1
|
Gu C, Chen H, Zhao Y, Xi H, Tan X, Xue P, Sun G, Jiang X, Du B, Liu X. Ti 3C 2T x@PLGA/Icaritin microspheres-modified PLGA/ β-TCP scaffolds modulate Icaritin release to enhance bone regeneration through near-infrared response. Biomed Mater 2024; 19:055038. [PMID: 39121886 DOI: 10.1088/1748-605x/ad6dc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Porous poly (lactic-co-glycolic acid)/β-tricalcium phosphate/Icaritin (PLGA/β-TCP/ICT, PTI) scaffold is a tissue engineering scaffold based on PLGA/β-TCP (PT) containing Icaritin, the main active ingredient of the Chinese medicine Epimedium. Due to its excellent mechanical properties and osteogenic effect, PTI scaffold has the potential to promote bone defect repair. However, the release of ICT from the scaffolds is difficult to control. In this study, we constructed Ti3C2Tx@PLGA/ICT microspheres (TIM) and evaluated their characterization as well as ICT release under near-infrared (NIR) irradiation. We utilized TIM to modify the PT scaffold and performed biological experiments. First, we cultured rat bone marrow mesenchymal stem cells on the scaffold to assess biocompatibility and osteogenic potential under on-demand NIR irradiation. Subsequently, to evaluate the osteogenic properties of TIM-modified scaffoldin vivo, the scaffold was implanted into a femoral condyle defect model. TIM have excellent drug-loading capacity and encapsulation efficiency for ICT, and the incorporation of Ti3C2Txendows TIM with photothermal conversion capability. Under 0.90 W cm-2NIR irradiation, the temperature of TIM maintained at 42.0 ± 0.5 °C and the release of ICT was accelerated. Furthermore, while retaining its original properties, the TIM-modified scaffold was biocompatible and could promote cell proliferation, osteogenic differentiation, and biomineralizationin vitro, as well as the osteogenesis and osseointegrationin vivo, and its effect was further enhanced through the modulation of ICT release under NIR irradiation. In summary, TIM-modified scaffold has the potential to be applied in bone defects repairing.
Collapse
Affiliation(s)
- Changyuan Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Hao Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Yiqiao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 Jiangsu, People's Republic of China
| | - Hongzhong Xi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Xiaoxue Tan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 Jiangsu, People's Republic of China
| | - Peng Xue
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Guangquan Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Xiaohong Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 Jiangsu, People's Republic of China
| | - Bin Du
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Xin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Xing Y, Zhong X, Chen S, Wu S, Chen K, Li X, Su M, Liu X, Zhong J, Chen Z, Pan H, Chen Z, Liu Q. Optimized osteogenesis of porcine bone-derived xenograft through surface coating of magnesium-doped nanohydroxyapatite. Biomed Mater 2023; 18:055025. [PMID: 37604162 DOI: 10.1088/1748-605x/acf25e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
As one of the key factors influencing the outcome of guided bone regeneration, the currently used xenografts possess insufficient capability in osteogenesis. With the aim of improving the osteogenic performance of xenografts, porcine bone-derived hydroxyapatite (PHA) was prepared and subsequently coated by magnesium-doped nano hydroxyapatite (nMgHA, 10%, 20%, and 30% of Mg/Ca + Mg) through a straightforward and cost-efficient approach. The physiochemical and biological properties of nMgHA/PHAs were examinedin vitroandin vivo. The inherent three-dimensional (3D) porous framework with the average pore size of 300 μm was well preserved in nMgHA/PHAs. Meanwhile, excess magnesium released from the so-called 'surface pool' of PHA was verified. In contrast, slower release of magnesium at lower concentrations was detected for nMgHA/PHAs. Significantly more newly-formed bone and microvessels were observed in 20%nMgHA/PHA than the other specimens. With the limitations of the present study, it could be concluded that PHA coated by 20%nMgHA may have the optimized osteogenic performance due to the elimination of the excess magnesium from the 'surface pool', the preservation of the inherent 3D porous framework with the favorable pore size, and the release of magnesium at an appropriate concentration that possessed osteoimmunomodulatory effects on macrophages.
Collapse
Affiliation(s)
- Yihan Xing
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Xinyi Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Shoucheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Shiyu Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Kaidi Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Xiyan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Mengxi Su
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Xingchen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Juan Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, People's Republic of China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Quan Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| |
Collapse
|
3
|
Sun T, Wang J, Huang H, Liu X, Zhang J, Zhang W, Wang H, Li Z. Low-temperature deposition manufacturing technology: a novel 3D printing method for bone scaffolds. Front Bioeng Biotechnol 2023; 11:1222102. [PMID: 37622000 PMCID: PMC10445654 DOI: 10.3389/fbioe.2023.1222102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The application of three-dimensional printing technology in the medical field has great potential for bone defect repair, especially personalized and biological repair. As a green manufacturing process that does not involve liquefication through heating, low-temperature deposition manufacturing (LDM) is a promising type of rapid prototyping manufacturing and has been widely used to fabricate scaffolds in bone tissue engineering. The scaffolds fabricated by LDM have a multi-scale controllable pore structure and interconnected micropores, which are beneficial for the repair of bone defects. At the same time, different types of cells or bioactive factor can be integrated into three-dimensional structural scaffolds through LDM. Herein, we introduced LDM technology and summarize its applications in bone tissue engineering. We divide the scaffolds into four categories according to the skeleton materials and discuss the performance and limitations of the scaffolds. The ideas presented in this review have prospects in the development and application of LDM scaffolds.
