1
|
Qiao K, Xu L, Tang J, Wang Q, Lim KS, Hooper G, Woodfield TBF, Liu G, Tian K, Zhang W, Cui X. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnology 2022; 20:141. [PMID: 35303876 PMCID: PMC8932118 DOI: 10.1186/s12951-022-01342-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
With the gradual demographic shift toward an aging and obese society, an increasing number of patients are suffering from bone and cartilage injuries. However, conventional therapies are hindered by the defects of materials, failing to adequately stimulate the necessary cellular response to promote sufficient cartilage regeneration, bone remodeling and osseointegration. In recent years, the rapid development of nanomedicine has initiated a revolution in orthopedics, especially in tissue engineering and regenerative medicine, due to their capacity to effectively stimulate cellular responses on a nanoscale with enhanced drug loading efficiency, targeted capability, increased mechanical properties and improved uptake rate, resulting in an improved therapeutic effect. Therefore, a comprehensive review of advancements in nanomedicine for bone and cartilage diseases is timely and beneficial. This review firstly summarized the wide range of existing nanotechnology applications in the medical field. The progressive development of nano delivery systems in nanomedicine, including nanoparticles and biomimetic techniques, which are lacking in the current literature, is further described. More importantly, we also highlighted the research advancements of nanomedicine in bone and cartilage repair using the latest preclinical and clinical examples, and further discussed the research directions of nano-therapies in future clinical practice.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lu Xu
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Dermatology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 61004, Sichuan, China
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China
| | - Kang Tian
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Weiguo Zhang
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Xiaolin Cui
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand.
| |
Collapse
|
2
|
Chen J, Shen Y, Shen Z, Cheng L, Zhou S. Tissue engineering of the larynx: A contemporary review. J Clin Lab Anal 2020; 35:e23646. [PMID: 33320365 PMCID: PMC7891509 DOI: 10.1002/jcla.23646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Tissue engineering has been a topic of extensive research in recent years and has been applied to the regeneration and restoration of many organs including the larynx. Currently, research investigating tissue engineering of the larynx is either ongoing or in the preclinical trial stage. Methods A literature search was performed on the Advanced search field of PubMed using the keywords: “(laryncheal tissue engineering) AND (cartilage regeneration OR scaffolds OR stem cells OR biomolecules).” After applying the selection criteria, 65 articles were included in the study. Results The present review focuses on the rapidly expanding field of tissue‐engineered larynx, which aims to provide stem cell–based scaffolds combined with biological active factors such as growth factors for larynx reconstruction and regeneration. The trend in recent studies is to use new techniques for scaffold construction, such as 3D printing, are developed. All of these strategies have been instrumental in guiding optimization of the tissue‐engineered larynx, leading to a level of clinical induction beyond the in vivo animal experimental phase. Conclusions This review summarizes the current progress and outlines the necessary basic components of regenerative laryngeal medicine in preclinical fields. Finally, it considers the design of scaffolds, support of growth factors, and cell therapies toward potential clinical application.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China.,Department of Otorhinolaryngology- Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yi Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Lixin Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Shuihong Zhou
- Department of Otorhinolaryngology- Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
3
|
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, Samiei M, Ardalan M, Rameshrad M, Ahmadian E, Cucchiarini M. The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. Int J Mol Sci 2020; 21:E536. [PMID: 31947685 PMCID: PMC7014227 DOI: 10.3390/ijms21020536] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/16/2023] Open
Abstract
