1
|
Sarkar A, Sarkhel S, Bisht D, Jaiswal A. Cationic dextrin nanoparticles for effective intracellular delivery of cytochrome C in cancer therapy. RSC Chem Biol 2024; 5:249-261. [PMID: 38456040 PMCID: PMC10915965 DOI: 10.1039/d3cb00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/19/2023] [Indexed: 03/09/2024] Open
Abstract
Intracellular protein delivery shows promise as a selective and specific approach to cancer therapy. However, a major challenge is posed by delivering proteins into the target cells. Despite the development of nanoparticle (NP)-based approaches, a versatile and biocompatible delivery system that can deliver active therapeutic cargo into the cytosol while escaping endosome degradation remains elusive. In order to overcome these challenges, a polymeric nanocarrier was prepared using cationic dextrin (CD), a biocompatible and biodegradable polymer, to encapsulate and deliver cytochrome C (Cyt C), a therapeutic protein. The challenge of endosomal escape of the nanoparticles was addressed by co-delivering the synthesized NP construct with chloroquine, which enhances the endosomal escape of the therapeutic protein. No toxicity was observed for both CD NPs and chloroquine at the concentration tested in this study. Spectroscopic investigations confirmed that the delivered protein, Cyt C, was structurally and functionally active. Additionally, the delivered Cyt C was able to induce apoptosis by causing depolarization of the mitochondrial membrane in HeLa cells, as evidenced by flow cytometry and microscopic observations. Our findings demonstrate that an engineered delivery system using CD NPs is a promising platform in nanomedicine for protein delivery applications.
Collapse
Affiliation(s)
- Ankita Sarkar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Sanchita Sarkhel
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Deepali Bisht
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| |
Collapse
|
2
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
3
|
Patel V, Parekh P, Khimani M, Yusa SI, Bahadur P. Pluronics® based Penta Block Copolymer micelles as a precursor of smart aggregates for various applications: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Pereira PA, Serra MES, Serra AC, Coelho JFJ. Application of vinyl polymer-based materials as nucleic acids carriers in cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1820. [PMID: 35637638 DOI: 10.1002/wnan.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Nucleic acid-based therapies have changed the paradigm of cancer treatment, where conventional treatment modalities still have several limitations in terms of efficacy and severe side effects. However, these biomolecules have a short half-life in vivo, requiring multiple administrations, resulting in severe suffering, discomfort, and poor patient compliance. In the early days of (nano)biotechnology, these problems caused concern in the medical community, but recently it has been recognized that these challenges can be overcome by developing innovative formulations. This review focuses on the use of vinyl polymer-based materials for the protection and delivery of nucleic acids in cancer. First, an overview of the properties of nucleic acids and their versatility as drugs is provided. Then, key information on the achievements to date, the most effective delivery methods, and the evaluation of functionalization approaches (stimulatory strategies) are critically discussed to highlight the importance of vinyl polymers in the new cancer treatment approaches. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Patrícia Alexandra Pereira
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, Portugal
| | | | - Arménio C Serra
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| |
Collapse
|
5
|
Butt AM, Abdullah N, Rani NNIM, Ahmad N, Amin MCIM. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles. Pharm Res 2022; 39:1047-1064. [PMID: 35619043 DOI: 10.1007/s11095-022-03296-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Cytoplasmic delivery of bioactives requires the use of strategies such as active transport, electroporation, or the use of nanocarriers such as polymeric nanoparticles, liposomes, micelles, and dendrimers. It is essential to deliver bioactive molecules in the cytoplasm to achieve targeted effects by enabling organelle targeting. One of the biggest bottlenecks in the successful cytoplasmic delivery of bioactives through nanocarriers is their sequestration in the endosomes that leads to the degradation of drugs by progressing to lysosomes. In this review, we discussed mechanisms by which nanocarriers are endocytosed, the mechanisms of endosomal escape, and more importantly, the strategies that can be and have been employed for their escape from the endosomes are summarized. Like other nanocarriers, polymeric micelles can be designed for endosomal escape, however, a careful control is needed in their design to balance between the possible toxicity and endosomal escape efficiency. Keeping this in view, polyion complex micelles, and polymers that have the ability to escape the endosome, are fully discussed. Finally, we provided some perspectives for designing the polymeric micelles for efficient cytoplasmic delivery of bioactive agents through endosomal escape.