Collapse
Affiliation(s)
- Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| |
Collapse
|
4
|
Wang W, Zhou X, Yin Z, Yu X. Fabrication and Evaluation of Porous dECM/PCL Scaffolds for Bone Tissue Engineering. J Funct Biomater 2023; 14:343. [PMID: 37504838 PMCID: PMC10381742 DOI: 10.3390/jfb14070343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Porous scaffolds play a crucial role in bone tissue regeneration and have been extensively investigated in this field. By incorporating a decellularized extracellular matrix (dECM) onto tissue-engineered scaffolds, bone regeneration can be enhanced by replicating the molecular complexity of native bone tissue. However, the exploration of porous scaffolds with anisotropic channels and the effects of dECM on these scaffolds for bone cells and mineral deposition remains limited. To address this gap, we developed a porous polycaprolactone (PCL) scaffold with anisotropic channels and functionalized it with dECM to capture the critical physicochemical properties of native bone tissue, promoting osteoblast cells' proliferation, differentiation, biomineralization, and osteogenesis. Our results demonstrated the successful fabrication of porous dECM/PCL scaffolds with multiple channel sizes for bone regeneration. The incorporation of 100 μm grid-based channels facilitated improved nutrient and oxygen infiltration, while the porous structure created using 30 mg/mL of sodium chloride significantly enhanced the cells' attachment and proliferation. Notably, the mechanical properties of the scaffolds closely resembled those of human bone tissue. Furthermore, compared with pure PCL scaffolds, the presence of dECM on the scaffolds substantially enhanced the proliferation and differentiation of bone marrow stem cells. Moreover, dECM significantly increased mineral deposition on the scaffold. Overall, the dECM/PCL scaffold holds significant potential as an alternative bone graft substitute for repairing bone injuries.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Xiaqing Zhou
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Zhuozhuo Yin
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Xiaojun Yu
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
5
|
Huong NT, Son NT. Icaritin: A phytomolecule with enormous pharmacological values. PHYTOCHEMISTRY 2023:113772. [PMID: 37356700 DOI: 10.1016/j.phytochem.2023.113772] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Pharmacological studies on flavonoids have always drawn much interest for many years. Icaritin (ICT), a representative flavone containing an 8-prenyl group, is a principal compound detected in medicinal plants of the genus Epimedum, the family Berberidaceae. Experimental results in the phytochemistry and pharmacology of this molecule are abundant now, but a deep overview has not been carried out. The goal of this review is to provide an insight into the natural observation, biosynthesis, biotransformation, synthesis, pharmacology, and pharmacokinetics of prenyl flavone ICT. The relevant data on ICT was collected from bibliographic sources, like Google Scholar, Web of Science, Sci-Finder, and various published journals. "Icaritin" alone or in combination is the main keyword to seek for references, and references have been updated till now. ICT is among the characteristic phytomolecules of Epimedum plants. Bacteria monitored its biosynthesis and biotransformation, while this agent was rapidly synthesized from phloroglucinol by microwave-assistance Claisen rearrangement. ICT is a potential agent in numerous in vitro and in vivo pharmacological records, which demonstrated its role in cancer treatments via apoptotic-related mechanisms. It also brings in various health benefits since it reduced harmful effects on the liver, lung, heart, bone, blood, and skin, and improved immune responses. Pharmacokinetic outcomes indicated that its metabolic pathway involved hydration, hydroxylation, dehydrogenation, glycosylation, and glucuronidation. Molecule mechanisms of action at a cellular level are predominant, but clinical studies are expected to get more. Structure-activity relationship records seem insufficient, and the studies on nano-combined approaches to improve its soluble property in living bodied medium are needed.