The repair and regeneration of articular cartilage represent important challenges for orthopedic investigators and surgeons worldwide due to its avascular, aneural structure, cellular arrangement, and dense extracellular structure. Although abundant efforts have been paid to provide tissue-engineered grafts, the use of therapeutically cell-based options for repairing cartilage remains unsolved in the clinic. Merging a clinical perspective with recent progress in nanotechnology can be helpful for developing efficient cartilage replacements. Nanomaterials, < 100 nm structural elements, can control different properties of materials by collecting them at nanometric sizes. The integration of nanomaterials holds promise in developing scaffolds that better simulate the extracellular matrix (ECM) environment of cartilage to enhance the interaction of scaffold with the cells and improve the functionality of the engineered-tissue construct. This technology not only can be used for the healing of focal defects but can also be used for extensive osteoarthritic degenerative alterations in the joint. In this review paper, we will emphasize the recent investigations of articular cartilage repair/regeneration via biomaterials. Also, the application of novel technologies and materials is discussed.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, 5515878151 Maragheh, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sara Salatin
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, 5166614756 Tabriz, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, 9414975516 Bojnurd, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| |
Collapse
|
4
|
Lim KT, Patel DK, Choung HW, Seonwoo H, Kim J, Chung JH. Evaluation of Bone Regeneration Potential of Long-Term Soaked Natural Hydroxyapatite. ACS APPLIED BIO MATERIALS 2019; 2:5535-5543. [DOI: 10.1021/acsabm.9b00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dinesh K. Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han Wool Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 151921, Republic of Korea
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering, Suncheon National University, Suncheon 57922, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 500757, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Li L, Yu F, Zheng L, Wang R, Yan W, Wang Z, Xu J, Wu J, Shi D, Zhu L, Wang X, Jiang Q. Natural hydrogels for cartilage regeneration: Modification, preparation and application. J Orthop Translat 2019; 17:26-41. [PMID: 31194006 PMCID: PMC6551352 DOI: 10.1016/j.jot.2018.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023] Open
Abstract
Hydrogels, consisting of hydrophilic polymers, can be used as films, scaffolds, nanoparticles and drug carriers. They are one of the hot research topics in material science and tissue engineering and are widely used in the field of biomedical and biological sciences. Researchers are seeking for a type of material that is similar to human tissues and can partially replace human tissues or organs. The hydrogel has brought possibility to solve this problem. It has good biocompatibility and biodegradability. After entering the body, it does not cause immune and toxic reactions. The degradation time can be controlled, and the degradation products are nontoxic and nonimmunogenic; the final metabolites can be excreted outside the body. Owing to the lack of blood vessels and poor migration ability of chondrocytes, the self-healing ability of damaged cartilage is limited. Tissue engineering has brought a new direction for the regeneration of cartilage. Drug carriers and scaffolds made of hydrogels are widely used in cartilage tissue engineering. The present review introduces the natural hydrogels, which are often used for cartilage tissue engineering with respect to synthesis, modification and application methods. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This review introduces the natural hydrogels that are often used in cartilage tissue engineering with respect to synthesis, modification and application methods. Furthermore, the essential concepts and recent discoveries were demonstrated to illustrate the achievable goals and the current limitations. In addition, we propose the putative challenges and directions for the use of natural hydrogels in cartilage regeneration.
Collapse
Affiliation(s)
- Lan Li
- School of Mechanical Engineering, Southeast University, Nanjing, China
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Fei Yu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Liming Zheng
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Rongliang Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Zixu Wang
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jia Xu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jianxiang Wu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Liya Zhu
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
| | - Xingsong Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Gulati K, Meher MK, Poluri KM. Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regen Med 2017. [DOI: 10.2217/rme-2017-0012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Regeneration of tissue structure with the aid of bioactive polymer matrices/composites and scaffolds for respective applications is one of the emerging areas of biomedical engineering. Recent advances in conjugated glycosaminoglycan (GAG) hybrids using natural and synthetic polymers have opened new avenues for producing a wide variety of resorbable polymer matrices. These hybrid scaffolds are low-immunogenic, highly biocompatible and biodegradable with incredible mechanical and tensile properties. GAG-based resorbable polymeric matrices are being exploited in migration of stem cells, cartilage and bone replacement/regeneration and production of scaffolds for various tissue engineering applications. In the current review, we will discuss the role of GAG-based resorbable polymer matrices in the field of regenerative medicine.