Collapse
Affiliation(s)
- Adeel Masood Butt
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Nabiha Abdullah
- Department of Pharmacy, Quaid-i-Azam University, 45320, Islamabad, Pakistan.,Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450, Ipoh, Perak, Malaysia.,Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, 72388, Aljouf, Saudi Arabia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Roy P, Saha S, Chakraborty J. Looking into the possibilities of cure of the type 2 diabetes mellitus by nanoparticle-based RNAi and CRISPR-Cas9 system: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Emerging Role of miR-345 and Its Effective Delivery as a Potential Therapeutic Candidate in Pancreatic Cancer and Other Cancers. Pharmaceutics 2021; 13:pharmaceutics13121987. [PMID: 34959269 PMCID: PMC8707074 DOI: 10.3390/pharmaceutics13121987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality, poor prognosis, and palliative treatments, due to the rapid upregulation of alternative compensatory pathways and desmoplastic reaction. miRNAs, small non-coding RNAs, have been recently identified as key players regulating cancer pathogenesis. Dysregulated miRNAs are associated with molecular pathways involved in tumor development, metastasis, and chemoresistance in PDAC, as well as other cancers. Targeted treatment strategies that alter miRNA levels in cancers have promising potential as therapeutic interventions. miRNA-345 (miR-345) plays a critical role in tumor suppression and is differentially expressed in various cancers, including pancreatic cancer (PC). The underlying mechanism(s) and delivery strategies of miR-345 have been investigated by us previously. Here, we summarize the potential therapeutic roles of miR-345 in different cancers, with emphasis on PDAC, for miRNA drug discovery, development, status, and implications. Further, we focus on miRNA nanodelivery system(s), based on different materials and nanoformulations, specifically for the delivery of miR-345.
Collapse
|
8
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
9
|
Efficient Modified-mRNA Transfection in Neural Stem Cells. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.27.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Spencer DS, Shodeinde AB, Beckman DW, Luu BC, Hodges HR, Peppas NA. Cytocompatibility, membrane disruption, and siRNA delivery using environmentally responsive cationic nanogels. J Control Release 2021; 332:608-619. [PMID: 33675879 PMCID: PMC8089052 DOI: 10.1016/j.jconrel.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
Advances in the formulation of nucleic acid-based therapeutics have rendered them a promising avenue for treating diverse ailments. Nonetheless, clinical translation of these therapies is hindered by a lack of strategies to ensure the delivery of these nucleic acids in a safe, efficacious manner with the required spatial and temporal control. To this aim, environmentally responsive hydrogels are of interest due to their ability to provide the desired characteristics of a protective carrier for siRNA delivery. Previous work in our laboratory has demonstrated the ability to synthesize nanoparticle formulations with targeted pKa, swelling, and surface PEG density. Here, a library of nanoparticle formulations was assessed on their in vitro toxicity, hemolytic capacity, siRNA loading, and gene-silencing efficacy. Successful candidates exhibited the lowest degrees of cytotoxicity, pH-dependent membrane disruption potential, the highest siRNA loading, and the highest transfection efficacies.