Collapse
Affiliation(s)
- Nguyen Thi Huong
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
6
|
Wong SK, Yee MMF, Chin KY, Ima-Nirwana S. A Review of the Application of Natural and Synthetic Scaffolds in Bone Regeneration. J Funct Biomater 2023; 14:jfb14050286. [PMID: 37233395 DOI: 10.3390/jfb14050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
The management of bone defects is complicated by the presence of clinical conditions, such as critical-sized defects created by high-energy trauma, tumour resection, infection, and skeletal abnormalities, whereby the bone regeneration capacity is compromised. A bone scaffold is a three-dimensional structure matrix serving as a template to be implanted into the defects to promote vascularisation, growth factor recruitment, osteogenesis, osteoconduction, and mechanical support. This review aims to summarise the types and applications of natural and synthetic scaffolds currently adopted in bone tissue engineering. The merits and caveats of natural and synthetic scaffolds will be discussed. A naturally derived bone scaffold offers a microenvironment closer to in vivo conditions after decellularisation and demineralisation, exhibiting excellent bioactivity, biocompatibility, and osteogenic properties. Meanwhile, an artificially produced bone scaffold allows for scalability and consistency with minimal risk of disease transmission. The combination of different materials to form scaffolds, along with bone cell seeding, biochemical cue incorporation, and bioactive molecule functionalisation, can provide additional or improved scaffold properties, allowing for a faster bone repair rate in bone injuries. This is the direction for future research in the field of bone growth and repair.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Michelle Min Fang Yee
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Du J, Ding H, Fu S, Li D, Yu B. Bismuth-coated 80S15C bioactive glass scaffolds for photothermal antitumor therapy and bone regeneration. Front Bioeng Biotechnol 2023; 10:1098923. [PMID: 36760751 PMCID: PMC9907359 DOI: 10.3389/fbioe.2022.1098923] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Malignant bone tumors usually occur in young people and have a high mortality and disability rate. Surgical excision commonly results in residual bone tumor cells and large bone defects, and conventional radiotherapy and chemotherapy may cause significant side effects. In this study, a bifunctional Bi-BG scaffold for near-infrared (NIR)-activated photothermal ablation of bone tumors and enhanced bone defect regeneration is fabricated. Methods: In this study, we prepared the Bi-BG scaffold by in-situ generation of NIR-absorbing Bi coating on the surface of a 3D-printing bioactive glass (BG) scaffold. SEM was used to analyze the morphological changes of the scaffolds. In addition, the temperature variation was imaged and recorded under 808 nm NIR laser irradiation in real time by an infrared thermal imaging system. Then, the proliferation of rat bone mesenchymal stem cells (rBMSCs) and Saos-2 on the scaffolds was examined by CCK-8 assay. ALP activity assay and RT-PCR were performed to test the osteogenic capacity. For in vivo experiments, the nude rat tumor-forming and rat calvarial defect models were established. At 8 weeks after surgery, micro-CT, and histological staining were performed on harvested calvarial samples. Results: The Bi-BG scaffolds have outstanding photothermal performance under the irradiation of 808 nm NIR at different power densities, while no photothermal effects are observed for pure BG scaffolds. The photothermal temperature of the Bi-BG scaffold can be effectively regulated in the range 26-100°C by controlling the NIR power density and irradiation duration. Bi-BG scaffolds not only significantly induces more than 95% of osteosarcoma cell death (Saos-2) in vitro, but also effectively inhibit the growth of bone tumors in vivo. Furthermore, they exhibit excellent capability in promoting osteogenic differentiation of rBMSCs and finally enhance new bone formation in the calvarial defects of rats. Conclusion: The Bi-BG scaffolds have bifunctional properties of photothermal antitumor therapy and bone regeneration, which offers an effective method to ablate malignant bone tumors based on photothermal effect.
Collapse
Affiliation(s)
- Jianhang Du
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Huifeng Ding
- Department of Orthopedics, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shengyang Fu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China,*Correspondence: Dejian Li, ; Bin Yu,
| | - Bin Yu
- Department of Orthopedics, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Dejian Li, ; Bin Yu,
| |
Collapse
|
8
|
Wang H, Li X, Lai S, Cao Q, Liu Y, Li J, Zhu X, Fu W, Zhang X. Construction of Vascularized Tissue Engineered Bone with nHA-Coated BCP Bioceramics Loaded with Peripheral Blood-Derived MSC and EPC to Repair Large Segmental Femoral Bone Defect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:249-264. [PMID: 36548196 DOI: 10.1021/acsami.2c15000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The regenerative repair of segmental bone defect (SBD) is an urgent problem in the field of orthopedics. Rapid induction of angiogenesis and osteoinductivity after implantation of scaffold is critical. In this study, a unique tissue engineering strategy with mixture of peripheral blood-derived mesenchymal stem cells (PBMSC) and endothelial progenitor cells (PBEPC) was applied in a 3D-printed biphasic calcium phosphate (BCP) scaffold with highly bioactive nano hydroxyapatite (nHA) coating (nHA/BCP) to construct a novel vascularized tissue engineered bone (VTEB) for rabbit femoral SBD repair. The 2D coculture of PBMSC and PBEPC showed that they could promote the osteogenic or angiogenic differentiation of the cells from each other, especially in the group of PBEPC/PBMSC = 75:25. Besides, the 3D coculture results exhibited that the nHA coating could further promote PBEPC/PBMSC adhesion, proliferation, and osteogenic and angiogenic differentiation on the BCP scaffold. In vivo experiments showed that among the four groups (BCP, BCP-PBEPC/PBMSC, nHA/BCP, and nHA/BCP-PBEPC/PBMSC), the nHA/BCP-PBEPC/PBMSC group induced the best formation of blood vessels and new bone and, thus, the good repair of SBD. It revealed the synergistic effect of nHA and PBEPC/PBMSC on the angiogenesis and osteogenesis of the BCP scaffold. Therefore, the construction of VTEB in this study could provide a possibility for the regenerative repair of SBD.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Sike Lai