Collapse
Affiliation(s)
- Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mukesh Kumar Meher
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
7
|
Preparation and characterization of a novel polysialic acid–hyaluronan graft copolymer potential as dermal filler. Int J Biol Macromol 2017; 99:692-698. [DOI: 10.1016/j.ijbiomac.2017.03.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 11/21/2022]
|
8
|
Alemdar C, Yücel İ, Erbil B, Erdem H, Atiç R, Özkul E. Effect of insulin-like growth factor-1 and hyaluronic acid in experimentally produced osteochondral defects in rats. Indian J Orthop 2016; 50:414-20. [PMID: 27512224 PMCID: PMC4964775 DOI: 10.4103/0019-5413.185607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The common purpose of almost all methods used to treat the osteochondral injuries is to produce a normal cartilage matrix. However current methods are not sufficient to provide a normal cartilage matrix. For that reason, researchers have studied to increase the effectiveness of this methods using chondrogenic and chondroprotective molecules in recent experimental studies. Insulin-like growth factor-1 (IGF-1) and hyaluronic acid (HA) are two important agents used in this field. This study compared the effects of IGF-1 and HA in an experimental osteochondral defect in rat femora. MATERIALS AND METHODS The rats were divided into three groups (n = 15 per group) as follows: The IGF-1 group, HA group, and control group. An osteochondral defect of a diameter of 1.5 mm and a depth of 2 mm was created on the patellar joint side of femoral condyles. The IGF-1 group received an absorbable gelatin sponge soaked with 15 μg/15 μl of IGF-1, and the HA group received an absorbable gelatin sponge soaked with 80 μg HA. The control group received only an absorbable gelatin sponge. Rats were sacrificed at the 6(th) week, and the femur condyles were evaluated histologically. RESULTS According to the total Mankin scale, there was a statistically significant difference between IGF-1 and HA groups and between IGF-1 and control groups. There was also a significant statistical difference between HA and control groups. CONCLUSION It was shown histopathologically that IGF-1 is an effective molecule for osteochondral lesions. Although it is weaker than IGF-1, HA also strengthened the repair tissue.
Collapse
Affiliation(s)
- Celil Alemdar
- Department of Orthopaedics, Dicle University Medical Faculty, Diyarbakir, Turkey,Address for correspondence: Prof. Celil Alemdar, Department of Orthopaedics, Dicle University Medical Faculty, 21280, Diyarbakir, Turkey. E-mail:
| | - İstemi Yücel
- Department of Orthopaedics, Düzce University Medical Faculty, Düzce, Turkey
| | - Barış Erbil
- Department of Orthopaedics, Tekirdağ State Hospital, Tekirdağ, Turkey
| | - Havva Erdem
- Department of Pathology, Ordu University Medical Faculty, Ordu, Turkey
| | - Ramazan Atiç
- Department of Orthopaedics, Dicle University Medical Faculty, Diyarbakir, Turkey
| | - Emin Özkul
- Department of Orthopaedics, Dicle University Medical Faculty, Diyarbakir, Turkey
| |
Collapse
|
9
|
Miao T, Miller EJ, McKenzie C, Oldinski RA. Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration. J Mater Chem B 2015; 3:9242-9249. [PMID: 32262923 DOI: 10.1039/c5tb00989h] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Theta-gels are hydrogels that form during the solidification and phase separation of two dislike polymers, in which a low molecular weight polymer behaves as a porogen and is removed through dialysis. For this study, interpenetrating polymer network (IPN) hydrogels were formed between polyvinyl alcohol (PVA) and gelatin using theta-gel fabrication techniques, i.e., in the presence of a porogen. The addition of gelatin to a PVA theta-gel, formed with a porogen, polyethylene glycol (PEG), created macro-porous hydrogels, and increased shear storage moduli and elastic moduli, compared to PVA-gelatin scaffold controls. A reduction in PVA crystallinity was verified by Fourier transform infrared (FTIR) spectroscopy in hydrogels fabricated using a porogen, i.e., PVA-PEG-gelatin, compared to PVA, PVA-PEG, or PVA-gelatin hydrogels alone. Van Geison staining confirmed the retention of gelatin after dialysis. A range of hydrogel moduli was achieved by optimizing PVA concentration, molecular weight, and gelatin concentration. PVA-gelatin hydrogels maintained primary human mesenchymal stem cell (MSC) viability. Soft (∼10 kPa) and stiff (∼100 kPa) PVA-gelatin hydrogels containing type II collagen significantly increased glycosaminoglycan (GAG) production compared to controls. PVA-gelatin hydrogels, formed using theta-gel techniques, warrant further investigation as articular cartilage tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tianxin Miao