Collapse
Affiliation(s)
- David S Spencer
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA
| | - Aaliyah B Shodeinde
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA
| | - David W Beckman
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Bryan C Luu
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Hannah R Hodges
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA; Departments of Pediatrics, Surgery, and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Hajimolaali M, Mohammadian H, Torabi A, Shirini A, Khalife Shal M, Barazandeh Nezhad H, Iranpour S, Baradaran Eftekhari R, Dorkoosh F. Application of chloroquine as an endosomal escape enhancing agent: new frontiers for an old drug. Expert Opin Drug Deliv 2021; 18:877-889. [PMID: 33455479 DOI: 10.1080/17425247.2021.1873272] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Adequate transfection efficiency is indispensable to safe and effective delivery of therapeutically active agents, particularly in cancer. Endosomal escape is regarded as a critical and determining step devoted a significant number of studies of the drug/gene delivery field. AREAS COVERED This paper critically reviews the fundamental properties of chloroquine (CQ), its pharmacokinetics, pharmacodynamics, and clinical applications and the present knowledge of CQ application as an endosomal escape enhancing agent. Different approaches to enhance the endosomal escape process of nanoparticles have been introduced including use of endosomal escape enhancing agents. Application of CQ as either a pre-treatment modality in which cells or animals are exposed to CQ prior to the main treatment or a component of co-delivery systems where CQ and other anti-cancer agents are simultaneously entered the cancer cells, is discussed with recent studies. EXPERT OPINION CQ is founded to intervene with the natural process of endosomal maturation. Moreover, CQ seems to increase the effectiveness of gene delivery by its electrostatic interaction with negatively charged components of the transferred genetic molecules. Endosomal escape might be regarded as the bottleneck of efficient gene delivery and CQ as an effective and available endosomal escape enhancing agent deserves more sophisticated studies.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Pátrai, Greece
| | - Hosein Mohammadian
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Torabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Shirini
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Khalife Shal
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sheida Iranpour
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Coutinho MF, Santos JI, S. Mendonça L, Matos L, Prata MJ, S. Jurado A, Pedroso de Lima MC, Alves S. Lysosomal Storage Disease-Associated Neuropathy: Targeting Stable Nucleic Acid Lipid Particle (SNALP)-Formulated siRNAs to the Brain as a Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21165732. [PMID: 32785133 PMCID: PMC7461213 DOI: 10.3390/ijms21165732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Correspondence: ; Tel.: +351-(223)-401-113
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| | - Liliana S. Mendonça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| | - Maria João Prata
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- i3S—Institute of Research and Innovation in Health/IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Amália S. Jurado
- University of Coimbra, CNC—Center for Neuroscience and Cell Biology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Maria C. Pedroso de Lima
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
13
|
Wu CY, Huang RY, Liao EC, Lin YC, Ho YJ, Chang CW, Chan HL, Huang YZ, Hsieh TH, Fan CH, Yeh CK. A preliminary study of Parkinson's gene therapy via sono-magnetic sensing gene vector for conquering extra/intracellular barriers in mice. Brain Stimul 2020; 13:786-799. [PMID: 32289709 DOI: 10.1016/j.brs.2020.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Non-virus genetic treatment for Parkinson's disease (PD) via plasmid glial cell-line derived neurotrophic factor (pGDNF) has shown potential for repairing damaged dopaminergic neurons. However, development of this gene therapy is largely hampered by the insufficient transfection efficiency as a result of the cell membrane, lysosome, and cytoskeleton meshwork. METHODS In this study, we propose the use of polyethylenimine (PEI)-superparamagnetic iron oxide-plasmid DNA (pDNA)-loaded microbubbles (PSp-MBs) in conjunction with focused ultrasound (FUS) and two-step magnetic navigation to provide cavitation, proton sponge effect and magnetic effects to increase the efficiency of gene delivery. RESULTS The gene transfection rate in the proposed system was 2.2-fold higher than that of the commercial agent (TransIT®-LT1). The transfection rate could be boosted ∼11%, ∼10%, and 6% by cavitation-magnetic hybrid enhanced cell membrane permeabilization, proton sponge effect, and magnetic-assisted cytoskeleton-reorganization, respectively. In vivo data suggested that effective gene delivery with this system results in a 3.2-fold increase in recovery of dopaminergic neurons and a 3.9-fold improvement in the motor behavior when compared to untreated genetic PD mice. CONCLUSIONS We proposed that this novel FUS-magnetic hybrid gene delivery platform could be integrated with a variety of therapeutic genes for treating neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Chun-Yao Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Rih-Yang Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Department of Medical Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan; Department of Molecular Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Department of Medical Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Healthy Aging Research Center and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy & Neuroscience Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