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunyi Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jian Li
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Weili Fu
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Li S, Cui Y, Liu H, Tian Y, Wang G, Fan Y, Wang J, Wu D, Wang Y. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B 2022; 10:9369-9388. [PMID: 36378123 DOI: 10.1039/d2tb01684b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of bone defects is an important problem in clinical practice. The rapid development of bone tissue engineering (BTE) may provide a new method for bone defect treatment. Metal ions have been widely studied in BTE and demonstrated a significant effect in promoting bone tissue growth. Different metal ions can be used to treat bone defects according to specific conditions, including promoting osteogenic activity, inhibiting osteoclast activity, promoting vascular growth, and exerting certain antibacterial effects. Multiple studies have confirmed that metal ions-modified composite scaffolds can effectively promote bone defect healing. By studying current extensive research on metal ions in the treatment of bone defects, this paper reviews the mechanism of metal ions in promoting bone tissue growth, analyzes the loading mode of metal ions, and lists some specific applications of metal ions in different types of bone defects. Finally, this paper summarizes the advantages and disadvantages of metal ions and analyzes the future research trend of metal ions in BTE. This article can provide some new strategies and methods for future research and applications of metal ions in the treatment of bone defects.
Collapse
Affiliation(s)
- Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yanbing Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
10
|
Zhang X, Wang X, Lee YW, Feng L, Wang B, Pan Q, Meng X, Cao H, Li L, Wang H, Bai S, Kong L, Chow DHK, Qin L, Cui L, Lin S, Li G. Bioactive Scaffold Fabricated by 3D Printing for Enhancing Osteoporotic Bone Regeneration. Bioengineering (Basel) 2022; 9:525. [PMID: 36290493 PMCID: PMC9598556 DOI: 10.3390/bioengineering9100525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 10/27/2023] Open
Abstract
We develop a poly (lactic-co-glycolic acid)/β-calcium phosphate (PLGA/TCP)-based scaffold through a three-dimensional (3D) printing technique incorporating icaritin (ICT), a unique phytomolecule, and secretome derived from human fetal mesenchymal stem cells (HFS), to provide mechanical support and biological cues for stimulating bone defect healing. With the sustained release of ICT and HFS from the composite scaffold, the cell-free scaffold efficiently facilitates the migration of MSCs and promotes bone regeneration at the femoral defect site in the ovariectomy (OVX)-induced osteoporotic rat model. Furthermore, mechanism study results indicate that the combination of ICT and HFS additively activates the Integrin-FAK (focal adhesion kinase)-ERK1/2 (extracellular signal-regulated kinase 1/2)-Runx2 (Runt-related transcription factor 2) axis, which could be linked to the beneficial recruitment of MSCs to the implant and subsequent osteogenesis enhancement. Collectively, the PLGA/TCP/ICT/HFS (P/T/I/S) bioactive scaffold is a promising biomaterial for repairing osteoporotic bone defects, which may have immense implications for their translation to clinical practice.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xinluan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuk-wai Lee
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Feng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Bin Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Qi Pan
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiangbo Meng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huijuan Cao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linlong Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Haixing Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Shanshan Bai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Lingchi Kong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Liao Cui
- School of Pharmacy and Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
11
|
Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Ou-Yang ZY, Dusenge MA, Guo Y. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med 2022; 17:86. [PMID: 35858928 PMCID: PMC9297608 DOI: 10.1186/s13020-022-00640-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising method for the repair of difficult-to-heal bone tissue damage by providing three-dimensional structures for cell attachment, proliferation, and differentiation. Traditional Chinese medicine (TCM) has been introduced as an effective global medical program by the World Health Organization, comprising intricate components, and promoting bone regeneration by regulating multiple mechanisms and targets. This study outlines the potential therapeutic capabilities of TCM combined with BTE in bone regeneration. The effective active components promoting bone regeneration can be generally divided into flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. The chemical structures of the monomers, their sources, efficacy, and mechanisms are described. We summarize the use of compounds and medicinal parts of TCM to stimulate bone regeneration. Finally, the limitations and prospects of applying TCM in BTE are introduced, providing a direction for further development of novel and potential TCM.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Yang Y, Li M, Zhou B, Jiang X, Zhang D, Luo H, Lei S. Novel Therapeutic Strategy for Bacteria‐Contaminated Bone Defects: Reconstruction with Multi‐Biofunctional GO/Cu‐Incorporated 3D Scaffolds. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Yang
