1
|
A novel method combining VAT photopolymerization and casting for the fabrication of biodegradable Zn-1Mg scaffolds with triply periodic minimal surface. J Mech Behav Biomed Mater 2023; 141:105763. [PMID: 36905706 DOI: 10.1016/j.jmbbm.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Zinc alloy porous scaffolds are expected to be the next generation of degradable orthopedic implants attributed to their suitable degradation rate. However, a few studies have thoroughly investigated its applicable preparation method and functionality as an orthopedic implant. This study fabricated Zn-1Mg porous scaffolds with triply periodic minimal surface (TPMS) structure by a novel method combining VAT photopolymerization and casting. As-built porous scaffolds displayed fully connected pore structures with controllable topology. The manufacturability, mechanical properties, corrosion behaviors, biocompatibility, and antimicrobial performance of the bioscaffolds with pore sizes of 650 μm, 800 μm, and 1040 μm were investigated, and then compared and discussed with each other. In simulations, the mechanical behaviors of porous scaffolds exhibited the same tendency as the experiments. In addition, the mechanical properties of porous scaffolds as a function of degradation time were studied through a 90-day immersion experiment, which can provide a new option for analyzing the mechanical properties of porous scaffolds implanted in vivo. The G06 scaffold with lower pore size presented better mechanical properties before and after degradation compared with G10. The G06 scaffold with the pore size of 650 μm revealed good biocompatibility and antibacterial properties, which makes it possible to be one of the candidates for orthopedic implants.
Collapse
|
2
|
D’Amora U, Ronca A, Scialla S, Soriente A, Manini P, Phua JW, Ottenheim C, Pezzella A, Calabrese G, Raucci MG, Ambrosio L. Bioactive Composite Methacrylated Gellan Gum for 3D-Printed Bone Tissue-Engineered Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:772. [PMID: 36839140 PMCID: PMC9963483 DOI: 10.3390/nano13040772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Gellan gum (GG) was chemically modified with methacrylic moieties to produce a photocrosslinkable biomaterial ink, hereinafter called methacrylated GG (GGMA), with improved physico-chemical properties, mechanical behavior and stability under physiological conditions. Afterwards, GGMA was functionalized by incorporating two different bioactive compounds, a naturally derived eumelanin extracted from the black soldier fly (BSF-Eumel), or hydroxyapatite nanoparticles (HAp), synthesized by the sol-gel method. Different ink formulations based on GGMA (2 and 4% (w/v)), BSF-Eumel, at a selected concentration (0.3125 mg/mL), or HAp (10 and 30% wHAp/wGGMA) were developed and processed by three-dimensional (3D) printing. All the functionalized GGMA-based ink formulations allowed obtaining 3D-printed GGMA-based scaffolds with a well-organized structure. For both bioactive signals, the scaffolds with the highest GGMA concentration (4% (w/v)) and the highest percentage of infill (45%) showed the best performances in terms of morphological and mechanical properties. Indeed, these scaffolds showed a good structural integrity over 28 days. Given the presence of negatively charged groups along the eumelanin backbone, scaffolds consisting of GGMA/BSF-Eumel demonstrated a higher stability. From a mechanical point of view, GGMA/BSF-Eumel scaffolds exhibited values of storage modulus similar to those of GGMA ones, while the inclusion of HAp at 30% (wHAp/wGGMA) led to a storage modulus of 32.5 kPa, 3.5-fold greater than neat GGMA. In vitro studies proved the capability of the bioactivated 3D-printed scaffolds to support 7F2 osteoblast cell growth and differentiation. BSF-Eumel and HAp triggered a different time-dependent physiological response in the osteoblasts. Specifically, while the ink with BSF-Eumel acted as a stimulus towards cell proliferation, reaching the highest value at 14 days, a higher expression of alkaline phosphatase activity was detected for scaffolds consisting of GGMA and HAp. The overall findings demonstrated the possible use of these biomaterial inks for 3D-printed bone tissue-engineered scaffolds.
Collapse
Affiliation(s)
- Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
| | - Jun Wei Phua
- Insectta, 60 Jalan Penjara, Singapore 149375, Singapore
| | | | - Alessandro Pezzella
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| |
Collapse
|
3
|
Ismail R, Cionita T, Lai YL, Fitriyana DF, Siregar JP, Bayuseno AP, Nugraha FW, Muhamadin RC, Irawan AP, Hadi AE. Characterization of PLA/PCL/Green Mussel Shells Hydroxyapatite (HA) Biocomposites Prepared by Chemical Blending Methods. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8641. [PMID: 36500143 PMCID: PMC9741189 DOI: 10.3390/ma15238641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 06/17/2023]
Abstract
Recently, there has been an increase in the number of studies conducted on the process of developing hydroxyapatite (HA) to use in biocomposites. HA can be derived from natural sources such as bovine bone. The HA usage obtained from green mussel shells in biocomposites in this study will be explored. The research goal is to investigate the composition effect of biomaterials derived from polycaprolactone (PCL), polylactic acid (PLA), as well as HA obtained from green mussel shells with a chemical blending method on mechanical properties and degradation rate. First, 80 mL of chloroform solution was utilized to immerse 16 g of the PLA/PCL mixture with the ratios of 85:15 and 60:40 for 30 min. A magnetic stirrer was used to mix the solution for an additional 30 min at a temperature and speed of 50 °C and 300 rpm. Next, the hydroxyapatite (HA) was added in percentages of 5%, 10%, and 15%, as well as 20% of the PLA/PCL mixture's total weight. It was then stirred for 1 h at 100 rpm at 65 °C to produce a homogeneous mixture of HA and polymer. The biocomposite mixture was then added into a glass mold as per ASTM D790. Following this, biocomposite specimens were tested for their density, biodegradability, and three points of bending in determining the effect of HA and polymer composition on the degradation rate and mechanical properties. According to the findings of this study, increasing the HA and PLA composition yields a rise in the mechanical properties of the biocomposites. However, the biocomposite degradation rate is increasing.
Collapse
Affiliation(s)
- Rifky Ismail
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia
- Center for Biomechanics, Biomaterial, Biomechatronics, and Biosignal Processing (CBIOM3S), Diponegoro University, Semarang 50275, Indonesia
| | - Tezara Cionita
- Department of Mechanical Engineering, Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Malaysia
| | - Yin Ling Lai
- Department of Mechanical Engineering, Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Malaysia
| | - Deni Fajar Fitriyana
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Semarang 50229, Indonesia
| | | | | | - Fariz Wisda Nugraha
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia
- Center for Biomechanics, Biomaterial, Biomechatronics, and Biosignal Processing (CBIOM3S), Diponegoro University, Semarang 50275, Indonesia
| | - Rilo Chandra Muhamadin
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia
- Center for Biomechanics, Biomaterial, Biomechatronics, and Biosignal Processing (CBIOM3S), Diponegoro University, Semarang 50275, Indonesia
| | - Agustinus Purna Irawan
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Tarumanagara, Jakarta Barat 11440, Indonesia
| | - Agung Efriyo Hadi
- Mechanical Engineering Department, Faculty of Engineering, Universitas Malahayati, Bandar Lampung 35153, Indonesia
| |
Collapse
|
4
|
Zhang X, He J, Qiao L, Wang Z, Zheng Q, Xiong C, Yang H, Li K, Lu C, Li S, Chen H, Hu X. 3D
printed
PCLA
scaffold with nano‐hydroxyapatite coating doped green tea
EGCG
promotes bone growth and inhibits multidrug‐resistant bacteria colonization. Cell Prolif 2022; 55:e13289. [PMID: 35791492 PMCID: PMC9528762 DOI: 10.1111/cpr.13289] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Jian He
- College of Medical, Henan University of Science and Technology Luoyang China
| | - Liang Qiao
- The First Affiliated Hospital College of Clinical Medicine of Henan University of Science and Technology Luoyang People's Republic of China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Qinqin Zheng
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu Sichuan China
| | - Hui Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology Sichuan University Chengdu China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University Chengdu China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Sanqiang Li
- College of Medical, Henan University of Science and Technology Luoyang China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University Chengdu China
| |
Collapse
|
5
|
Quigley C, Tuladhar S, Habib A. A Roadmap to Fabricate Geometrically Accurate Three-Dimensional Scaffolds CO-Printed by Natural and Synthetic Polymers. JOURNAL OF MICRO- AND NANO-MANUFACTURING 2022; 10:021001. [PMID: 36439379 PMCID: PMC9680328 DOI: 10.1115/1.4055474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Three-dimensional bioprinting is a promising field in regenerating patient-specific tissues and organs due to its inherent capability of releasing biocompatible materials encapsulating living cells in a predefined location. Due to the diverse characteristics of tissues and organs in terms of microstructures and cell types, a multinozzle extrusion-based 3D bioprinting system has gained popularity. The investigations on interactions between various biomaterials and cell-to-material can provide relevant information about the scaffold geometry, cell viability, and proliferation. Natural hydrogels are frequently used in bioprinting materials because of their high-water content and biocompatibility. However, the dominancy of liquid characteristics of only-hydrogel materials makes the printing process challenging. Polycaprolactone (PCL) is the most frequently used synthetic biopolymer. It can provide mechanical integrity to achieve dimensionally accurate fabricated scaffolds, especially for hard tissues such as bone and cartilage scaffolds. In this paper, we explored various multimaterial bioprinting strategies with our recently proposed bio-inks and PCL intending to achieve dimensional accuracy and mechanical aspects. Various strategies were followed to coprint natural and synthetic biopolymers and interactions were analyzed between them. Printability of pure PCL with various molecular weights was optimized with respect to different process parameters such as nozzle temperature, printing pressure, printing speed, porosity, and bed temperature to coprint with natural hydrogels. The relationship between the rheological properties and shape fidelity of natural polymers was investigated with a set of printing strategies during coprinting with PCL. The successful application of this research can help achieve dimensionally accurate scaffolds.