14
|
Parekh P, Ohno S, Yusa S, Lv C, Du B, Ray D, Aswal VK, Bahadur P. Synthesis, aggregation and adsorption behaviour of a thermoresponsive pentablock copolymer. POLYM INT 2020. [DOI: 10.1002/pi.5967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paresh Parekh
- Chemistry Department Veer Narmad South Gujarat University Surat India
| | - Sayaka Ohno
- Graduate School of Engineering University of Hyogo Hyogo Japan
| | - Shin‐ichi Yusa
- Graduate School of Engineering University of Hyogo Hyogo Japan
| | - Chao Lv
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Debes Ray
- Solid State Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Vinod Kumar Aswal
- Solid State Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Pratap Bahadur
- Chemistry Department Veer Narmad South Gujarat University Surat India
| |
Collapse
|
15
|
Baradaran Eftekhari R, Maghsoudnia N, Dorkoosh FA. Chloroquine: a brand-new scenario for an old drug. Expert Opin Drug Deliv 2020; 17:275-277. [PMID: 31951752 DOI: 10.1080/17425247.2020.1716729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Maghsoudnia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Uz M, Kalaga M, Pothuraju R, Ju J, Junker WM, Batra SK, Mallapragada S, Rachagani S. Dual delivery nanoscale device for miR-345 and gemcitabine co-delivery to treat pancreatic cancer. J Control Release 2019; 294:237-246. [PMID: 30576747 PMCID: PMC6379902 DOI: 10.1016/j.jconrel.2018.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022]
Abstract
A polymeric dual delivery nanoscale device (DDND) was designed for combined delivery of microRNA (miR-345) and gemcitabine (GEM) to treat pancreatic cancer (PC). This temperature and pH-responsive pentablock copolymer system was able to restore miR-345, making xenograft tumors more susceptible to GEM, the standard therapy for PC. Restoration using DDND treatment results in sonic hedgehog signaling down regulation, which decreases desmoplasia, thereby resulting in improved GEM perfusion to the tumor and better therapeutic outcomes. The release of miR-345 and GEM could be tuned by using the DDND in the form of micelles or in the form of thermoreversible gels, based on polymer concentration. The DDNDs enabled miR-345 stability and sustained co-release of miR-345 and GEM, thereby facilitating dose-sparing use of GEM. Further, enhanced in vitro cellular uptake due to amphiphilic character, and endosomal escape because of the cationic end blocks led to efficient transfection with DDNDs. The combined DDND treatment enabled efficient reduction in cell viability of Capan-1 and CD18/HPAF cells in vitro compared with either GEM or miR-345 treatment alone. Mice carrying xenograft tumors treated with DDNDs carrying both miR-345 and GEM combination therapy displayed reduced tumor growth and less metastasis in distant organs compared to individual drug treatments. Immunohistochemical analysis of the xenograft tissues revealed significant down regulation of desmoplastic reaction, SHH, Gli-1, MUC4, and Ki67 compared to control groups.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Manisha Kalaga
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhyung Ju
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Wade M Junker
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Sanguine Diagnostics and Therapeutics, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surya Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
17
|
Smith SA, Selby LI, Johnston APR, Such GK. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjug Chem 2018; 30:263-272. [PMID: 30452233 DOI: 10.1021/acs.bioconjchem.8b00732] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many emerging therapies rely on the delivery of biological cargo into the cytosol. Nanoparticle delivery systems hold great potential to deliver these therapeutics but are hindered by entrapment and subsequent degradation in acidic compartments of the endo/lysosomal pathway. Engineering polymeric delivery systems that are able to escape the endosome has significant potential to address this issue. However, the development of safe and effective delivery systems that can reliably deliver cargo to the cytosol is still a challenge. Greater understanding of the properties that govern endosomal escape and how it can be quantified is important for the development of more efficient nanoparticle delivery systems. This Topical Review highlights the current understanding of the mechanisms by which nanoparticles escape the endosome, and the emerging techniques to improve the quantification of endosomal escape.