- Department of Plastic Surgery Xiangya Hospital Central South University Changsha 410008 P.R. China
- State Key Laboratory of Powder Metallurgy Central South University Changsha 410083 P.R. China
| | - Min Li
- Department of Oncology Changsha Central Hospital University of South China Changsha 410006 P.R. China
| | - Bixia Zhou
- Department of Plastic Surgery Xiangya Hospital Central South University Changsha 410008 P.R. China
| | - Xulei Jiang
- Department of Plastic Surgery Xiangya Hospital Central South University Changsha 410008 P.R. China
| | - Dou Zhang
- Department of Oncology Changsha Central Hospital University of South China Changsha 410006 P.R. China
| | - Hang Luo
- Department of Oncology Changsha Central Hospital University of South China Changsha 410006 P.R. China
| | - Shaorong Lei
- Department of Plastic Surgery Xiangya Hospital Central South University Changsha 410008 P.R. China
| |
Collapse
|
13
|
Sun F, Sun X, Wang H, Li C, Zhao Y, Tian J, Lin Y. Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23105831. [PMID: 35628638 PMCID: PMC9143187 DOI: 10.3390/ijms23105831] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Polylactic acid–glycolic acid (PLGA) has been widely used in bone tissue engineering due to its favorable biocompatibility and adjustable biodegradation. 3D printing technology can prepare scaffolds with rich structure and function, and is one of the best methods to obtain scaffolds for bone tissue repair. This review systematically summarizes the research progress of 3D-printed, PLGA-based scaffolds. The properties of the modified components of scaffolds are introduced in detail. The influence of structure and printing method change in printing process is analyzed. The advantages and disadvantages of their applications are illustrated by several examples. Finally, we briefly discuss the limitations and future development direction of current 3D-printed, PLGA-based materials for bone tissue repair.
Collapse
Affiliation(s)
- Fengbo Sun
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (X.S.); (H.W.)
- Correspondence: (F.S.); (Y.L.); Tel.: +86-010-62773741 (Y.L.)
| | - Xiaodan Sun
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (X.S.); (H.W.)
| | - Hetong Wang
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (X.S.); (H.W.)
| | - Chunxu Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (C.L.); (Y.Z.); (J.T.)
| | - Yu Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (C.L.); (Y.Z.); (J.T.)
| | - Jingjing Tian
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (C.L.); (Y.Z.); (J.T.)
| | - Yuanhua Lin
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (X.S.); (H.W.)
- Correspondence: (F.S.); (Y.L.); Tel.: +86-010-62773741 (Y.L.)
| |
Collapse
|
14
|
Gao L, Zhang SQ. Antiosteoporosis Effects, Pharmacokinetics, and Drug Delivery Systems of Icaritin: Advances and Prospects. Pharmaceuticals (Basel) 2022; 15:397. [PMID: 35455393 PMCID: PMC9032325 DOI: 10.3390/ph15040397] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic skeletal disorder affecting over 200 million people worldwide and contributes dramatically to global healthcare costs. Available anti-osteoporotic drug treatments including hormone replacement therapy, anabolic agents, and bisphosphonates often cause adverse events which limit their long-term use. Therefore, the application of natural products has been proposed as an alternative therapy strategy. Icaritin (ICT) is not only an enzyme-hydrolyzed product of icariin but also an intestinal metabolite of eight major flavonoids of the traditional Chinese medicinal plant Epimedium with extensive pharmacological activities, such as strengthening the kidney and reinforcing the bone. ICT displays several therapeutic effects, including osteoporosis prevention, neuroprotection, antitumor, cardiovascular protection, anti-inflammation, and immune-protective effect. ICT inhibits bone resorption activity of osteoclasts and stimulates osteogenic differentiation and maturation of bone marrow stromal progenitor cells and osteoblasts. As for the mechanisms of effect, ICT regulates relative activities of two transcription factors Runx2 and PPARγ, determines the differentiation of MSCs into osteoblasts, increases mRNA expression of OPG, and inhibits mRNA expression of RANKL. Poor water solubility, high lipophilicity, and unfavorable pharmacokinetic properties of ICT restrict its anti-osteoporotic effects, and novel drug delivery systems are explored to overcome intrinsic limitations of ICT. The paper focuses on osteogenic effects and mechanisms, pharmacokinetics and delivery systems of ICT, and highlights bone-targeting strategies to concentrate ICT on the ideal specific site of bone. ICT is a promising potential novel therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Lifang Gao
- School of Public Health, Capital Medical University, 10 Youanmenwai Xitiao, Beijing 100069, China;
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing 100050, China
| |
Collapse
|
15
|
Cao SS, Li SY, Geng YM, Kapat K, Liu SB, Perera FH, Li Q, Terheyden H, Wu G, Che YJ, Miranda P, Zhou M. Prefabricated 3D-Printed Tissue-Engineered Bone for Mandibular Reconstruction: A Preclinical Translational Study in Primate. ACS Biomater Sci Eng 2021; 7:5727-5738. [PMID: 34808042 PMCID: PMC8672350 DOI: 10.1021/acsbiomaterials.1c00509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
advent of three dimensionally (3D) printed customized bone
grafts using different biomaterials has enabled repairs of complex
bone defects in various in vivo models. However, studies related to
their clinical translations are truly limited. Herein, 3D printed
poly(lactic-co-glycolic acid)/β-tricalcium
phosphate (PLGA/TCP) and TCP scaffolds with or without recombinant
bone morphogenetic protein −2 (rhBMP-2) coating were utilized
to repair primate’s large-volume mandibular defects and compared
efficacy of prefabricated tissue-engineered bone (PTEB) over direct
implantation (without prefabrication). 18F-FDG PET/CT was
explored for real-time monitoring of bone regeneration and vascularization.