Collapse
Affiliation(s)
- Connor Quigley
- Sustainable Product Design and Architecture, Keene State College, 229 Main Street, Keene, NH 03435
| | - Slesha Tuladhar
- Sustainable Product Design and Architecture, Keene State College, 229 Main Street, Keene, NH 03435
| | - Ahasan Habib
- Sustainable Product Design and Architecture, Keene State College, 229 Main Street, Keene, NH 03435
| |
Collapse
|
6
|
Wang F, Tankus EB, Santarella F, Rohr N, Sharma N, Märtin S, Michalscheck M, Maintz M, Cao S, Thieringer FM. Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14040669. [PMID: 35215595 PMCID: PMC8879030 DOI: 10.3390/polym14040669] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 12/19/2022] Open
Abstract
The most common three-dimensional (3D) printing method is material extrusion, where a pre-made filament is deposited layer-by-layer. In recent years, low-cost polycaprolactone (PCL) material has increasingly been used in 3D printing, exhibiting a sufficiently high quality for consideration in cranio-maxillofacial reconstructions. To increase osteoconductivity, prefabricated filaments for bone repair based on PCL can be supplemented with hydroxyapatite (HA). However, few reports on PCL/HA composite filaments for material extrusion applications have been documented. In this study, solvent-free fabrication for PCL/HA composite filaments (HA 0%, 5%, 10%, 15%, 20%, and 25% weight/weight PCL) was addressed, and parameters for scaffold fabrication in a desktop 3D printer were confirmed. Filaments and scaffold fabrication temperatures rose with increased HA content. The pore size and porosity of the six groups’ scaffolds were similar to each other, and all had highly interconnected structures. Six groups’ scaffolds were evaluated by measuring the compressive strength, elastic modulus, water contact angle, and morphology. A higher amount of HA increased surface roughness and hydrophilicity compared to PCL scaffolds. The increase in HA content improved the compressive strength and elastic modulus. The obtained data provide the basis for the biological evaluation and future clinical applications of PCL/HA material.
Collapse
Affiliation(s)
- Fengze Wang
- MIRACLE Smart Implants Group, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; (F.W.); (E.B.T.); (F.S.); (N.S.); (M.M.); (M.M.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Esma Bahar Tankus
- MIRACLE Smart Implants Group, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; (F.W.); (E.B.T.); (F.S.); (N.S.); (M.M.); (M.M.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Francesco Santarella
- MIRACLE Smart Implants Group, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; (F.W.); (E.B.T.); (F.S.); (N.S.); (M.M.); (M.M.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Nadja Rohr
- Biomaterials and Technology, Department of Reconstructive Dentistry, University Center for Dental Medicine Basel UZB, University of Basel, 4058 Basel, Switzerland;
| | - Neha Sharma
- MIRACLE Smart Implants Group, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; (F.W.); (E.B.T.); (F.S.); (N.S.); (M.M.); (M.M.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Sabrina Märtin
- Biomaterials and Technology, Department of Research, University Center of Dental Medicine Basel UZB, University of Basel, 4058 Basel, Switzerland;
| | - Mirja Michalscheck
- MIRACLE Smart Implants Group, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; (F.W.); (E.B.T.); (F.S.); (N.S.); (M.M.); (M.M.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Michaela Maintz
- MIRACLE Smart Implants Group, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; (F.W.); (E.B.T.); (F.S.); (N.S.); (M.M.); (M.M.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts of Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Shuaishuai Cao
- MIRACLE Smart Implants Group, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; (F.W.); (E.B.T.); (F.S.); (N.S.); (M.M.); (M.M.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Department of Stomatology, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518071, China
- Correspondence: (S.C.); (F.M.T.)
| | - Florian M. Thieringer
- MIRACLE Smart Implants Group, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; (F.W.); (E.B.T.); (F.S.); (N.S.); (M.M.); (M.M.)
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, 4031 Basel, Switzerland
- Correspondence: (S.C.); (F.M.T.)
| |
Collapse
|
7
|
Biocompatible and Biomaterials Application in Drug Delivery System in Oral Cavity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9011226. [PMID: 34812267 PMCID: PMC8605911 DOI: 10.1155/2021/9011226] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
Biomaterials applications have rapidly expanded into different fields of sciences. One of the important fields of using biomaterials is dentistry, which can facilitate implantation, surgery, and treatment of oral diseases such as peri-implantitis, periodontitis, and other dental problems. Drug delivery systems based on biocompatible materials play a vital role in the release of drugs into aim tissues of the oral cavity with minimum side effects. Therefore, scientists have studied various delivery systems to improve the efficacy and acceptability of therapeutic approaches in dental problems and oral diseases. Also, biomaterials could be utilized as carriers in biocompatible drug delivery systems. For instance, natural polymeric substances, such as gelatin, chitosan, calcium phosphate, alginate, and xanthan gum are used to prepare different forms of delivery systems. In addition, some alloys are conducted in drug complexes for the better in transportation. Delivery systems based on biomaterials are provided with different strategies, although individual biomaterial has advantages and disadvantages which have a significant influence on transportation of complex such as solubility in physiological environments or distribution in tissues. Biomaterials have antibacterial and anti-inflammatory effects and prolonged time contact and even enhance antibiotic activities in oral infections. Moreover, these biomaterials are commonly prepared in some forms such as particulate complex, fibers, microspheres, gels, hydrogels, and injectable systems. In this review, we examined the application of biocompatible materials in drug delivery systems of oral and dental diseases or problems.
Collapse
|
8
|
Murugan S, Parcha SR. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:93. [PMID: 34379204 PMCID: PMC8357662 DOI: 10.1007/s10856-021-06564-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/28/2021] [Indexed: 06/04/2023]
Abstract
A fine-tuned combination of scaffolds, biomolecules, and mesenchymal stem cells (MSCs) is used in tissue engineering to restore the function of injured bone tissue and overcome the complications associated with its regeneration. For two decades, biomaterials have attracted much interest in mimicking the native extracellular matrix of bone tissue. To this aim, several approaches based on biomaterials combined with MSCs have been amply investigated. Recently, hydroxyapatite (HA) nanoparticles have been incorporated with polycaprolactone (PCL) matrix as a suitable substitute for bone tissue engineering applications. This review article aims at providing a brief overview on PCL/HA composite scaffold fabrication techniques such as sol-gel, rapid prototyping, electro-spinning, particulate leaching, thermally induced phase separation, and freeze-drying, as suitable approaches for tailoring morphological, mechanical, and biodegradability properties of the scaffolds for bone tissues. Among these methods, the 3D plotting method shows improvements in pore architecture (pore size of ≥600 µm and porosity of 92%), mechanical properties (higher than 18.38 MPa), biodegradability, and good bioactivity in bone tissue regeneration.
Collapse
Affiliation(s)
- Sivasankar Murugan
- Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Sreenivasa Rao Parcha
- Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
9
|
Soriente A, Fasolino I, Gomez-Sánchez A, Prokhorov E, Buonocore GG, Luna-Barcenas G, Ambrosio L, Raucci MG. Chitosan/hydroxyapatite nanocomposite scaffolds to modulate osteogenic and inflammatory response. J Biomed Mater Res A 2021; 110:266-272. [PMID: 34331513 PMCID: PMC9291049 DOI: 10.1002/jbm.a.37283] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Considerable attention has been given to the use of chitosan (CS)‐based materials reinforced with inorganic bioactive signals such as hydroxyapatite (HA) to treat bone defects and tissue loss. It is well known that CS/HA based materials possess minimal foreign body reactions, good biocompatibility, controlled biodegradability and antibacterial property. Herein, the bioactivity of these composite systems was analyzed on in vitro bone cell models for their applications in the field of bone tissue engineering (BTE). The combination of sol–gel approach and freeze‐drying technology was used to obtain CS/HA scaffolds with three‐dimensional (3D) porous structure suitable for cell in‐growth. Specifically, our aim was to investigate the influence of bioactive composite scaffolds on cellular behavior in terms of osteoinductivity and anti‐inflammatory effects for treating bone defects. The results obtained have demonstrated that by increasing inorganic component concentration, CS/HA (60 and 70% v/v) scaffolds induced a good biological response in terms of osteogenic differentiation of human mesenchymal stem cells (hMSC) towards osteoblast phenotype. Furthermore, the scaffolds with higher concentration of inorganic fillers are able to modulate the production of pro‐inflammatory (TGF‐β) and anti‐inflammatory (IL‐4, IL‐10) cytokines. Our results highlight the possibility of achieving smart CS/HA based composites able to promote a great osteogenic differentiation of hMSC by increasing the amount of HA nanoparticles used as bioactive inorganic signal. Contemporarily, these materials allow avoiding the induction of a pro‐inflammatory response in bone implant site.
