1
|
Wei L, Qin S, Ye Y, Hu J, Luo D, Li Y, Gao Y, Jiang L, Zhou Q, Xie X, Li N. Chondrogenic potential of manganese-loaded composite scaffold combined with chondrocytes for articular cartilage defect. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:74. [PMID: 36219265 PMCID: PMC9553786 DOI: 10.1007/s10856-022-06695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Cartilage is an alymphatic, avascular and non-innervated tissue. Lack of potential regenerative capacity to reconstruct chondral defect has accelerated investigation and development of new strategy for cartilage repair. We prepared a manganese ion-incorporated natupolymer-based scaffold with chitosan-gelatin by freeze-drying procedure. The scaffold was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, energy dispersive spectroscopy, compressive testing, and analysis of porosity and flexibility. Live/dead assay confirmed the good cytocompatibility of prepared scaffold on rat articular chondrocytes after 10 days and 4 weeks of culture. The manganese-loaded composite scaffold upregulated the expression of chondrogenic-related markers (Sox9, integrin, and Col II) in chondrocytes. Western blot analysis of proteins extracted from chondrocytes grown on scaffolds indicated the signaling pathways of p-Akt and p-ERK1/2 played a key role. Histological analysis following implantation of current composite scaffold loaded with chondrocytes into a rat articular cartilage defect model showed that the scaffolds promoted the formation of collagen II and cartilage repair. These findings suggested the potential of manganese-loaded scaffold to promote new cartilage formation and a promising strategy for articular cartilage engineering application.
Collapse
Affiliation(s)
- Li Wei
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Qin
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulin Ye
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yusi Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhou
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianfei Xie
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Nordberg RC, Otarola GA, Wang D, Hu JC, Athanasiou KA. Navigating regulatory pathways for translation of biologic cartilage repair products. Sci Transl Med 2022; 14:eabp8163. [PMID: 36001677 PMCID: PMC9918326 DOI: 10.1126/scitranslmed.abp8163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Long-term clinical repair of articular cartilage remains elusive despite advances in cartilage tissue engineering. Only one cartilage repair therapy classified as a "cellular and gene therapy product" has obtained Food and Drug Administration (FDA) approval within the past decade although more than 200 large animal cartilage repair studies were published. Here, we identify the challenges impeding translation of strategies and technologies for cell-based cartilage repair, such as the disconnect between university funding and regulatory requirements. Understanding the barriers to translation and developing solutions to address them will be critical for advancing cell therapy products for cartilage repair to clinical use.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Gaston A Otarola
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA 92868, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| |
Collapse
|
3
|
Bernardini G, Chellini F, Frediani B, Spreafico A, Santucci A. Human platelet releasates combined with polyglycolic acid scaffold promote chondrocyte differentiation and phenotypic maintenance. J Biosci 2015; 40:61-9. [PMID: 25740142 DOI: 10.1007/s12038-014-9492-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the present study, we aimed to demonstrate the differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes seeded on a polygtlycolic acid (PGA) 3D scaffold. Gene expression and biochemical analysis were carried out to assess the improved quality of our PGA-based cartilage constructs supplemented with PRPr. We observed that the use of PRPr as cell cultures supplementation to PGA-chondrocyte constructs may promote chondrocyte differentiation, and thus may contribute to maintaining the chondrogenic phenotype longer than conventional supplementation by increasing high levels of important chondrogenic markers (e.g. sox9, aggrecan and type II collagen), without induction of type I collagen. Moreover, our constructs were analysed for the secretion and deposition of important ECM molecules (sGAG, type II collagen, etc.). Our results indicate that PRPr supplementation may synergize with PGA-based scaffolds to stimulate human articular chondrocyte differentiation, maturation and phenotypic maintenance.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Chirurgiche e Neuroscienze, Universita degli Studi di Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
4
|
Yuan X, Zhou M, Gough J, Glidle A, Yin H. A novel culture system for modulating single cell geometry in 3D. Acta Biomater 2015; 24:228-240. [PMID: 26086694 DOI: 10.1016/j.actbio.2015.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/14/2015] [Accepted: 06/09/2015] [Indexed: 01/27/2023]
Abstract
Dedifferentiation of chondrocytes during in vitro expansion remains an unsolved challenge for repairing serious articular cartilage defects. In this study, a novel culture system was developed to modulate single cell geometry in 3D and investigate its effects on the chondrocyte phenotype. The approach uses 2D micropatterns followed by in situ hydrogel formation to constrain single cell shape and spreading. This enables independent control of cell geometry and extracellular matrix. Using collagen I matrix, we demonstrated the formation of a biomimetic collagenous "basket" enveloping individual chondrocytes cells. By quantitatively monitoring the production by single cells of chondrogenic matrix (e.g. collagen II and aggrecan) during 21-day cultures, we found that if the cell's volume decreases, then so does its cell resistance to dedifferentiation (even if the cells remain spherical). Conversely, if the volume of spherical cells remains constant (after an initial decrease), then not only do the cells retain their differentiated status, but previously de-differentiated redifferentiate and regain a chondrocyte phenotype. The approach described here can be readily applied to pluripotent cells, offering a versatile platform in the search for niches toward either self-renewal or targeted differentiation.