After 3-month’s prefabrication, the original 3D-architecture
of the PLGA/TCP-BMP scaffold was found to be completely lost, while
it was properly maintained in TCP-BMP scaffolds. Besides, there was
a remarkable decrease in the PLGA/TCP-BMP scaffold density and increase
in TCP-BMP scaffolds density during ectopic (within latissimus dorsi
muscle) and orthotopic (within mandibular defect) implantation, indicating
regular bone formation with TCP-BMP scaffolds. Notably, PTEB based
on TCP-BMP scaffold was successfully fabricated with pronounced effects
on bone regeneration and vascularization based on radiographic, 18F-FDG PET/CT, and histological evaluation, suggesting a promising
approach toward clinical translation.
Collapse
Affiliation(s)
- Shuai-Shuai Cao
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shu-Yi Li
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China.,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, de Boelelaan, Vrije Universiteit Amsterdam 1117, Amsterdam, The Netherlands
| | - Yuan-Ming Geng
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kausik Kapat
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shang-Bin Liu
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Fidel Hugo Perera
- Department of Mechanical, Energy and Materials Engineering, University of Extremadura, Industrial Engineering School, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Qian Li
- Hangzhou Jiuyuan Gene Engineering Co., Ltd., Hangzhou 3100018, China
| | - Hendrik Terheyden
- Department of Oral and Maxillofacial Surgery, Red Cross Hospital, Kassel 34117, Germany
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam 1117, The Netherlands
| | - Yue-Juan Che
- Department of Anesthesia, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Pedro Miranda
- Department of Mechanical, Energy and Materials Engineering, University of Extremadura, Industrial Engineering School, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Miao Zhou
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
16
|
Li J, Wang C, Gao G, Yin X, Pu X, Shi B, Liu Y, Huang Z, Wang J, Li J, Yin G. MBG/ PGA-PCL composite scaffolds provide highly tunable degradation and osteogenic features. Bioact Mater 2021; 15:53-67. [PMID: 35386352 PMCID: PMC8941175 DOI: 10.1016/j.bioactmat.2021.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/02/2022] Open
|
17
|
Mi S, Hu X, Lin Z, Huang T, Yang H, Lu J, Li Q, Xing L, He J, Xiong C. Shape memory PLLA-TMC/CSH-dPA microsphere scaffolds with mechanical and bioactive enhancement for bone tissue engineering. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Jin S, Xia X, Huang J, Yuan C, Zuo Y, Li Y, Li J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021; 127:56-79. [PMID: 33831569 DOI: 10.1016/j.actbio.2021.03.067] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Bone regeneration is an interdisciplinary complex lesson, including but not limited to materials science, biomechanics, immunology, and biology. Having witnessed impressive progress in the past decades in the development of bone substitutes; however, it must be said that the most suitable biomaterial for bone regeneration remains an area of intense debate. Since its discovery, poly (lactic-co-glycolic acid) (PLGA) has been widely used in bone tissue engineering due to its good biocompatibility and adjustable biodegradability. This review systematically covers the past and the most recent advances in developing PLGA-based bone regeneration materials. Taking the different application forms of PLGA-based materials as the starting point, we describe each form's specific application and its corresponding advantages and disadvantages with many examples. We focus on the progress of electrospun nanofibrous scaffolds, three-dimensional (3D) printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds, and stents prepared by other traditional and emerging methods. Finally, we briefly discuss the current limitations and future directions of PLGA-based bone repair materials. STATEMENT OF SIGNIFICANCE: As a key synthetic biopolymer in bone tissue engineering application, the progress of PLGA-based bone substitute is impressive. In this review, we summarized the past and the most recent advances in the development of PLGA-based bone regeneration materials. According to the typical application forms and corresponding crafts of PLGA-based substitutes, we described the development of electrospinning nanofibrous scaffolds, 3D printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds and scaffolds fabricated by other manufacturing process. Finally, we briefly discussed the current limitations and proposed the newly strategy for the design and fabrication of PLGA-based bone materials or devices.