Collapse
Affiliation(s)
- Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Naples, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Naples, Italy
| | - Alejandro Gomez-Sánchez
- Cinvestav-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Querétaro, Mexico
| | - Evgen Prokhorov
- Cinvestav-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Querétaro, Mexico
| | - Giovanna Giuliana Buonocore
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Naples, Italy
| | - Gabriel Luna-Barcenas
- Cinvestav-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Querétaro, Mexico
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Naples, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Naples, Italy
| |
Collapse
|
10
|
Choubey R, Chouhan R, Bajpai AK, Bajpai J, Singh SK. Silver hydroxyapatite (AgHAP) reinforced nanocomposites of poly (methyl methacrylate)-poly (ɛ-caprolactone) as hybrid orthopedic materials. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1765353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rashmi Choubey
- Bose Memorial Research Lab, Department of Chemistry, Government Autonomous Science College, Jabalpur, India
| | - Raje Chouhan
- Bose Memorial Research Lab, Department of Chemistry, Government Autonomous Science College, Jabalpur, India
| | - A. K. Bajpai
- Bose Memorial Research Lab, Department of Chemistry, Government Autonomous Science College, Jabalpur, India
| | - Jaya Bajpai
- Bose Memorial Research Lab, Department of Chemistry, Government Autonomous Science College, Jabalpur, India
| | - Sunil Kumar Singh
- Department of Chemistry, Guru Ghasidas Central University, Bilaspur, India
| |
Collapse
|
11
|
Arunagiri V, Prasannan A, Udomsin J, Lai JY, Wang CF, Hong PD, Tsai HC. Facile fabrication of eco-friendly polycaprolactone (PCL)/Poly-D, L-Lactic acid (PDLLA) modified melamine sorbent for oil-spill cleaning and water/oil (W/O) emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Zimmerling A, Yazdanpanah Z, Cooper DML, Johnston JD, Chen X. 3D printing PCL/nHA bone scaffolds: exploring the influence of material synthesis techniques. Biomater Res 2021; 25:3. [PMID: 33499957 PMCID: PMC7836567 DOI: 10.1186/s40824-021-00204-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 12/02/2022] Open
Abstract
Background It is known that a number of parameters can influence the post-printing properties of bone tissue scaffolds. Previous research has primarily focused on the effect of parameters associated with scaffold design (e.g., scaffold porosity) and specific scaffold printing processes (e.g., printing pressure). To our knowledge, no studies have investigated variations in post-printing properties attributed to the techniques used to synthesize the materials for printing (e.g., melt-blending, powder blending, liquid solvent, and solid solvent). Methods Four material preparation techniques were investigated to determine their influence on scaffold properties. Polycaprolactone/nano-hydroxyapatite 30% (wt.) materials were synthesized through melt-blending, powder blending, liquid solvent, and solid solvent techniques. The material printability and the properties of printed scaffolds, in terms of swelling/degradation, mechanical strength, morphology, and thermal properties, were examined and compared to one another using Kruskal-Wallis nonparametric statistical analysis. Results Material prepared through the liquid solvent technique was found to have limited printability, while melt-blended material demonstrated the highest degree of uniformity and lowest extent of swelling and degradation. Scaffolds prepared with powder-blended material demonstrated the highest Young’s modulus, yield strength, and modulus of resilience; however, they also demonstrated the highest degree of variability. The higher degree of inhomogeneity in the material was further supported by thermal gravimetric analysis. While scaffolds printed from melt-blended, powder-blended, and solid solvent materials demonstrated a high degree of micro-porosity, the liquid solvent material preparation technique resulted in minimal micro-porosity. Conclusions Study results indicate that specific techniques used to prepare materials influence the printing process and post-printing scaffold properties. Among the four techniques examined, melt-blended materials were found to be the most favorable, specifically when considering the combination of printability, consistent mechanical properties, and efficient preparation. Techniques determined to be favourable based on the properties investigated should undergo further studies related to biological properties and time-dependent properties beyond 21-days. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-021-00204-y.
Collapse
Affiliation(s)
- Amanda Zimmerling
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - David M L Cooper
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - James D Johnston
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Mao J, Wei P, Yuan Z, Jing W, Cao J, Li G, Guo J, Wang H, Chen D, Cai Q. Osteoconductive and osteoinductive biodegradable microspheres serving as injectable micro-scaffolds for bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:229-247. [PMID: 32966753 DOI: 10.1080/09205063.2020.1827922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There are intensive needs for scaffolds with new designs to meet the diverse requirements of bone repairing. Biodegradable microspheres are highlighted as injectable micro-scaffolds thanks to their advantages in filling irregular defects via a minimally invasive surgery. In this study, microspheres with surface micropores were made via the W1/O/W2 double emulsion method using amphiphilic triblock copolymers (PLLA-PEG-PLLA) composed of poly(L-lactide) (PLLA) and poly(ethylene glycol) (PEG) segments. When the PEG fraction was controlled as 10 wt.%, the microspheres demonstrated higher cell affinity than the smooth-surfaced PLLA microspheres. After being further functionalized with polydopamine coating and apatite deposition, the PLLA-PEG-PLLA microspheres could up-regulate the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) significantly. Before subcutaneous implantation, bone morphogenetic protein-2 (BMP-2) was adsorbed onto the biomineralized microspheres by taking advantages of the strong affinity of apatite to BMP-2. The resulted microspheres induced ectopic osteogenesis efficiently without causing biocompatibility problems. In summary, this study provided a simple strategy to prepare functionalized microspheres with osteoconductivity and osteoinductivity, which showed great potential in promoting bone regeneration as injectable micro-scaffolds.
Collapse
Affiliation(s)
- Jianping Mao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| | - Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| | - Jingjing Cao
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Guangping Li
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Jianxun Guo
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Honggang Wang
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
14
|
Luo W, Cheng L, Yuan C, Wu Z, Yuan G, Hou M, Chen JY, Luo C, Li W. Preparation, characterization and evaluation of cellulose nanocrystal/poly(lactic acid) in situ nanocomposite scaffolds for tissue engineering. Int J Biol Macromol 2019; 134:469-479. [PMID: 31078594 DOI: 10.1016/j.ijbiomac.2019.05.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022]
Abstract
Cellulose nanocrystal (CNC)/poly(lactic acid) (PLA) in situ nanocomposite scaffolds were fabricated by in situ polymerization of lactic acid and CNC which was directly utilized as aqueous suspension, followed by a process of thermally induced phase separation. The CNC/PLA in situ nanocomposite porous scaffolds were characterized by mechanical test, protein adsorption, hemolysis test, in vitro degradation measurement, TEM, FTIR, SEM and WAXD. Compared to the PLA scaffold, the CNC/PLA in situ nanocomposite scaffolds showed a greatly increased compression modulus, an improved hemocompatibility and protein adsorption capacity. The inclusion of CNCs boosted the in vitro degradation of the in situ nanocomposite porous scaffolds and facilitated the deposition of Ca2+, CO32-, PO43- ions in simulated body fluid. Furthermore, cell cultures were carried out on the CNC/PLA in situ nanocomposite porous scaffolds. In comparison with the PLA scaffold, the in situ nanocomposite scaffolds improved cell attachment and enhanced cell proliferation, denoting low cytotoxicity and good cytocompatibility. It can therefore be concluded that such scaffolds with excellent mechanical property, biocompatibility, biomineralization capacity and bioactivity hold great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Weihua Luo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; School of Human Ecology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Lianghao Cheng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Caixia Yuan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guangming Yuan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Mingxi Hou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jonathan Y Chen
- School of Human Ecology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chunyi Luo
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Li
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
15
|
Cardoso GBC, Tondon A, Maia LRB, Cunha MR, Zavaglia CAC, Kaunas RR. In vivo approach of calcium deficient hydroxyapatite filler as bone induction factor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:999-1006. [PMID: 30889775 DOI: 10.1016/j.msec.2019.02.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 11/29/2022]
Abstract
Tissue engineering combine biomaterials, cells and biologically active molecules having as a goal create functional tissues; many of the compositions are blends of a polymeric matrix with ceramic fillers, however, reduction of mechanical resistance can be a drawback on ceramic-polymer systems. In this manuscript, we investigate the potential of calcium-deficient hydroxyapatite (CDHA) whiskers, a needle shape bioceramic, to enhance mechanical and osteoconduction properties on the polymeric matrix. For this purpose, PCL scaffolds incorporating CDHA whiskers were produced by combining solvent casting and particulate leaching techniques to develop a composite scaffold that possess mechanical and biological properties which is useful for bone tissue engineering regeneration. We produced CDHA whiskers using alkaline hydrolysis of α-tricalcium phosphate and characterized by XRD, XRF and SEM. PCL/CDHA scaffolds were fabricated with a final porosity of ~70%, quantified by SEM images. Mechanical properties were evaluated by compression test. As an initial test, PCL/CDHA scaffolds were immersed in simulated body fluid to quantify apatite deposition. In vitro and in vivo studies were performed to assess cytotoxicity and bioactivity. CDHA whiskers exhibited a needle-like morphology and a Ca/P ratio equal to calcium deficient hydroxyapatite. The composite scaffolds contained interconnected pores 177 to 350 μm in size and homogeneous ceramic distribution. The addition of CDHA whiskers influences the mechanical results: higher elastic modulus and compressive strength was observed on PCL/CDHA samples. In vitro results demonstrated biocompatibility on PCL and PCL/CDHA films. In vivo data demonstrated cellular infiltration from the surrounding tissue with new bone formation that suggests bioactive potential of CDHA whiskers. Our goal was to produce a scaffold with a potential induction factor and a favorable morphology, which was proved according to this study's findings.