- Bioengineering Program, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
10
|
Nainar SMM, Begum S, Ansari MNM, Hoque ME, Aini SS, Ng MH, Ruszymah BHI. Effect of compatibilizers on in vitro biocompatibility of PLA–HA bioscaffold. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2014. [DOI: 10.1680/bbn.14.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This paper exclusively describes the biocompatibility evaluation of biodegradable PLA–HA-based composites as temporary bone scaffolds for bone tissue engineering in orthopaedic applications. For that purpose, a set of composites were prepared using 3D melt-deposition method that comprises a biopolymer namely polylactic acid (PLA), and a bioceramic filler, namely hydroxyapatite (HA) 10 wt%, and compatibilizers, namely poly acrylic acid (PAA) 2 wt% and maleic anhydirde (MAH) 2 wt%. The composite samples were evaluated by in vitro assays and biodegradability tests were conducted in phosphate-buffered saline (PBS). For the in vitro analysis, osteogenic-induced stem cells were seeded onto the composite scaffold. An inverted optical microscope with computerised image analysis system was used to obtain data regarding cell attachment and contact characteristics after seeding for 48 h. Results showed that the PLA–HA-based composites did not induce adverse reactions from the cells, which in addition to their bone-matching mechanical properties makes them promising materials for bone scaffold applications.
Collapse
Affiliation(s)
| | - Shahida Begum
- Associate Professor, Centre for Advanced Materials, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia
| | - M. N. M. Ansari
- Senior Lecturer Centre for Advanced Materials, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia
| | - Md. Enamul Hoque
- Associate Professor, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Malaysia Campus, Semenyih, Selangor, Malaysia
| | - S. Sharen Aini
- Researcher, Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - M. H. Ng
- Researcher, Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - B. H. I. Ruszymah
- Professor, Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Lim KT, Kim JW, Kim J, Chung JH. Development and Evaluation of Natural Hydroxyapatite Ceramics Produced by the Heat Treatment of Pig Bones. ACTA ACUST UNITED AC 2014. [DOI: 10.5307/jbe.2014.39.3.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Capellato P, Escada ALA, Popat KC, Claro APRA. Interaction between mesenchymal stem cells and Ti-30Ta alloy after surface treatment. J Biomed Mater Res A 2013; 102:2147-56. [PMID: 23893959 DOI: 10.1002/jbm.a.34891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/02/2013] [Accepted: 07/22/2013] [Indexed: 11/09/2022]
Abstract
In this study, in vitro cytocompatibility was investigated in the Ti-30Ta alloy after two kinds of surfaces treatments: alkaline and biomimetic treatment. Each condition was evaluated by scanning electron microscopy/energy-dispersive X-ray spectroscopy. Cellular adhesion, viability, protein expression, morphology, and differentiation were evaluated with Bone marrow stromal cells (MSCs) to investigate the short and long-term cellular response by fluorescence microscope imaging and colorimetric assays techniques. Two treatments exhibited similar results with respect to total protein content and enzyme activity as compared with alloy without treatment. However, it was observed improved of the biomineralization, bone matrix formation, enzyme activity, and MSCs functionality after biomimetic treatment. These results indicate that the biomimetic surface treatment has a high potential for enhanced osseointegration.