Collapse
|
19
|
Zheng C, Attarilar S, Li K, Wang C, Liu J, Wang L, Yang J, Tang Y. 3D-printed HA15-loaded β-Tricalcium Phosphate/Poly (Lactic-co-glycolic acid) Bone Tissue Scaffold Promotes Bone Regeneration in Rabbit Radial Defects. Int J Bioprint 2021; 7:317. [PMID: 33585714 PMCID: PMC7875052 DOI: 10.18063/ijb.v7i1.317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
In this study, a β-tricalcium phosphate (β-TCP)/poly (lactic-co-glycolic acid) (PLGA) bone tissue scaffold was loaded with osteogenesis-promoting drug HA15 and constructed by three-dimensional (3D) printing technology. This drug delivery system with favorable biomechanical properties, bone conduction function, and local release of osteogenic drugs could provide the basis for the treatment of bone defects. The biomechanical properties of the scaffold were investigated by compressive testing, showing comparable biomechanical properties with cancellous bone tissue. Furthermore, the microstructure, pore morphology, and condition were studied. Moreover, the drug release concentration, the effect of anti-tuberculosis drugs in vitro and in rabbit radial defects, and the ability of the scaffold to repair the defects were studied. The results show that the scaffold loaded with HA15 can promote cell differentiation into osteoblasts in vitro, targeting HSPA5. The micro-computed tomography scans showed that after 12 weeks of scaffold implantation, the defect of the rabbit radius was repaired and the peripheral blood vessels were regenerated. Thus, HA15 can target HSPA5 to inhibit endoplasmic reticulum stress which finally leads to promotion of osteogenesis, bone regeneration, and angiogenesis in the rabbit bone defect model. Overall, the 3D-printed β-TCP/PLGA-loaded HA15 bone tissue scaffold can be used as a substitute material for the treatment of bone defects because of its unique biomechanical properties and bone conductivity.
Collapse
Affiliation(s)
- Chuanchuan Zheng
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junlin Yang
- Department of Pediatric Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yujin Tang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| |
Collapse
|
20
|
Laranga R, Duchi S, Ibrahim T, Guerrieri AN, Donati DM, Lucarelli E. Trends in Bone Metastasis Modeling. Cancers (Basel) 2020; 12:E2315. [PMID: 32824479 PMCID: PMC7464021 DOI: 10.3390/cancers12082315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Bone is one of the most common sites for cancer metastasis. Bone tissue is composed by different kinds of cells that coexist in a coordinated balance. Due to the complexity of bone, it is impossible to capture the intricate interactions between cells under either physiological or pathological conditions. Hence, a variety of in vivo and in vitro approaches have been developed. Various models of tumor-bone diseases are routinely used to provide valuable information on the relationship between metastatic cancer cells and the bone tissue. Ideally, when modeling the metastasis of human cancers to bone, models would replicate the intra-tumor heterogeneity, as well as the genetic and phenotypic changes that occur with human cancers; such models would be scalable and reproducible to allow high-throughput investigation. Despite the continuous progress, there is still a lack of solid, amenable, and affordable models that are able to fully recapitulate the biological processes happening in vivo, permitting a correct interpretation of results. In the last decades, researchers have demonstrated that three-dimensional (3D) methods could be an innovative approach that lies between bi-dimensional (2D) models and animal models. Scientific evidence supports that the tumor microenvironment can be better reproduced in a 3D system than a 2D cell culture, and the 3D systems can be scaled up for drug screening in the same way as the 2D systems thanks to the current technologies developed. However, 3D models cannot completely recapitulate the inter- and intra-tumor heterogeneity found in patients. In contrast, ex vivo cultures of fragments of bone preserve key cell-cell and cell-matrix interactions and allow the study of bone cells in their natural 3D environment. Moreover, ex vivo bone organ cultures could be a better model to resemble the human pathogenic metastasis condition and useful tools to predict in vivo response to therapies. The aim of our review is to provide an overview of the current trends in bone metastasis modeling. By showing the existing in vitro and ex vivo systems, we aspire to contribute to broaden the knowledge on bone metastasis models and make these tools more appealing for further translational studies.