Collapse
Affiliation(s)
- G B C Cardoso
- State University of Campinas, Materials Engineering Department, Faculty of Mechanical Engineering, Campinas, Brazil; INCT Biofabris, Brazil.
| | - A Tondon
- Texas A&M University, College Station, United States of America
| | - L R B Maia
- School of Medicine of Jundiai, Department of Morphology and Pathology, Jundiai, Brazil
| | - M R Cunha
- School of Medicine of Jundiai, Department of Morphology and Pathology, Jundiai, Brazil
| | - C A C Zavaglia
- State University of Campinas, Materials Engineering Department, Faculty of Mechanical Engineering, Campinas, Brazil; INCT Biofabris, Brazil
| | - R R Kaunas
- Texas A&M University, College Station, United States of America
| |
Collapse
|
16
|
Andrade TM, Mello DCR, Elias CMV, Abdala JMA, Silva E, Vasconcellos LMR, Tim CR, Marciano FR, Lobo AO. In vitro and in vivo evaluation of rotary-jet-spun poly(ɛ-caprolactone) with high loading of nano-hydroxyapatite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:19. [PMID: 30689050 DOI: 10.1007/s10856-019-6222-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Herein, poly(ɛ-caprolactone) (PCL) mats with different amounts of nanohydroxyapatite (nHAp) were produced using rotary-jet spinning (RJS) and evaluated in vitro and in vivo. The mean fiber diameters of the PCL, PCL/nHAp (3%), PCL/nHAp (5%), and PCL/nHAp (20%) scaffolds were 1847 ± 1039, 1817 ± 1044, 1294 ± 4274, and 845 ± 248 nm, respectively. Initially, all the scaffolds showed superhydrophobic behavior (contact angle around of 140oC), but decreased to 80° after 30 min. All the produced scaffolds were bioactive after soaking in simulated body fluid, especially PCL/nHAp (20%). The crystallinity of the PCL scaffolds decreased progressively from 46 to 21% after incorporation of 20% nHAp. In vitro and in vivo cytotoxicity were investigated, as well as the mats' ability to reduce bacteria biofilm formation. In vitro cellular differentiation was evaluated by measuring alkaline phosphatase activity and mineralized nodule formation. Overall, we identified the total ideal amount of nHAp to incorporate in PCL mats, which did not show in vitro or in vivo cytotoxicity and promoted lamellar bone formation independently of the amounts of nHAp. The scaffolds with nHAp showed reduced bacterial proliferation. Alizarin red staining was higher in materials associated with nHAp than in those without nHAp. Overall, this study demonstrates that PCL with nHAp prepared by RJS merits further evaluation for orthopedic applications.
Collapse
Affiliation(s)
- Telmo M Andrade
- Instituto Científico e Tecnológico, Universidade Brasil, Itaquera, São Paulo, Brazil
| | - Daphne C R Mello
- Departamento de Biociência e Diagnóstico Oral, Instituto de Ciência e Tecnologia, Universidade Estadual de São Paulo, São Jose dos Campos, São Paulo, Brazil
| | - Conceição M V Elias
- Instituto Científico e Tecnológico, Universidade Brasil, Itaquera, São Paulo, Brazil
| | - Julia M A Abdala
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, São Jose dos Campos, São Paulo, Brazil
| | - Edmundo Silva
- Departamento de Biociência e Diagnóstico Oral, Instituto de Ciência e Tecnologia, Universidade Estadual de São Paulo, São Jose dos Campos, São Paulo, Brazil
| | - Luana M R Vasconcellos
- Departamento de Biociência e Diagnóstico Oral, Instituto de Ciência e Tecnologia, Universidade Estadual de São Paulo, São Jose dos Campos, São Paulo, Brazil
| | - Carla R Tim
- Instituto Científico e Tecnológico, Universidade Brasil, Itaquera, São Paulo, Brazil
| | - Fernanda R Marciano
- Instituto Científico e Tecnológico, Universidade Brasil, Itaquera, São Paulo, Brazil
| | - Anderson O Lobo
- Instituto Científico e Tecnológico, Universidade Brasil, Itaquera, São Paulo, Brazil.
- LIMAV-Laboratório Interdisciplinar de Materiais Avançados, PPGCM-Programa de Pós-graduação em Ciência e Engenharia de Materiais, UFPI-Universidade Federal do Piauí, Teresina, Piauí, Brazil.
| |
Collapse
|
17
|
Catanzano O, Soriente A, La Gatta A, Cammarota M, Ricci G, Fasolino I, Schiraldi C, Ambrosio L, Malinconico M, Laurienzo P, Raucci MG, Gomez d’Ayala G. Macroporous alginate foams crosslinked with strontium for bone tissue engineering. Carbohydr Polym 2018; 202:72-83. [DOI: 10.1016/j.carbpol.2018.08.086] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/03/2018] [Accepted: 08/20/2018] [Indexed: 01/23/2023]
|
18
|
Sattary M, Rafienia M, Khorasani MT, Salehi H. The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nano-hydroxyapatite electrospun scaffold. J Biomed Mater Res B Appl Biomater 2018; 107:933-950. [PMID: 30199600 DOI: 10.1002/jbm.b.34188] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 11/09/2022]
Abstract
Electrospinning is considered a powerful method for the production of fibers in the nanoscale size. Small pore size results in poor cell infiltration, cell migration inhibition into scaffold pores and low oxygen diffusion. Electrospun polycaprolactone/gelatin/nano-hydroxyapatite (PCL/Gel/nHA) scaffolds were deposited into two types of fiber collectors (novel rotating disc and plate) to study fiber morphology, chemical, mechanical, hydrophilic, and biodegradation properties between each other. The proliferation and differentiation of MG-63 cells into the bone phenotype were determined using MTT method, alizarin red staining and alkaline phosphatase (ALP) activity. The rates for disc rotation were 50 and 100 rpm. The pore size measurement results indicated that the fibers produced by the disc rotation collector with speed rate 50 rpm have larger pores as compared to fibers produced by disc rotation at 100 rpm and flat plate collectors. A randomly structure with controlled pore size (38.65 ±0.33 μm) and lower fiber density, as compared to fibers collected by disc rotation with speed rate 100 rpm and flat plate collectors, was obtained. Fibers collected on the rotating disc with speed rate 50 rpm, were more hydrophilic due to larger pore size and therefore, faster infiltration of water into the scaffold and the rate of degradation was higher. These results demonstrate that PCL/Gel/nHA scaffolds made through a rotating disc collector at 50 rpm are more feasible to be used in bone tissue engineering applications due to appropriate pore size and increased adhesion and proliferation of cells, ALP activity and mineral deposits. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 933-950, 2019.
Collapse
Affiliation(s)
- Mansoureh Sattary
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, 81744*176, Isfahan, Iran
| | - Mohammad Taghi Khorasani
- Department of Biomaterial, Iran Polymer and Petrochemical Institute, PO Box 14965, 159, Tehran, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, 81744*176, Isfahan, Iran
| |
Collapse
|
19
|
Fidalgo C, Rodrigues MA, Peixoto T, Lobato JV, Santos JD, Lopes MA. Development of asymmetric resorbable membranes for guided bone and surrounding tissue regeneration. J Biomed Mater Res A 2018; 106:2141-2150. [PMID: 29603876 DOI: 10.1002/jbm.a.36420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Membranes design for guided tissue engineering have been studied to aid in cell viability and function as tissue barriers. Two asymmetric resorbable membranes for guided bone regeneration (GBR) were produced: chitosan/pectin/poly-caprolactone (PECm) and poly(vinyl alcohol)/polyethylenimine/poly(ethylene glycol) (PVAm). Both membranes were characterized by physical, chemical, mechanical, degradation rate, and in vitro biological assessment. Scanning electron microscopy (SEM) confirmed the membranes asymmetry, in which PECm asymmetry is given by roughness and chemical composition, while PVAm's only by differences in porosity. Fourier transform infrared spectroscopy (FTIR) identified chemical groups and bonds between polymers. Both sides of PVAm revealed to be hydrophobic, whereas the PECm presented one side with higher hydrophobicity than the other. In vitro biological assessment disclosed that PECm presented a higher cell adhesion growth pattern than PVAm, where it seemed to occur a delay in proliferation due to initial low cell adhesion. Both developed membranes are suitable for GBR, since both membranes fulfil the requirements to be used as a tissue barrier. The PECm has an additional role in cell viability that was not observed in the PVAm. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2141-2150, 2018.
