composites to offset the prolonged setting time caused by the incorporation of GMs, and gentamicin sulphate (GS) was chosen as the model drug entrapped within the GMs. The effects of CSD amount on the cement properties, drug release ability and final macroporosity after GMs degradation were studied in comparison with CPC/GMs cements. The resulting cements presented reduced setting time and increased compressive strength as the content of CSD below 5 wt%. Sustained release of GS was obtained on at least 21 days, and release rates were found to be chiefly controlled by the GMs degradation rate. After 4 weeks of degradation study, the resulting composite cements appeared macroporous, degradable and suitable compressive strength, suggesting that they have potential as controlled local drug delivery system and for cancellous bone applications.
Collapse
Affiliation(s)
- Shu Cai
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
36
|
Lee GS, Park JH, Won JE, Shin US, Kim HW. Alginate combined calcium phosphate cements: mechanical properties and in vitro rat bone marrow stromal cell responses. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1257-1268. [PMID: 21461700 DOI: 10.1007/s10856-011-4296-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
Here, we prepared self-setting calcium phosphate cements (CPCs) based on α-tricalcium phosphate with the incorporation of sodium alginate, and their mechanical properties and in vitro cellular responses were investigated. The addition of alginate enhanced the hardening reaction of CPCs showing shorter setting times within a range of powder-to-liquid ratios. When immersed in a body simulating fluid the alginate-CPCs fully induced a formation of an apatite crystalline phase similar to that of bare CPCs. The compressive and tensile strengths of the CPCs were found to greatly improve during immersion in the fluid, and this improvement was more pronounced in the alginate-CPCs. As a result, the alginate-CPCs retained significantly higher strength values than the bare CPCs after 3-7 days of immersion. The rat bone marrow derived stromal cells (rBMSCs) cultured on the alginate-CPCs initially adhered to and then spread well on the cements surface, showed an on-going increase in the population with culture time, and differentiated into osteoblasts expressing bone-associated genes (collagen type I, osteopontin and bone sialoprotein) and synthesizing alkaline phosphatase. However, the stimulated level of osteogenic differentiation was not confirmative with the incorporation of alginate into the CPC composition based on the results. One merit of the use of alginate was its usefulness in forming CPCs into a variety of scaffold shapes including microspheres and fibers, which is associated with the cross-link of alginate under the calcium-containing solution.
Collapse
Affiliation(s)
- Gil-Su Lee
- Biomaterials and Tissue Engineering Laboratory, Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School, Cheonan, South Korea
| | | | | | | | | |
Collapse
|
37
|
Controlled release of gentamicin from calcium phosphate/alginate bone cement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Ding SJ, Wei CK, Lai MH. Bio-inspired calcium silicate–gelatin bone grafts for load-bearing applications. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11171j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Ding SJ, Shie MY, Hoshiba T, Kawazoe N, Chen G, Chang HC. Osteogenic differentiation and immune response of human bone-marrow-derived mesenchymal stem cells on injectable calcium-silicate-based bone grafts. Tissue Eng Part A 2010; 16:2343-54. [PMID: 20205531 DOI: 10.1089/ten.tea.2009.0749] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Calcium silicate cement (CSC) is biocompatible and possesses in vitro bioactivity. The aim of this study was to improve the handling and enhance osteogenic and immune properties of CSC by the addition of adjuvants to modify the cement. Human bone-marrow-derived mesenchymal stem cells were used to study the osteogenic behavior and immune response of cells on hybrid cements with added gelatin (GLT) and chitosan oligosaccharides (COS), which are analogs of the extracellular matrix components collagen and glycosaminoglycan, respectively. The addition of COS to the liquid phase slightly prolonged the setting time of CSC, whereas GLT in the solid phase significantly (p < 0.05) extended the hydration reaction. However, the addition of GLT appreciably improved the injectability of CSC, compared to COS. Cell viability was higher on CSC-COS than on the CSC control or on CSC-GLT at all culture times. The hybrid bone cements elicited less immune response than the CSC control. Additionally, COS inhibited expression of inducible nitric oxide synthase and interleukin-1 and activated interleukin-10 more effectively than GLT. Osteocalcin production and bone sialoprotein production were higher, and more calcium was detected in human bone-marrow-derived mesenchymal stem cells cultured on a CSC-GLT-COS surface than on CSC, CSC-GLT, or CSC-COS. These synergistic improvements in injectability, immune response, and osteogenesis suggest that the combination of bioactive calcium silicate, GLT, and COS has potential for use in clinical applications.
Collapse
Affiliation(s)
- Shinn-Jyh Ding
- Institute of Oral Biology and Biomaterials Science, Chung-Shan Medical University, Taichung, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
40
|
Chen CC, Wang WC, Ding SJ. In vitro physiochemical properties of a biomimetic gelatin/chitosan oligosaccharide/calcium silicate cement. J Biomed Mater Res B Appl Biomater 2010; 95:456-65. [DOI: 10.1002/jbm.b.31737] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Chen CC, Lai MH, Wang WC, Ding SJ. Properties of anti-washout-type calcium silicate bone cements containing gelatin. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1057-1068. [PMID: 19941041 DOI: 10.1007/s10856-009-3948-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/16/2009] [Indexed: 05/28/2023]
Abstract
Novel washout-resistant bone substitute materials consisting of gelatin-containing calcium silicate cements (CSCs) were developed. The washout resistance, setting time, diametral tensile strength (DTS), morphology, and phase composition of the hybrid cements were evaluated. The results indicated that the dominant phase of beta-Ca(2)SiO(4) for the SiO(2)-CaO powders increased with an increase in the CaO content of the sols. After mixing with water, the setting times of the CSCs ranged from 10 to 29 min, increasing with a decrease in the amount of CaO in the sols. Addition of gelatin into the CSC significantly prolonged (P < 0.05) the setting time by about 2 and 8 times, respectively, for 5% and 10% gelatin. However, the presence of gelatin appreciably improved the anti-washout and brittle properties of the cements without adversely affecting mechanical strength. It was concluded that 5% gelatin-containing CSC may be useful as bioactive bone repair materials.