Collapse
Affiliation(s)
- Samuel A Smith
- The School of Chemistry , The University of Melbourne , Parkville , Victoria , Australia , 3010
| | - Laura I Selby
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria , Australia , 3052
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria , Australia , 3052
| | - Georgina K Such
- The School of Chemistry , The University of Melbourne , Parkville , Victoria , Australia , 3010
| |
Collapse
|
18
|
Qu D, Wang L, Liu M, Shen S, Li T, Liu Y, Huang M, Liu C, Chen Y, Mo R. Oral Nanomedicine Based on Multicomponent Microemulsions for Drug-Resistant Breast Cancer Treatment. Biomacromolecules 2017; 18:1268-1280. [PMID: 28350158 DOI: 10.1021/acs.biomac.7b00011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ding Qu
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Lixiang Wang
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Meng Liu
- State
Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of
Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials and Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Shiyang Shen
- State
Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of
Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials and Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Teng Li
- State
Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of
Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials and Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yuping Liu
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Mengmeng Huang
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Congyan Liu
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yan Chen
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ran Mo
- State
Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of
Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials and Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
19
|
Golan M, Feinshtein V, David A. Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. Eur J Pharm Biopharm 2016; 109:103-112. [PMID: 27702685 DOI: 10.1016/j.ejpb.2016.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 01/20/2023]
Abstract
The key for successful gene silencing is to design a safe and efficient siRNA delivery system for the transfer of therapeutic nucleic acids into the target cells. Here, we describe the design of hydrophilic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer displaying multiple copies of octaarginine (R8) and its use in promoting the effective delivery of small interfering RNA (siRNA) molecules intracellularly. Fluorescein-5-isothiocyanate (FITC)-labeled HPMA copolymer-bound R8 (P-R8-FITC) was synthesized with increasing R8 molar ratios (4-9.5mol-%) to define the optimal R8 content that allowed the polymer to serve both as a siRNA-binding domain and as an intracellular transduction moiety mediating improved cellular delivery. A subunit of the influenza virus hemagglutinin (HA2), known for its ability to disrupt endosomal membranes, was further conjugated to P-R8-FITC copolymer to promote endosomal escape. Of the different P-(R8)-FITC conjugates considered, only that polymer containing the highest mol-% of R8 (P-(R8)9.5-FITC) was able to encapsulate siRNA molecules into nano-sized polyion complexes (PICs) presenting positive surface charge, low in vitro cytotoxicity, and high serum stability. P-(R8)9.5-FITC/cy5-siRNA complexes can efficiently deliver siRNA molecules into cells, while naked siRNA or siRNA encapsulated within polymers with lower R8mol-% were unable to transfect the same cells. Conjugation of HA2 fusogenic peptide to P-(R8)-FITC significantly decreased the oncogenic RAC1 mRNA levels in cancer cells. This indicates that P-(R8)-(HA2)-FITC can deliver siRNA into target cells, and that the siRNA can reach the perinuclear region where it interacts with the RNA-induced silencing complex.
Collapse
Affiliation(s)
- Moran Golan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Valeria Feinshtein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
20
|
Abstract
Gene silencing by small interfering RNA (SiRNA) is an attractive therapeutic approach for pathological disorders that targets a specific gene. However, its applications are limited, as naked RNA is rapidly degraded by RNases and is inadequately internalized by the target cells in the body. Several viral and nonviral vectors have been described to improve the delivery of SiRNAs both in cultured cells as well as in vivo. Increasing evidence suggests that cell-penetrating peptides (CPPs) are an efficient, non-cytotoxic tool for intracellular delivery of SiRNA. Recently, a new peptide, PepFect6 (PF6), based system has been described for efficient SiRNA delivery in various cell types. PF6 is an amphipathic stearyl-TP10 peptide carrying a pH titratable trifluoromethylquinoline moiety that facilitate endosomal release. PF6 forms stable non-covalent complexes with SiRNA. Upon internalization, the complexes rapidly escape the endosomal compartment, resulting in robust RNA interference (RNAi) responses. This chapter describes a protocol to use the PF6-nanoparticle technology for SiRNA delivery into organotypic cultures of the inner ear i.e., cochlea. We also highlight different critical points in the peptide/SiRNA complex preparation, transfection and in analyzing the efficacy of PF6-SiRNA associated RNAi response.
Collapse
Affiliation(s)
- Suvarna Dash-Wagh
- Department of Neuroscience, Karolinska Institutet, Retzeus väg 8, Stockholm, 17177, Sweden.
| | - Ülo Langel
- Department of Neurochemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Mats Ulfendahl
- Department of Neuroscience, Karolinska Institutet, Retzeus väg 8, Stockholm, 17177, Sweden
| |
Collapse
|
21
|
Abstract
Poloxamer 188 (P188) is a non-ionic amphiphilic copolymer with hemorheologic, antithrombotic, anti-inflammatory, and cytoprotective properties. It potentially has clinical utility in diverse diseases, such as acute myocardial infarction, acute limb ischemia, shock, acute stroke, heart failure, and sickle cell crisis. P188 is available as an excipient-grade product, manufactured to National Formulary specifications, which we refer to as P188-NF. During synthesis of P188-NF, polymerization of its polyoxyethylene and polyoxypropylene components generates undesirable low molecular weight (LMW) substances, such as truncated polymers and glycols. In early clinical studies, P188-NF yielded unexpected renal dysfunction. Here, we explore the nature of the renal dysfunction associated with P188-NF and use a purified (more homogenous) form of P188-NF (P188-P) to show that removal of LMW substances is associated with substantially less renal dysfunction. In both a remnant-kidney animal model and in clinical studies, P188-P demonstrates a substantially improved renal safety profile.