Collapse
Affiliation(s)
- C Fidalgo
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - M A Rodrigues
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - T Peixoto
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - J V Lobato
- Centro Hospitalar Vila nova de Gaia/Espinho, Serviço de Estomatologia, Rua Conceição Fernandes, Vila Nova de Gaia, 4434-502, Portugal.,Faculdade de Ciências da Saúde - Universidade Fernando Pessoa, , Porto, Portugal
| | - J D Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - M A Lopes
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| |
Collapse
|
20
|
Cardoso GB, Chacon E, Chacon PG, Bordeaux-Rego P, Duarte AS, Saad STO, Zavaglia CA, Cunha MR. Fatty acid is a potential agent for bone tissue induction: In vitro and in vivo approach. Exp Biol Med (Maywood) 2017; 242:1765-1771. [PMID: 28893084 DOI: 10.1177/1535370217731104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our hypothesis was to investigate the fatty acid potential as a bone induction factor. In vitro and in vivo studies were performed to evaluate this approach. Oleic acid was used in a 0.5 wt.% concentration. Polycaprolactone was used as the polymeric matrix by combining solvent-casting and particulate-leaching techniques, with a final porosity of 70 wt.%, investigated by SEM images. Contact angle measurements were produced to investigate the influence of oleic acid on polycaprolactone chains. Cell culture was performed using adipocyte-derived stem cells to evaluate biocompatibility and bioactivity properties. In addition, in vivo studies were performed to evaluate the induction potential of oleic acid addition. Adipocyte-derived stem cells were used to provide differentiation after 21 days of culture. Likewise, information were obtained with in vivo data and cellular invagination was observed on both scaffolds (polycaprolactone and polycaprolactone /oleic acid); interestingly, the scaffold with oleic acid addition demonstrated that cellular migrations are not related to the surrounding tissue, indicating bioactive potential. Our hypothesis is that fatty acid may be used as a potential induction factor for bone tissue engineering. The study's findings indicate oleic acid as a possible agent for bone induction, according to data on cell differentiation, proliferation, and migration. Impact statement The biomaterial combined in this study on bone regeneration is innovative and shows promising results in the treatment of bone lesions. Polycaprolactone (PCL) and oleic acid have been studied separately. In this research, we combined biomaterials to assess the stimulus and the speed of bone healing.
Collapse
Affiliation(s)
- Guinea Bc Cardoso
- 1 Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, 28132 University of Campinas , Campinas 13083-860, Brazil.,2 INCT Biofabris, 28132 University of Campinas , Campinas, São Paulo 13083-970, Brazil
| | - Erivelto Chacon
- 3 Department of Morphology and Pathology, School of Medicine of Jundiai, Jundiai 13202-550, Brazil
| | - Priscila Gl Chacon
- 3 Department of Morphology and Pathology, School of Medicine of Jundiai, Jundiai 13202-550, Brazil
| | - Pedro Bordeaux-Rego
- 4 Umbilical Cord Blood Bank, Hematology Hemotherapy Center INCT, 28132 University of Campinas , São Paulo, Brazil, Campinas, São Paulo 13083-878, Brazil
| | - Adriana Ss Duarte
- 4 Umbilical Cord Blood Bank, Hematology Hemotherapy Center INCT, 28132 University of Campinas , São Paulo, Brazil, Campinas, São Paulo 13083-878, Brazil
| | - Sara T Olalla Saad
- 4 Umbilical Cord Blood Bank, Hematology Hemotherapy Center INCT, 28132 University of Campinas , São Paulo, Brazil, Campinas, São Paulo 13083-878, Brazil
| | - Cecilia Ac Zavaglia
- 1 Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, 28132 University of Campinas , Campinas 13083-860, Brazil.,2 INCT Biofabris, 28132 University of Campinas , Campinas, São Paulo 13083-970, Brazil
| | - Marcelo R Cunha
- 3 Department of Morphology and Pathology, School of Medicine of Jundiai, Jundiai 13202-550, Brazil
| |
Collapse
|
21
|
Akbari Dourbash F, Alizadeh P, Nazari S, Farasat A. A highly bioactive poly (amido amine)/70S30C bioactive glass hybrid with photoluminescent and antimicrobial properties for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1135-1146. [DOI: 10.1016/j.msec.2017.04.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 12/11/2022]
|
22
|
Dick T, dos Santos L. In situ synthesis and characterization of hydroxyapatite/natural rubber composites for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:874-882. [DOI: 10.1016/j.msec.2017.03.301] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
23
|
Ronca A, Maiullari F, Milan M, Pace V, Gloria A, Rizzi R, De Santis R, Ambrosio L. Surface functionalization of acrylic based photocrosslinkable resin for 3D printing applications. Bioact Mater 2017; 2:131-137. [PMID: 29744422 PMCID: PMC5935055 DOI: 10.1016/j.bioactmat.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/28/2022] Open
Abstract
The limited number of resins, available for stereolithography applications, is one of the key drivers in research applied to rapid prototyping. In this work an acrylic photocrosslinkable resin based on methyl methacrylate (MMA), butyl methacrylate (BMA) and poly(ethylene glycol) dimethacrylate (PEGDA) was developed with different composition and characterized in terms of mechanical, thermal and biological behaviour. Two different systems have been developed using different amount of reagent. The influence of every components have been evaluated on the final characteristic of the resin in order to optimize the final composition for applications in bone tissue engineering. The crosslinked materials showed good mechanical properties and thermal stabilities and moreover cytotoxicity test confirms good biocompatibility with no cytotoxic effect on cells metabolism. Moreover two different treatments have been proposed, using fetal bovine serum (FBS) and methanol (MeOH), in order to improve cell recognition of the surfaces. Samples threatened with MeOH allow cell adhesion and survival, promoting spreading, elongation and fusion of C2C12 muscle myoblast cells. Photocrosslinkable biocompatible resin for application in tissue engineering. Surface treatment to improve materials wettability. Myoblast spreading and elongation on photocrosslinked modified surfaces.
Collapse
Affiliation(s)
- A Ronca
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Italy
| | - F Maiullari
- Institute of Cellular Biology and Neurobiology - National Research Council (IBCN- CNR), Italy
| | - M Milan
- Institute of Cellular Biology and Neurobiology - National Research Council (IBCN- CNR), Italy
| | - V Pace
- Institute of Cellular Biology and Neurobiology - National Research Council (IBCN- CNR), Italy
| | - A Gloria
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Italy
| | - R Rizzi
- Institute of Cellular Biology and Neurobiology - National Research Council (IBCN- CNR), Italy
| | - R De Santis
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Italy
| | - L Ambrosio
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Italy
| |
Collapse
|
24
|
Moeini S, Mohammadi MR, Simchi A. In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering. Bioact Mater 2017; 2:146-155. [PMID: 29744424 PMCID: PMC5935180 DOI: 10.1016/j.bioactmat.2017.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/13/2017] [Indexed: 11/26/2022] Open
Abstract
The interest in biodegradable polymer-matrix nanocomposites with bone regeneration potential has been increasing in recent years. In the present work, a solvothermal process is introduced to prepare hydroxyapatite (HA) nanorod-reinforced polycaprolactone in-situ. A non-aqueous polymer solution containing calcium and phosphorous precursors is prepared and processed in a closed autoclave at different temperatures in the range of 60–150 °C. Hydroxyapatite nanorods with varying aspect ratios are formed depending on the processing temperature. X-ray diffraction analysis and field-emission scanning electron microscopy indicate that the HA nanorods are semi-crystalline. Energy-dispersive X-ray spectroscopy and Fourier transform infrared spectrometry determine that the ratio of calcium to phosphorous increases as the processing temperature increases. To evaluate the effect of in-situ processing on the mechanical properties of the nanocomposites, highly porous scaffolds (>90%) containing HA nanorods are prepared by employing freeze drying and salt leaching techniques. It is shown that the elastic modulus and strength of the nanocomposites prepared by the in-situ method is superior (∼15%) to those of the ex-situ samples (blended HA nanorods with the polymer solution). The enhanced bone regeneration potential of the nanocomposites is shown via an in vitro bioactivity assay in a saturated simulated body fluid. An improved cell viability and proliferation is also shown by employing (3-(4,5- dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) (MTT) assay in human osteosarcoma cell lines. The prepared scaffolds with in vitro regeneration capacity could be potentially useful for orthopaedic applications and maxillofacial surgery. A new solvothermal procedure was introduced to prepare PCL nanocomposites reinforced with HA nanorods. The aspect ratio of the HA nanorods increased from 2 to 7 by increasing the temperature. The in-situ nanocomposites exhibited better mechanical strength and bioactivity compared to the ex-situ ones. The effect of HA nanorods on the in vitro cell response of PCL scaffolds was shown.
Collapse
Affiliation(s)
- Saeed Moeini
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Reza Mohammadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.,Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
25
|
Cunniffe GM, Curtin CM, Thompson EM, Dickson GR, O'Brien FJ. Content-Dependent Osteogenic Response of Nanohydroxyapatite: An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23477-23488. [PMID: 27537605 DOI: 10.1021/acsami.6b06596] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of collagen-based scaffolds in orthopedic applications has been limited due to poor mechanical properties, but this may be overcome by the introduction of a stiffer supporting phase. Thus, we developed a synthesis technique to produce nonaggregating, stable nanohydroxyapatite (nHA) particles, permitting the fabrication of biomimetic-inspired scaffolds through the combination of nanosized HA with collagen, as found in native bone. This study evaluates the mechanical and biological impact of incorporating increasing concentrations of these nanoparticles into porous collagen scaffolds (1:1 and 5:1 weight ratios of nHA/collagen). Mechanical assessment demonstrated that increasing nHA incorporation correlated with increasing Young's moduli, which could be further amplified using cross-linking treatments. Typically, the porosity of a scaffold is sacrificed to produce a stiffer material; however, through the use of nanosized particles the inclusion of up to 5:1 nHA/collagen content still preserved the high 99% porosity of the composite scaffold, allowing for maximum cell infiltration. Moreover, increasing nHA presence induced significant bioactive responses, achieving superior cellular attachment and enhanced osteogenesis, promoting earlier expression of bone markers and cell-mediated mineralization versus nHA-free collagen controls. Interestingly, these content-dependent results observed in vitro did not directly translate in vivo. Instead, similar levels of bone formation were achieved within critical-sized rat calvarial defects, independent of nHA content, following acellular implantation. The addition of nHA, both 1:1 and 5:1, induced significantly higher levels of mineralization and de novo bone ingrowth versus collagen controls as demonstrated by microcomputed tomography, histological, and histomorphometric analyses. Ultimately, these results demonstrate the immense osteoinductivity of nonaggregated nanoparticles of HA incorporated into collagen-composite scaffolds and emphasize the importance of in vivo-based evaluation of therapies intended for clinical use.