Collapse
|
5
|
Krüger M, Krüger JP, Kinne RW, Kaps C, Endres M. Are surface antigens suited to verify the redifferentiation potential and culture purity of human chondrocytes in cell-based implants. Tissue Cell 2015; 47:489-97. [PMID: 26254705 DOI: 10.1016/j.tice.2015.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 11/18/2022]
Abstract
Cell expansion in vitro is a prequisite to obtain a sufficient quantity of cells for cell-based cartilage repair of articular cartilage lesions. During this process verification of redifferentiation potential of highly expanded chondrocytes is required. Furthermore, cellular impurities of chondrocyte cultures have to be excluded. For this purpose, redifferentiation of expanded human chondrocytes in passage 3 or 5 was initiated in bioresorbable polyglycolic acid-fibrin (PGA-fibrin) scaffolds and selected potential markers were analysed during the process of cell expansion and redifferentiation. Chondrocyte expansion was accompanied by a decrease of collagen type II and COMP and an increase of collagen type I expression indicating cell dedifferentiation. Redifferentiation of chondrocytes in PGA-fibrin scaffolds was accompanied by an increase of collagen II/I ratio. Flow cytometric analyses revealed that in contrast to CD44 and CD49e, CD63 and CD166 showed significant changes in the number of positive cells during redifferentiation. CD14 and CD45 are not expressed by chondrocytes and are therefore possible candidates to detect specifically monocytes or haematopoetic cells in chondrocyte cultures. Characterization of surface antigen expression revealed two promising candidates (CD63 and CD166) to describe the process of redifferentiation, while CD14 and CD45 are suitable markers to exclude impurities by monocytes or haematopoetic cells.
Collapse
Affiliation(s)
- M Krüger
- TransTissue Technologies GmbH, Berlin, Germany
| | - J P Krüger
- TransTissue Technologies GmbH, Berlin, Germany; Department of Rheumatology, Laboratory for Tissue Engineering, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - R W Kinne
- Department of Orthopedics, Experimental Rheumatology Unit, Friedrich Schiller University, Jena, Germany
| | - C Kaps
- TransTissue Technologies GmbH, Berlin, Germany
| | - M Endres
- TransTissue Technologies GmbH, Berlin, Germany; Department of Rheumatology, Laboratory for Tissue Engineering, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Krüger JP, Machens I, Lahner M, Endres M, Kaps C. Initial boost release of transforming growth factor-β3 and chondrogenesis by freeze-dried bioactive polymer scaffolds. Ann Biomed Eng 2014; 42:2562-76. [PMID: 25169425 DOI: 10.1007/s10439-014-1099-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/23/2014] [Indexed: 01/06/2023]
Abstract
In cartilage regeneration, bio-activated implants are used in stem and progenitor cell-based microfracture cartilage repair procedures. Our aim was to analyze the chondrogenic potential of freeze-dried resorbable polymer-based polyglycolic acid (PGA) scaffolds bio-activated with transforming growth factor-β3 (TGFB3) on human subchondral mesenchymal progenitor cells known from microfracture. Progenitor cells derived from femur heads were cultured in the presence of freeze-dried TGFB3 in high-density pellet culture and in freeze-dried TGFB3-PGA scaffolds for chondrogenic differentiation. Progenitor cell cultures in PGA scaffolds as well as pellet cultures with and without continuous application of TGFB3 served as controls. Release studies showed that freeze-dried TGFB3-PGA scaffolds facilitate a rapid, initial boost-like release of 71.5% of TGFB3 in the first 10 h. Gene expression analysis and histology showed induction of typical chondrogenic markers like type II collagen and formation of cartilaginous tissue in TGFB3-PGA scaffolds seeded with subchondral progenitor cells and in pellet cultures stimulated with freeze-dried TGFB3. Chondrogenic differentiation in freeze-dried TGFB3-PGA scaffolds was comparable to cultures receiving TGFB3 continuously, while non-stimulated controls did not show chondrogenesis during prolonged culture for 14 days. These results suggest that bio-activated, freeze-dried TGFB3-PGA scaffolds have chondrogenic potential and are a promising tool for stem cell-mediated cartilage regeneration.