Collapse
|
22
|
Effective polymer adjuvants for sustained delivery of protein subunit vaccines. Acta Biomater 2015; 14:104-14. [PMID: 25484331 DOI: 10.1016/j.actbio.2014.11.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/03/2014] [Accepted: 11/26/2014] [Indexed: 11/23/2022]
Abstract
We have synthesized thermogelling cationic amphiphilic pentablock copolymers that have the potential to act as injectable vaccine carriers and adjuvants that can simultaneously provide sustained delivery and enhance the immunogenicity of released antigen. While these pentablock copolymers have shown efficacy in DNA delivery in past studies, the ability to deliver both DNA and protein for subunit vaccines using the same polymeric carrier can provide greater flexibility and efficacy. We demonstrate the ability of these pentablock copolymers, and the parent triblock Pluronic copolymers to slowly release structurally intact and antigenically stable protein antigens in vitro, create an antigen depot through long-term injection-site persistence and enhance the in vivo immune response to these antigens. We show release of the model protein antigen ovalbumin in vitro from the thermogelling block copolymers with the primary, secondary and tertiary structures of the released protein unchanged compared to the native protein, and its antigenicity preserved upon release. The block copolymers form a gel at physiological temperatures that serves as an antigenic depot and persists in vivo at the site of injection for over 50days. The pentablock copolymers show a significant fivefold enhancement in the immune response compared to soluble protein alone, even 6weeks after the administration, based on measurement of antibody titers. These results demonstrate the potential of these block copolymers hydrogels to persist for several weeks and sustain the release of antigen with minimal effects on protein stability and antigenicity; and their ability to be used simultaneously as a sustained delivery device as well as a subunit vaccine adjuvant platform.
Collapse
|
23
|
Yang Z, Jiang Z, Cao Z, Zhang C, Gao D, Luo X, Zhang X, Luo H, Jiang Q, Liu J. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency. NANOSCALE 2014; 6:10193-10206. [PMID: 25047580 DOI: 10.1039/c4nr02395a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TKH, Tang T. Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies. Gene 2014; 538:217-27. [DOI: 10.1016/j.gene.2013.12.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/27/2013] [Accepted: 12/11/2013] [Indexed: 12/27/2022]
|
25
|
Adams JR, Goswami M, Pohl NLB, Mallapragada SK. Synthesis and functionalization of virus-mimicking cationic block copolymers with pathogen-associated carbohydrates as potential vaccine adjuvants. RSC Adv 2014. [DOI: 10.1039/c3ra47687a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
26
|
Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release 2013; 172:1020-34. [PMID: 24140748 DOI: 10.1016/j.jconrel.2013.10.012] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 01/20/2023]
Abstract
Nanoparticles (NPs) have been extensively investigated for applications in both experimental and clinical settings to improve delivery efficiency of therapeutic and diagnostic agents. Most recently, novel multifunctional nanoparticles have attracted much attention because of their ability to carry diverse functionalities to achieve effective synergistic therapeutic treatments. Multifunctional NPs have been designed to co-deliver multiple components, target the delivery of drugs by surface functionalization, and realize therapy and diagnosis simultaneously. In this review, various materials of diverse chemistries for fabricating multifunctional NPs with distinctive architectures are discussed and compared. Recent progress involving multifunctional NPs for immune activation, anticancer drug delivery, and synergistic theranostics is the focus of this review. Overall, this comprehensive review demonstrates that multifunctional NPs have distinctive properties that make them highly suitable for targeted therapeutic delivery in these areas.