Collapse
Affiliation(s)
- Gráinne M Cunniffe
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin 2, Ireland
- Advanced Materials and BioEngineering Research Centre, Royal College of Surgeons in Ireland & Trinity College Dublin , Dublin 2, Ireland
| | - Caroline M Curtin
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin 2, Ireland
- Advanced Materials and BioEngineering Research Centre, Royal College of Surgeons in Ireland & Trinity College Dublin , Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , 123 St. Stephens Green, Dublin 2, Ireland
| | - Emmet M Thompson
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin 2, Ireland
- Advanced Materials and BioEngineering Research Centre, Royal College of Surgeons in Ireland & Trinity College Dublin , Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , 123 St. Stephens Green, Dublin 2, Ireland
| | - Glenn R Dickson
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , 123 St. Stephens Green, Dublin 2, Ireland
| | - Fergal J O'Brien
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin 2, Ireland
- Advanced Materials and BioEngineering Research Centre, Royal College of Surgeons in Ireland & Trinity College Dublin , Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , 123 St. Stephens Green, Dublin 2, Ireland
| |
Collapse
|
26
|
Lee JW, Yun HS, Nakano T. Induction of Biological Apatite Orientation as a Bone Quality Parameter in Bone Regeneration Using Hydroxyapatite/Poly ɛ-Caprolactone Composite Scaffolds. Tissue Eng Part C Methods 2016; 22:856-63. [PMID: 27474256 DOI: 10.1089/ten.tec.2016.0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in the biological apatite (BAp) c-axis orientation were investigated as a bone quality parameter in bone regeneration using hydroxyapatite/poly ɛ-caprolactone (HA/PCL) composite scaffolds. Three-dimensional (3D) HA/PCL composite scaffolds were fabricated using a layer manufacturing process in three grid sizes (200-, 600-, and 1000 μm) and grafted into the forearm ulna of New Zealand white rabbits. The cross-sectional areas of the bones regenerated from the scaffolds with 600- and 1000-μm grid sizes were significantly larger than those from the scaffold with 200-μm grid sizes, whereas bone mineral density in the regenerated regions did not differ between the three grid sizes. Moreover, the BAp c-axis orientation in the bones regenerated from the scaffolds with grid sizes of 600- and 1000 μm was not significantly different; however, both scaffolds showed enhanced BAp orientation, although the degree of BAp orientation was lower than that in intact bones. In conclusion, HA/PCL composite 3D scaffolds with 600- and 1000-μm grid sizes induced BAp c-axis orientation and showed good bone regeneration behavior in vivo.
Collapse
Affiliation(s)
- Jee-Wook Lee
- 1 School of Advanced Materials Engineering, Kookmin University , Seoul, Korea
| | - Hui-Suk Yun
- 2 Powder and Ceramics Division, Korea Institute of Materials Science , Changwon, Korea
| | - Takayoshi Nakano
- 3 Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University , Suita, Japan
| |
Collapse
|
27
|
Altamura D, Pastore SG, Raucci MG, Siliqi D, De Pascalis F, Nacucchi M, Ambrosio L, Giannini C. Scanning Small- and Wide-Angle X-ray Scattering Microscopy Selectively Probes HA Content in Gelatin/Hydroxyapatite Scaffolds for Osteochondral Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8728-8736. [PMID: 27020229 DOI: 10.1021/acsami.6b00557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study is aimed at investigating the structure of a scaffold made of bovine gelatin and hydroxyapatite for bone tissue engineering purposes. In particular, the detailed characterization of such a material has a great relevance because of its application in the healing process of the osteochondral defect that consists of a damage of cartilage and injury of the adjacent subchondral bone, significantly compromising millions of patient's quality of life. Two different techniques exploiting X-ray radiation, with table-top setups, are used: microtomography (micro-CT) and microdiffraction. Micro-CT characterizes the microstructure in the three dimensions at the micrometer scale spatial resolution, whereas microdiffraction provides combined structural/morphological information at the atomic and nanoscale, in two dimensional microscopy images with a hundred micrometer spatial resolution. The combination of these two techniques allowed an appropriate structural characterization for the purpose of validating the engineering approach used for the realization of the hydroxyapatite gradient across the scaffold, with properties close to the natural model.
Collapse
Affiliation(s)
- Davide Altamura
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Stella G Pastore
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Maria G Raucci
- Institute of Polymers, Composites, and Biomaterials (IPCB), National Research Council , Naples, Italy
| | - Dritan Siliqi
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Fabio De Pascalis
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Brindisi 72100, Italy
| | - Michele Nacucchi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Brindisi 72100, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites, and Biomaterials (IPCB), National Research Council , Naples, Italy
- Department of Chemical Sciences and Materials Technology (DSCTM), National Research Council , Rome 000133, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| |
Collapse
|
28
|
Raucci MG, Giugliano D, Longo A, Zeppetelli S, Carotenuto G, Ambrosio L. Comparative facile methods for preparing graphene oxide-hydroxyapatite for bone tissue engineering. J Tissue Eng Regen Med 2016; 11:2204-2216. [PMID: 26756879 DOI: 10.1002/term.2119] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 07/28/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022]
Abstract
Motivated by the success of using graphene oxide (GO) as a nanofiller of composites, there is a drive to search for this new kind of carbon material as a bioactive component in ceramic materials. In the present study, biomineralized GO was prepared by two different approaches, represented by in situ sol-gel synthesis and biomimetic treatment. It was found that in the biocomposites obtained by the sol-gel approach, the spindle-like hydroxyapatite nanoparticles, with a diameter of ca. 5 ± 0.37 nm and a length of ca. 70 ± 2.5 nm, were presented randomly and strongly on the surface. The oxygen-containing functional groups, such as hydroxyl and carbonyl, present on the basal plane and edges of the GO sheets, play an important role in anchoring calcium ions, as demonstrated by FT-IR and TEM investigations. A different result was obtained for biocomposites after biomimetic treatment: an amorphous calcium phosphate on GO sheet was observed after 5 days of treatment. These different approaches resulted in a diverse effect on the proliferation and differentiation of osteogenic mesenchymal stem cells. In fact, in biocomposites prepared by the sol-gel approach the expression of an early marker of osteogenic differentiation, ALP, increases with the amount of GO in the first days of cell culture. Meanwhile, biomimetic materials sustain cell viability and proliferation, even if the expression of alkaline phosphatase activity in a basal medium is delayed. These findings may provide new prospects for utilizing GO-based hydroxyapatite biocomposites in bone repair, bone augmentation and coating of biomedical implants and broaden the application of GO sheets in biological areas. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M G Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - D Giugliano
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - A Longo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - S Zeppetelli
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - G Carotenuto
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - L Ambrosio
- Department of Chemicals Science and Materials Technology, National Research Council of Italy (DSCTM-CNR), Rome, Italy
| |
Collapse
|
29
|
|
30
|
Cao Z, Wang D, Lyu L, Gong Y, Li Y. Fabrication and characterization of PCL/CaCO3 electrospun composite membrane for bone repair. RSC Adv 2016. [DOI: 10.1039/c5ra22548e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CaCO3/casein microspheres were entrapped in PCL membranes using electrospinning to mimic the hierarchical structure of ECM in bone. The composite membranes showed enhanced biomineralization property, proliferation and osteogenic differentiation potential of HMSCs.
Collapse
Affiliation(s)
- Zhinan Cao
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Dandan Wang
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Lingwei Lyu
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Yihong Gong
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Yan Li
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| |
Collapse
|
31
|
Zhao X, Wu Y, Du Y, Chen X, Lei B, Xue Y, Ma PX. A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. J Mater Chem B 2015; 3:3222-3233. [DOI: 10.1039/c4tb01693a] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A highly bioactive and biodegradable PGS–Silica bioactive glass hybrid elastomer with tailored mechanical properties was developed for bone tissue regeneration application.
Collapse
Affiliation(s)
- Xin Zhao
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yaobin Wu
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yuzhang Du
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Xiaofeng Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Guangzhou
- China
| | - Bo Lei
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yumeng Xue
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Peter X. Ma
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
- Department of Biologic and Materials Sciences
| |
Collapse
|
32
|
Thadavirul N, Pavasant P, Supaphol P. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1986-2008. [PMID: 25291106 DOI: 10.1080/09205063.2014.966800] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Polycaprolactone (PCL)/hydroxyapatite (HA) composite scaffolds were prepared by combining solvent casting and salt particulate leaching with a polymer leaching technique. The hydrophilicity of the dual-leached scaffold was improved by alkaline (NaOH) treatment. Well-defined interconnected pores were detected by scanning electron microscopy. The water absorption capacity of the NaOH-treated PCL/HA dual-leached scaffold increased greatly, confirming that the hydrophilicity of the scaffold was improved by NaOH treatment. The compressive modulus of the PCL/HA dual-leached scaffold was greatly increased by the addition of HA particles. An indirect evaluation of the cytotoxicity of all PCL dual-leached scaffolds with mouse fibroblastic cells (L929) and mouse calvaria-derived pre-osteoblastic cells (MC3T3-E1) indicated that the PCL dual-leached scaffolds are non-toxic to cells. The ability of the scaffolds to support mouse calvaria-derived pre-osteoblastic cell (MC3T3-E1) attachment, proliferation, differentiation, and mineralization was also evaluated. Although the viability of cells was lower on the PCL/HA dual-leached scaffold than on the tissue-culture polystyrene plates (TCPS) and on the other substrates at early time points, both the PCL and NaOH-treated PCL/HA dual-leached scaffolds supported the attachment of MC3T3-E1 at significantly higher levels than TCPS. During the proliferation period (days 1-3), all of the PCL dual-leached scaffolds were able to support the proliferation of MC3T3-E1 at higher levels than the TCPS; in addition, the cells grown on NaOH-treated PCL/HA dual-leached scaffolds proliferated more rapidly. The cells cultured on the surfaces of NaOH-treated PCL/HA dual-leached scaffolds had the highest rate of mineral deposition.