Collapse
|
7
|
Kreuz PC, Gentili C, Samans B, Martinelli D, Krüger JP, Mittelmeier W, Endres M, Cancedda R, Kaps C. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage. Osteoarthritis Cartilage 2013; 21:1997-2005. [PMID: 24096178 DOI: 10.1016/j.joca.2013.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/12/2013] [Accepted: 09/18/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Studies about cartilage repair in the hip and infant chondrocytes are rare. The aim of our study was to evaluate the use of infant articular hip chondrocytes for tissue engineering of scaffold-assisted cartilage grafts. METHOD Hip cartilage was obtained from five human donors (age 1-10 years). Expanded chondrocytes were cultured in polyglycolic acid (PGA)-fibrin scaffolds. De- and re-differentiation of chondrocytes were assessed by histological staining and gene expression analysis of typical chondrocytic marker genes. In vivo, cartilage matrix formation was assessed by histology after subcutaneous transplantation of chondrocyte-seeded PGA-fibrin scaffolds in immunocompromised mice. RESULTS The donor tissue was heterogenous showing differentiated articular cartilage and non-differentiated tissue and considerable expression of type I and II collagens. Gene expression analysis showed repression of typical chondrocyte and/or mesenchymal marker genes during cell expansion, while markers were re-induced when expanded cells were cultured in PGA-fibrin scaffolds. Cartilage formation after subcutaneous transplantation of chondrocyte loaded PGA-fibrin scaffolds in nude mice was variable, with grafts showing resorption and host cell infiltration or formation of hyaline cartilage rich in type II collagen. Addition of human platelet rich plasma (PRP) to cartilage grafts resulted robustly in formation of hyaline-like cartilage that showed type II collagen and regions with type X collagen. CONCLUSION These results suggest that culture of expanded and/or de-differentiated infant hip cartilage cells in PGA-fibrin scaffolds initiates chondrocyte re-differentiation. The heterogenous donor tissue containing immature chondrocytes bears the risk of cartilage repair failure in vivo, which may be possibly overcome by the addition of PRP.
Collapse
Affiliation(s)
- P C Kreuz
- Department of Orthopaedic Surgery, University Medical Center Rostock, Doberanerstrasse 142, 18057 Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Horch RE, Kneser U, Polykandriotis E, Schmidt VJ, Sun J, Arkudas A. Tissue engineering and regenerative medicine -where do we stand? J Cell Mol Med 2012; 16:1157-65. [PMID: 22436120 PMCID: PMC3823070 DOI: 10.1111/j.1582-4934.2012.01564.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tissue Engineering (TE) in the context of Regenerative Medicine (RM) has been hailed for many years as one of the most important topics in medicine in the twenty-first century. While the first clinically relevant TE efforts were mainly concerned with the generation of bioengineered skin substitutes, subsequently TE applications have been continuously extended to a wide variety of tissues and organs. The advent of either embryonic or mesenchymal adult stem-cell technology has fostered many of the efforts to combine this promising tool with TE approaches and has merged the field into the term Regenerative Medicine. As a typical example in translational medicine, the discovery of a new type of cells called Telocytes that have been described in many organs and have been detected by electron microscopy opens another gate to RM. Besides cell-therapy strategies, the application of gene therapy combined with TE has been investigated to generate tissues and organs. The vascularization of constructs plays a crucial role besides the matrix and cell substitutes. Therefore, novel in vivo models of vascularization have evolved allowing axial vascularization with subsequent transplantation of constructs. This article is intended to give an overview over some of the most recent developments and possible applications in RM through the perspective of TE achievements and cellular research. The synthesis of TE with innovative methods of molecular biology and stem-cell technology appears to be very promising.
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery And Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|