Collapse
Affiliation(s)
- Patricia Capellato
- Department of Materials, Faculty of Engineering Guaratinguetá, Sao Paulo State University-UNESP, Guaratinguetá, CEP 12516-410, SP, Brazil
| | | | | | | |
Collapse
|
13
|
Novotna K, Bacakova M, Kasalkova NS, Slepicka P, Lisa V, Svorcik V, Bacakova L. Adhesion and Growth of Vascular Smooth Muscle Cells on Nanostructured and Biofunctionalized Polyethylene. MATERIALS 2013; 6:1632-1655. [PMID: 28809234 PMCID: PMC5452510 DOI: 10.3390/ma6051632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/21/2013] [Accepted: 04/11/2013] [Indexed: 11/26/2022]
Abstract
Cell colonization of synthetic polymers can be regulated by physical and chemical modifications of the polymer surface. High-density and low-density polyethylene (HDPE and LDPE) were therefore activated with Ar+ plasma and grafted with fibronectin (Fn) or bovine serum albumin (BSA). The water drop contact angle usually decreased on the plasma-treated samples, due to the formation of oxidized groups, and this decrease was inversely related to the plasma exposure time (50–300 s). The presence of nitrogen and sulfur on the polymer surface, revealed by X-ray photoelectron spectroscopy (XPS), and also by immunofluorescence staining, showed that Fn and BSA were bound to this surface, particularly to HDPE. Plasma modification and grafting with Fn and BSA increased the nanoscale surface roughness of the polymer. This was mainly manifested on HDPE. Plasma treatment and grafting with Fn or BSA improved the adhesion and growth of vascular smooth muscle cells in a serum-supplemented medium. The final cell population densities on day 6 after seeding were on an average higher on LDPE than on HDPE. In a serum-free medium, BSA grafted to the polymer surface hampered cell adhesion. Thus, the cell behavior on polyethylene can be modulated by its type, intensity of plasma modification, grafting with biomolecules, and composition of the culture medium.
Collapse
Affiliation(s)
- Katarina Novotna
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic.
| | - Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic.
| | - Nikola Slepickova Kasalkova
- Department of Solid State Engineering, Institute of Chemical Technology, Technicka 5, CZ-16628 Prague 6, Czech Republic.
| | - Petr Slepicka
- Department of Solid State Engineering, Institute of Chemical Technology, Technicka 5, CZ-16628 Prague 6, Czech Republic.
| | - Vera Lisa
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, Institute of Chemical Technology, Technicka 5, CZ-16628 Prague 6, Czech Republic.
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic.
| |
Collapse
|
14
|
Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering--a review. Carbohydr Polym 2012; 92:1262-79. [PMID: 23399155 DOI: 10.1016/j.carbpol.2012.10.028] [Citation(s) in RCA: 680] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/22/2022]
Abstract
This review focuses on hyaluronic acid (HA) tissue scaffolding materials. Scaffolds are defined in terms of formation mechanisms and mode of action. Solution properties are discussed as an understanding of the hydrodynamics of HA is fundamental in optimising the subsequent modification and the chemistries behind important tissue engineering applications that are emerging from recent research on this increasingly valuable carbohydrate polymer are described. Key scaffold characteristics such as mechanical, biological function and degradation are discussed. The latest technologies behind scaffold processing are assessed and the applications of HA based scaffolds are discussed.
Collapse
|
15
|
Abstract
Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application.
Collapse
Affiliation(s)
| | - Wolf Drescher
- Department of Orthopedics Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Björn Rath
- Department of Orthopedics Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Markus Tingart
- Department of Orthopedics Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
16
|
Lim KT, Suh JD, Kim J, Choung PH, Chung JH. Calcium phosphate bioceramics fabricated from extracted human teeth for tooth tissue engineering. J Biomed Mater Res B Appl Biomater 2011; 99:399-411. [PMID: 21953824 DOI: 10.1002/jbm.b.31912] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/15/2011] [Accepted: 05/23/2011] [Indexed: 01/09/2023]
Abstract
Bioceramic tooth powders were prepared via heat treatment of extracted human teeth using sintering temperatures between 600°C and 1200°C, and their properties were investigated for potential tooth tissue engineering. The sintered human tooth powders were characterized using thermal analysis (thermogravimetric analysis (TG) and differential thermal analysis (DTA)), field emission scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and Fourier transformed infrared (FTIR) spectroscopy. Additionally, the phase constitutions and chemical homogeneities of the composite samples were examined using a quantitative chemical analysis with inductively coupled plasma spectroscopy. The results revealed that the annealing process produced useful hydroxyapatite-based bioceramic biomaterials when annealed above 1000°C. The FTIR spectra and the TG/DTA thermograms of the tooth powders indicated the presence of organic compounds, which were completely removed after annealing at temperatures above 1000°C. The tooth powders annealed between 1000°C and 1200°C had good characteristics as bioceramic biomaterials. Furthermore, the biocompatibility of each tooth powder was evaluated using in vitro and in vivo techniques; our results indicate that the prepared human tooth powders have great potential for tooth tissue engineering applications.
Collapse
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | |
Collapse
|