Collapse
Affiliation(s)
- Napaphat Thadavirul
- a The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology (PETROMAT) , Chulalongkorn University , Bangkok 10330 , Thailand
| | | | | |
Collapse
|
33
|
Zhang Y, Yin QS, Zhou CS, Xia H, Zhang Y, Jiao YP. Osteogenic activity of silver-loaded coral hydroxyapatite and its investigation in vivo. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:801-812. [PMID: 24420139 DOI: 10.1007/s10856-013-5115-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
In this study, the scaffolds based on mineralized silver-loaded coral hydroxyapatites (SLCHAs) were developed for bone regeneration in the radius of rabbit with a 15-mm infective segmental defect model for the first time. The SLCHAs were achieved by surface adsorption and ion-exchange reaction between Ca(2+) of coral hydroxyapatite (CHA) and Ag(+) of silver nitrate with different concentration at room temperature. Release experiment in vitro, X-ray diffraction and scanning electron microscopy equipped with energy-dispersive X-ray spectrometer were applied to exhibit that the scaffold showed some features of natural bone both in main component and hierarchical microstructure. The three-dimensional porous scaffold materials imitate the microstructure of cancellous bone. Mouse embryonic pre-osteoblast cells (MC3T3-E1) were used to investigate the cytocompatibility of SLCHAs, CHA and pure coral. Cell activity were studied with alkaline phosphataseenzyme assay after 2, 4, 6 days of incubation. It was no statistically significant differences in cell activity on the scaffolds of Ag(+)(13.6 μg/mL)/CHA, Ag(+)(1.7 μg/mL)/CHA, CHA and pure coral. The results indicated that the lower silver concentration has little effect on cell activity. In the implantation test, the infective segmental defect repaired with SLCHAs was healed up after 10 weeks after surgery, and the implanted composites were almost substituted by new bone tissue, which were very comparable with the scaffold based on mineralized CHA. It could be concluded that the SLCHAs contained with appropriate silver ionic content could act as biocidal agents and maintain the advantages of mineralized CHA or coral, while avoiding potential bacteria-dangers and toxical heavy-metal reaction. All the above results showed that the SLCHAs with anti-infective would be as a promising scaffold material, which whould be widely applied into the clinical for bone regeneration.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, 510010, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
34
|
Guarino V, Raucci MG, Ambrosio L. Micro/Nanotexturing and Bioactivation Strategies to Design Composite Scaffolds and ECM-Like Analogues. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/masy.201300074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vincenzo Guarino
- Institute of Composite and Biomedical Materials and DSCTM-CNR; P. le Tecchio 80 80125 Naples Italy
| | - Maria Grazia Raucci
- Institute of Composite and Biomedical Materials and DSCTM-CNR; P. le Tecchio 80 80125 Naples Italy
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials and DSCTM-CNR; P. le Tecchio 80 80125 Naples Italy
| |
Collapse
|
35
|
Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels. J Appl Biomater Funct Mater 2013; 10:302-7. [PMID: 23242882 DOI: 10.5301/jabfm.2012.10366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2012] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The aim of this project was to study the proliferation and differentiation of human Mesenchymal Stem Cells (hMSCs) onto a cellulose-based hydrogel for bone tissue engineering. METHODS Modified-cellulose hydrogel was prepared via double esterification crosslinking using citric acid. The response of human Mesenchymal Stem Cells (hMSCs) in terms of cell proliferation and differentiation into osteoblastic phenotype was evaluated by using Alamar blue assay and Alkaline phosphatase activity. RESULTS The results showed that CMCNa and CMCNa_CA have no negative effect on hMSC, adhesion and proliferation. Moreover, the increase of the ALP expression for CMCNa_CA confirms the ability of the hydrogels to support the osteoblastic differentiation. CONCLUSIONS The cellulose-based hydrogels have a potential application as filler in bone tissue regeneration.
Collapse
|
36
|
D'Antò V, Raucci MG, Guarino V, Martina S, Valletta R, Ambrosio L. Behaviour of human mesenchymal stem cells on chemically synthesized HA-PCL scaffolds for hard tissue regeneration. J Tissue Eng Regen Med 2013; 10:E147-54. [PMID: 23723157 DOI: 10.1002/term.1768] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/13/2013] [Accepted: 04/13/2013] [Indexed: 01/09/2023]
Abstract
Our goal was to characterize the response of human mesenchymal stem cells (hMSCs) to a novel composite scaffold for bone tissue engineering. The hydroxyapatite-polycaprolactone (HA-PCL) composite scaffolds were prepared by a sol-gel method at room temperature and the scaffold morphology was investigated by scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) to validate the synthesis process. The response of two different lines of hMSCs, bone-marrow-derived human mesenchymal stem cells (BMSCs) and dental pulp stem cells (DPSCs) in terms of cell proliferation and differentiation into the osteoblastic phenotype, was evaluated using Alamar blue assay, SEM, histology and alkaline phosphatase activity. Our results indicate that tissue engineering by means of composite HA-PCL scaffolds may represent a new therapeutic strategy to repair craniofacial bone defects.
Collapse
Affiliation(s)
- Vincenzo D'Antò
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy.,Department of Neurosciences, Reproductive Sciences and Oral Sciences, University of Naples 'Federico II', Italy.,Department of Pediatric Surgery and Transplantation, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Grazia Raucci
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy
| | - Vincenzo Guarino
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy
| | - Stefano Martina
- Department of Neurosciences, Reproductive Sciences and Oral Sciences, University of Naples 'Federico II', Italy
| | - Rosa Valletta
- Department of Neurosciences, Reproductive Sciences and Oral Sciences, University of Naples 'Federico II', Italy
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy
| |
Collapse
|
37
|
Falconi M, Salvatore V, Teti G, Focaroli S, Durante S, Nicolini B, Mazzotti A, Orienti I. Gelatin crosslinked with dehydroascorbic acid as a novel scaffold for tissue regeneration with simultaneous antitumor activity. Biomed Mater 2013; 8:035011. [DOI: 10.1088/1748-6041/8/3/035011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol–gel process. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:390-6. [DOI: 10.1016/j.msec.2012.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 11/21/2022]
|
39
|
Olivas-Armendariz I, Martel-Estrada SA, Mendoza-Duarte ME, Jiménez-Vega F, García-Casillas P, Martínez-Pérez CA. Biodegradable Chitosan/Multiwalled Carbon Nanotube Composite for Bone Tissue Engineering. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbnb.2013.42025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Development of hydroxyapatite nanorods-polycaprolactone composites and scaffolds derived from a novel in-situ sol-gel process. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0002-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
41
|
Zanetti AS, McCandless GT, Chan JY, Gimble JM, Hayes DJ. Characterization of novel akermanite:poly-ϵ-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering. J Tissue Eng Regen Med 2012; 9:389-404. [PMID: 23166107 DOI: 10.1002/term.1646] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 07/17/2012] [Accepted: 10/04/2012] [Indexed: 12/19/2022]
Abstract
In this study, three different akermanite:poly-ϵ-caprolactone (PCL) composite scaffolds (wt%: 75:25, 50:50, 25:75) were characterized in terms of structure, compression strength, degradation rate and in vitro biocompatibility to human adipose-derived stem cells (hASC). Pure ceramic scaffolds [CellCeram™, custom-made, 40:60 wt%; β-tricalcium phosphate (β-TCP):hydroxyapatite (HA); and akermanite] and PCL scaffolds served as experimental controls. Compared to ceramic scaffolds, the authors hypothesized that optimal akermanite:PCL composites would have improved compression strength and comparable biocompatibility to hASC. Electron microscopy analysis revealed that PCL-containing scaffolds had the highest porosity but CellCeram™ had the greatest pore size. In general, compression strength in PCL-containing scaffolds was greater than in ceramic scaffolds. PCL-containing scaffolds were also more stable in culture than ceramic scaffolds. Nonetheless, mass losses after 21 days were observed in all scaffold types. Reduced hASC metabolic activity and increased cell detachment were observed after acute exposure to akermanite:PCL extracts (wt%: 75:25, 50:50). Among the PCL-containing scaffolds, hASC cultured for 21 days on akermanite:PCL (wt%: 75:25) discs displayed the highest viability, increased expression of osteogenic markers (alkaline phosphatase and osteocalcin) and lowest IL-6 expression. Together, the results indicate that akermanite:PCL composites may have appropriate mechanical and biocompatibility properties for use as bone tissue scaffolds.