Collapse
|
27
|
Pafiti KS, Patrickios CS, Abetz C, Abetz V. High-molecular-weight symmetrical multiblock copolymers: Synthesis by RAFT polymerization and characterization. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kyriaki S. Pafiti
- Department of Chemistry; University of Cyprus; P.O. Box 20537, 1678 Nicosia Cyprus
| | - Costas S. Patrickios
- Department of Chemistry; University of Cyprus; P.O. Box 20537, 1678 Nicosia Cyprus
| | - Clarissa Abetz
- Institute of Polymer Research, Helmholtz-Zentrum Geesthacht; Max-Planck-Str. 1 21502 Geesthacht Germany
| | - Volker Abetz
- Institute of Polymer Research, Helmholtz-Zentrum Geesthacht; Max-Planck-Str. 1 21502 Geesthacht Germany
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
28
|
Yan J, Du YZ, Chen FY, You J, Yuan H, Hu FQ. Effect of Proteins with Different Isoelectric Points on the Gene Transfection Efficiency Mediated by Stearic Acid Grafted Chitosan Oligosaccharide Micelles. Mol Pharm 2013; 10:2568-77. [DOI: 10.1021/mp300732d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jingjing Yan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou
310058, People’s Republic of China
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou
310058, People’s Republic of China
| | - Feng-Ying Chen
- Women Hospital, School of Medicine, Zhejiang University, 2 Xueshi Road, Hangzhou 310006,
People’s Republic of China
| | - Jian, You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou
310058, People’s Republic of China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou
310058, People’s Republic of China
| | - Fu-Qiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou
310058, People’s Republic of China
| |
Collapse
|
29
|
Kasputis T, Pannier AK. The role of surface chemistry-induced cell characteristics on nonviral gene delivery to mouse fibroblasts. J Biol Eng 2012; 6:17. [PMID: 22967455 PMCID: PMC3517526 DOI: 10.1186/1754-1611-6-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/06/2012] [Indexed: 01/05/2023] Open
Abstract
Background Gene delivery approaches serve as a platform to modify gene expression of a cell population with applications including functional genomics, tissue engineering, and gene therapy. The delivery of exogenous genetic material via nonviral vectors has proven to be less toxic and to cause less of an immune response in comparison to viral vectors, but with decreased efficiency of gene transfer. Attempts have been made to improve nonviral gene transfer efficiency by modifying physicochemical properties of gene delivery vectors as well as developing new delivery techniques. In order to further improve and understand nonviral gene delivery, our approach focuses on the cell-material interface, since materials are known to modulate cell behavior, potentially rendering cells more responsive to nonviral gene transfer. In this study, self-assembled monolayers of alkanethiols on gold were employed as model biomaterial interfaces with varying surface chemistries. NIH/3T3 mouse fibroblasts were seeded on the modified surfaces and transfected using either lipid- or polymer- based complexing agents. Results Transfection was increased in cells on charged hydrophilic surfaces presenting carboxylic acid terminal functional groups, while cells on uncharged hydrophobic surfaces presenting methyl terminations demonstrated reduced transfection for both complexing agents. Surface–induced cellular characteristics that were hypothesized to affect nonviral gene transfer were subsequently investigated. Cells on charged hydrophilic surfaces presented higher cell densities, more cell spreading, more cells with ellipsoid morphologies, and increased quantities of focal adhesions and cytoskeleton features within cells, in contrast to cell on uncharged hydrophobic surfaces, and these cell behaviors were subsequently correlated to transfection characteristics. Conclusions Extracellular influences on nonviral gene delivery were investigated by evaluating the upregulation and downregulation of transgene expression as a function of the cell behaviors induced by changes in the cells’ microenvronments. This study demonstrates that simple surface modifications can lead to changes in the efficiency of nonviral gene delivery. In addition, statistically significant differences in various surface-induced cell characteristics were statistically correlated to transfection trends in fibroblasts using both lipid and polymer mediated DNA delivery approaches. The correlations between the evaluated complexing agents and cell behaviors (cell density, spreading, shape, cytoskeleton, focal adhesions, and viability) suggest that polymer-mediated transfection is correlated to cell morphological traits while lipid-mediated transfection correlates to proliferative characteristics.
Collapse
Affiliation(s)
- Tadas Kasputis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 LW Chase Hall, Lincoln, NE, 68583-0726, USA.
| | | |
Collapse
|
30
|
Wu Y, Liu X, Wang Y, Guo Z, Feng Y. Synthesis and Aggregation Behaviors of Well-Defined Thermoresponsive Pentablock Terpolymers With Tunable LCST. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Zhang B, Jia F, Fleming MQ, Mallapragada SK. Injectable self-assembled block copolymers for sustained gene and drug co-delivery: An in vitro study. Int J Pharm 2012; 427:88-96. [DOI: 10.1016/j.ijpharm.2011.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 01/02/2023]
|