Collapse
Affiliation(s)
- Chun-Cheng Chen
- Department of Dentistry, Chung-Shan Medical University Hospital, Taichung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
42
|
Montufar EB, Traykova T, Schacht E, Ambrosio L, Santin M, Planell JA, Ginebra MP. Self-hardening calcium deficient hydroxyapatite/gelatine foams for bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:863-869. [PMID: 19876720 DOI: 10.1007/s10856-009-3918-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/13/2009] [Indexed: 05/28/2023]
Abstract
In this work gelatine was used as multifunctional additive to obtain injectable self-setting hydroxyapatite/gelatine composite foams for bone regeneration. The foaming and colloidal stabilization properties of gelatine are well known in food and pharmaceutical applications. Solid foams were obtained by foaming liquid gelatine solutions at 50 degrees C, followed by mixing them with a cement powder consisting of alpha tricalcium phosphate. Gelatine addition improved the cohesion and injectability of the cement paste. After setting the foamed paste transformed into a calcium deficient hydroxyapatite. The final porosity, pore interconnectivity and pore size were modulated by modifying the gelatine content in the liquid phase.
Collapse
Affiliation(s)
- Edgar B Montufar
- Department of Materials Science and Metallurgy, Technical University of Catalonia, Av. Diagonal 647, 08028, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions. Clin Oral Investig 2009; 14:659-68. [DOI: 10.1007/s00784-009-0356-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
|
44
|
In Vitro Bioactivity and Biocompatibility of Dicalcium Silicate Cements for Endodontic Use. J Endod 2009; 35:1554-7. [DOI: 10.1016/j.joen.2009.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/12/2009] [Accepted: 08/16/2009] [Indexed: 11/18/2022]
|
45
|
Kai D, Li D, Zhu X, Zhang L, Fan H, Zhang X. Addition of sodium hyaluronate and the effect on performance of the injectable calcium phosphate cement. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1595-1602. [PMID: 19291369 DOI: 10.1007/s10856-009-3728-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/03/2009] [Indexed: 05/27/2023]
Abstract
An injectable calcium phosphate cement (CPC) with porous structure and excellent anti-washout ability was developed in the study. Citric acid and sodium bicarbonate were added into the CPC powder consisting of tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD) to form macro-pores, then different concentrations of sodium hyaluronate (NaHA) solution, as liquid phase, was added into the cement to investigate its effect on CPC's performance. The prepared CPCs were tested on workability (injectable time and setting time), mechanical strength, as well as anti-washout ability. The experimental results showed that addition of NaHA not only enhanced the anti-washout ability of the CPC dramatically but also improve its other properties. When NaHA concentration was 0.6 wt%, the injectable time elongated to 15.7 +/- 0.6 min, the initial and final setting times were respectively shorten to 18.3 +/- 1.2 and 58.7 +/- 2.1 min, and the compressive strength were increased to 18.78 +/- 1.83 MPa. On the other hand, Addition of NaHA showed little effect on porous structure of the CPC and enhanced its bioactivity obviously, which was confirmed by the apatite formation on its surface after immersion in simulated body fluid (SBF). In conclusion, as an in situ shaped injectable biomaterials, the CPC with appropriate addition of NaHA would notably improve its performance and might be used in minimal invasive surgery for bone repair or reconstruction.
Collapse
Affiliation(s)
- Dan Kai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
46
|
Li M, Liu X, Liu X, Ge B, Chen K. Creation of macroporous calcium phosphate cements as bone substitutes by using genipin-crosslinked gelatin microspheres. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:925-934. [PMID: 19052846 DOI: 10.1007/s10856-008-3654-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 11/17/2008] [Indexed: 05/27/2023]
Abstract
Macroporous calcium phosphate cements (CPCs) were developed using genipin-crosslinked gelatin microspheres (GMs) with two weight ratios (2.5 wt% and 5 wt%). The initial setting time of the composite was prolonged by GMs. After GMs/CPCs were soaked in phosphate-buffered saline (PBS) for several weeks, macropores appeared as a result of the degradation of GMs. The presence of GMs accelerated the setting reaction and improved the structure of the composite. The compressive strength increased up to 12 MPa (2.5 wt% GMs/CPCs) and 14 MPa (5 wt% GMs/CPCs) after one week of PBS soaking, then gradually decreased to 9 MPa (2.5 wt% GMs/CPCs) and 7 MPa (5 wt% GMs/CPCs) after three weeks of soaking, and further to 6 MPa (2.5 wt% GMs/CPCs) and 2 MPa (5 wt% GMs/CPCs) after five weeks of soaking. CPCs with 2.5 wt% GMs were the most favorable composite in the tested samples. Cell experiments showed that rat osteoblasts displayed normal morphologies when exposed to the 2.5 wt% GMs/CPCs, and proliferation of the cells was also enhanced. An in vivo study showed that new bone tissue was able to grow into the pores that resulted from GM degradation. This study suggests that the new composite could be a promising candidate for use as a bone substitute under non-compression-loaded circumstances.
Collapse
Affiliation(s)
- Meng Li
- Orthopedic Institute of Chinese People's Liberation Army, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.
Collapse
|