Collapse
Affiliation(s)
- A S Zanetti
- Department of Biological Engineering, Louisiana State University and LSU AgCenter, Baton Rouge, Louisiana, USA
| | | | | | | | | |
Collapse
|
42
|
Raucci MG, Guarino V, Ambrosio L. Biomimetic strategies for bone repair and regeneration. J Funct Biomater 2012; 3:688-705. [PMID: 24955638 PMCID: PMC4030995 DOI: 10.3390/jfb3030688] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 11/16/2022] Open
Abstract
The osseointegration rate of implants is related to their composition and surface roughness. Implant roughness favors both bone anchoring and biomechanical stability. Osteoconductive calcium phosphate (Ca-P) coatings promote bone healing and apposition, leading to the rapid biological fixation of implants. It has been clearly shown in many publications that Ca-P coating accelerates bone formation around the implant. This review discusses two main routes for the manufacturing of polymer-based osteoconductive scaffolds for tissue engineering, namely the incorporation of bioceramic particles in the scaffold and the coating of a scaffold with a thin layer of apatite through a biomimetic process.
Collapse
Affiliation(s)
- Maria G Raucci
- Institute of Composite and Biomedical Materials, National Research Council of Italy, P.le Tecchio 80, Naples 80125, Italy.
| | - Vincenzo Guarino
- Institute of Composite and Biomedical Materials, National Research Council of Italy, P.le Tecchio 80, Naples 80125, Italy.
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials, National Research Council of Italy, P.le Tecchio 80, Naples 80125, Italy.
| |
Collapse
|
43
|
Dessì M, Raucci MG, Zeppetelli S, Ambrosio L. Design of injectable organic-inorganic hybrid for bone tissue repair. J Biomed Mater Res A 2012; 100:2063-70. [PMID: 22581691 DOI: 10.1002/jbm.a.34112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/18/2012] [Accepted: 01/24/2012] [Indexed: 11/07/2022]
Abstract
Injectable bone substitutes are rapidly gained success in tissue engineering applications for their less invasive surgical aspect. Here, the design and the characterization of a novel degradable paste of PCL reinforced with nanocrystals of hydroxyapatite have been presented aiming to mimic natural tissue. Nanohydroxyapatite has been successfully synthesized via sol-gel technique. Dynamic and steady state viscoelastic properties of the solutions and paste were investigated to control the kinetic of phase transition. Correspondingly, the morphology and composition were characterized via TEM, EDAX, and thermal analysis. Injection test underlines the completely ability of the paste of being injected without altering its features. Preliminary biological study showed that the composite paste is not cytotoxic. The synergistic rheological and biological properties, combined with the positive effect of chemical synthesis method indicate that the composite paste is very suitable as local bone substitute in low-load areas.
Collapse
Affiliation(s)
- Mariagemiliana Dessì
- Institute of Composite and Biomedical Materials, National Research Council of Italy, Piazzale Tecchio 80, 80125 Naples, Italy
| | | | | | | |
Collapse
|
44
|
Engstrand J, López A, Engqvist H, Persson C. Polyhedral oligomeric silsesquioxane (POSS)–poly(ethylene glycol) (PEG) hybrids as injectable biomaterials. Biomed Mater 2012; 7:035013. [DOI: 10.1088/1748-6041/7/3/035013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Lee JTY, Chow KL. SEM sample preparation for cells on 3D scaffolds by freeze-drying and HMDS. SCANNING 2012; 34:12-25. [PMID: 22532079 DOI: 10.1002/sca.20271] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/06/2011] [Indexed: 05/06/2023]
Abstract
Common dehydration methods of cells on biomaterials for scanning electron microscopy (SEM) include air drying, hexamethyldisilazane (HMDS) or tetramethysilane (TMS) treatment and critical point drying (CPD). On the other side, freeze-drying has been widely employed in dehydrating biological samples and also in preparing porous biomaterial scaffolds but not in preparing cells on three-dimensional (3D) biomaterials for SEM examination. In this study, we compare cells on porous hydroxyapatite (HA) prepared by air drying, HMDS and freeze-drying. The effects of fixation and using phosphate buffered saline (PBS) in the fixation were also assessed on three porous calcium phosphate (CaP) materials, namely, HA, α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate (β-TCP) samples. There is no significant difference in samples prepared by HMDS treatment and freeze-drying viewed at low magnification. Besides, it is better not to use phosphate buffer in the fixation step for CaP materials to avoid undesirable spontaneous precipitation of CaPs. On the other hand, fewer exchanges of liquids are required for freeze-drying and hence chemical fixation may not be absolutely required for samples prepared by freeze-drying. Other technical details of the preparation were also investigated and discussed. This study suggests both HMDS and freeze-drying can be employed to dehydrate cells on 3D scaffolds for SEM examination.
Collapse
Affiliation(s)
- Juliana Tsz Yan Lee
- Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | |
Collapse
|
46
|
Fu X, Sammons RL, Bertóti I, Jenkins MJ, Dong H. Active screen plasma surface modification of polycaprolactone to improve cell attachment. J Biomed Mater Res B Appl Biomater 2011; 100:314-20. [PMID: 22179939 DOI: 10.1002/jbm.b.31916] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/31/2011] [Accepted: 06/16/2011] [Indexed: 11/09/2022]
Abstract
To tailor polycaprolactone (PCL) surface properties for biomedical applications, film samples of PCL were surface modified by the active screen plasma nitriding (ASPN) technique. The chemical composition and structure were characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The wettability of the surface modified polymers was investigated by contact angle and surface energy methods. Biocompatibility of the prepared PCL samples was evaluated in vitro using MC3T3-E1 osteoblast-like cells. The degradability was assessed by determining the self-degradation rate (catalyzed by lipase). The results show that ASPN surface modification can effectively improve osteoblast cell adhesion and spreading on the surface of PCL. The main change in chemical composition is the exchange of some carboxyl groups on the surface for hydroxyl groups. The active-screen plasma nitriding technique has been found to be an effective and practical method to effectively improve osteoblast cell adhesion and spreading on the PCL surface. Such changes have been attributed to the increase in wettablity and generation of new hydroxyl groups by plasma treatment. After active-screen plasma treatment, the PCL film is still degradable, but the enzymatic degradation rate is slower compared with untreated PCL film.
Collapse
Affiliation(s)
- Xin Fu
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|
47
|
Sola A, Bellucci D, Raucci MG, Zeppetelli S, Ambrosio L, Cannillo V. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity. J Biomed Mater Res A 2011; 100:305-22. [PMID: 22052581 DOI: 10.1002/jbm.a.33276] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 11/06/2022]
Abstract
Because of their excellent bioactivity, bioactive glasses are increasingly diffused to produce biomedical devices for bone prostheses, to face the dysfunctions that may be caused by traumatic events, diseases, or even natural aging. However, several processing routes, such as the production of scaffolds or the deposition of coatings, include a thermal treatment to apply or sinter the glass. The exposure to high temperature may induce a devetrification phenomenon, altering the properties and, in particular, the bioactivity of the glass. The present contribution offers an overview of the thermal behavior and properties of two glasses belonging to the Na2O-CaO-P2O5-SiO2 system, to be compared to the standard 45S5 Bioglass(®). The basic goal is to understand the effect of both the original composition and the thermal treatment on the performance of the sintered glasses. The new glasses, the one (BG_Na) with a high content of Na2O, the other (BG_Ca) with a high content of CaO, were fully characterized and sintering tests were performed to define the most interesting firing cycles. The sintered samples, treated at 880°C and 800°C respectively, were investigated from a microstructural point of view and their mechanical properties were compared to those of the bulk (not sintered) glass counterparts. The effect of sintering was especially striking on the BG_Ca material, whose Vickers hardness increased from 598.9 ± 46.7 HV to 1053.4 ± 35.0 HV. The in vitro tests confirmed the ability of the glasses, both in bulk and sintered form, of generating a hydroxyapatite surface layer when immersed in a simulated body fluid. More accurate biological tests performed on the sintered glasses proved the high bioactivity of the CaO-rich composition even after a heat treatment.
Collapse
Affiliation(s)
- A Sola
- Department of Materials and Environmental Engineering, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Perut F, Montufar EB, Ciapetti G, Santin M, Salvage J, Traykova T, Planell JA, Ginebra MP, Baldini N. Novel soybean/gelatine-based bioactive and injectable hydroxyapatite foam: material properties and cell response. Acta Biomater 2011; 7:1780-7. [PMID: 21163370 DOI: 10.1016/j.actbio.2010.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 11/22/2022]
Abstract
Despite their known osteoconductivity, clinical use of calcium phosphate cements is limited both by their relatively slow rate of resorption and by rheological properties incompatible with injectability. Bone in-growth and material resorption have been improved by the development of porous calcium phosphate cements. However, injectable formulations have so far only been obtained through the addition of relatively toxic surfactants. The present work describes the response of osteoblasts to a novel injectable foamed bone cement based on a composite formulation including the bioactive foaming agents soybean and gelatine. The foaming properties of both defatted soybean and gelatine gels were exploited to develop a self-hardening soy/gelatine/hydroxyapatite composite foam able to retain porosity upon injection. After setting, the foamed paste produced a calcium-deficient hydroxyapatite scaffold, showing good injectability and cohesion as well as interconnected porosity after injection. The intrinsic bioactivity of soybean and gelatine was shown to favour osteoblast adhesion and growth. These findings suggest that injectable, porous and bioactive calcium phosphate cements can be produced for bone regeneration through minimally invasive surgery.
Collapse
Affiliation(s)
- F Perut
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|