Collapse
Affiliation(s)
- Roberta Laranga
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
| | - Serena Duchi
- BioFab3D@ACMD, St Vincent’s Hospital, Melbourne, VIC 3065, Australia;
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Ania Naila Guerrieri
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
| | - Davide Maria Donati
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
| |
Collapse
|
21
|
In Vitro Mechanical and Biological Properties of 3D Printed Polymer Composite and β-Tricalcium Phosphate Scaffold on Human Dental Pulp Stem Cells. MATERIALS 2020; 13:ma13143057. [PMID: 32650530 PMCID: PMC7412522 DOI: 10.3390/ma13143057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
3D printed biomaterials have been extensively investigated and developed in the field of bone regeneration related to clinical issues. However, specific applications of 3D printed biomaterials in different dental areas have seldom been reported. In this study, we aimed to and successfully fabricated 3D poly (lactic-co-glycolic acid)/β-tricalcium phosphate (3D-PLGA/TCP) and 3D β-tricalcium phosphate (3D-TCP) scaffolds using two relatively distinct 3D printing (3DP) technologies. Conjunctively, we compared and investigated mechanical and biological responses on human dental pulp stem cells (hDPSCs). Physicochemical properties of the scaffolds, including pore structure, chemical elements, and compression modulus, were characterized. hDPSCs were cultured on scaffolds for subsequent investigations of biocompatibility and osteoconductivity. Our findings indicate that 3D printed PLGA/TCP and β-tricalcium phosphate (β-TCP) scaffolds possessed a highly interconnected and porous structure. 3D-TCP scaffolds exhibited better compressive strength than 3D-PLGA/TCP scaffolds, while the 3D-PLGA/TCP scaffolds revealed a flexible mechanical performance. The introduction of 3D structure and β-TCP components increased the adhesion and proliferation of hDPSCs and promoted osteogenic differentiation. In conclusion, 3D-PLGA/TCP and 3D-TCP scaffolds, with the incorporation of hDPSCs as a personalized restoration approach, has a prospective potential to repair minor and critical bone defects in oral and maxillofacial surgery, respectively.
Collapse
|
22
|
Shi GS, Li YY, Luo YP, Jin JF, Sun YX, Zheng LZ, Lai YX, Li L, Fu GH, Qin L, Chen SH. Bioactive PLGA/tricalcium phosphate scaffolds incorporating phytomolecule icaritin developed for calvarial defect repair in rat model. J Orthop Translat 2020; 24:112-120. [PMID: 32775203 PMCID: PMC7390784 DOI: 10.1016/j.jot.2020.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 02/09/2023] Open
Abstract
Background/objectives For treatment of large bone defects challenging in orthopaedic clinics, bone graft substitutes are commonly used for the majority of surgeons. It would be proposed in the current study that our bioactive scaffolds could additionally serve as a local delivery system for therapeutic small molecule agents capable of providing support to enhance biological bone repair. Methods In this study, composite scaffolds made of poly (lactic-co-glycolic acid) (PLGA) and tricalcium phosphate (TCP) named by P/T was fabricated by a low-temperature rapid prototyping technique. For optimizing the scaffolds, the phytomolecule icaritin (ICT) was incorporated into P/T scaffolds called P/T/ICT. The osteogenic efficacies of the two groups of scaffolds were compared in a successfully established calvarial defect model in rats. Bone regeneration was evaluated by X-ray, micro-computerised tomography (micro-CT), and histology at weeks 4 and/or 8 post-implantation. In vitro induction of osteogenesis and osteoclastogenesis was established for identification of differentiation potentials evoked by icaritin in primary cultured precursor cells. Results The results of radiographies and decalcified histology demonstrated more area and volume fractions of newly formed bone within bone defect sites implanted with P/T/ICT scaffold than that with P/T scaffold. Undecalcified histological results presented more osteoid and mineralized bone tissues, and also more active bone remodeling in P/T/ICT group than that in P/T group. The results of histological staining in osteoclast-like cells and newly formed vessels indicated favorable biocompatibility, rapid bioresorption and more new vessel growth in P/T/ICT scaffolds in contrast to P/T scaffolds. Based on in vitro induction, the results presented that icaritin could significantly facilitate osteogenic differentiation, while suppressed adipogenic differentiation. Meanwhile, icaritin demonstrated remarkable inhibition of osteoclastogenic differentiation. Conclusion The finding that P/T/ICT composite scaffold can enhance bone regeneration in calvarial bone defects through facilitating effective bone formation and restraining excessive bone resorption. The translational potential of this article The osteogenic bioactivity of icaritin facilitated PLGA/TCP/icartin composite scaffold to exert significant bone regeneration in calvarial defects in rat model. It might form an optimized foundation for potential clinical validation in bone defects application.
Collapse
Affiliation(s)
- Guang-Sen Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ying-Ying Li
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ya-Ping Luo
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jian-Feng Jin
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, PR China
| | - Yu-Xin Sun
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li-Zhen Zheng
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu-Xiao Lai
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Long Li
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ling Qin
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Shi-Hui Chen
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
23
|
Touri M, Moztarzadeh F, Abu Osman NA, Dehghan MM, Brouki Milan P, Farzad-Mohajeri S, Mozafari M. Oxygen-Releasing Scaffolds for Accelerated Bone Regeneration. ACS Biomater Sci Eng 2020; 6:2985-2994. [DOI: 10.1021/acsbiomaterials.9b01789] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maria Touri
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran 1591634311, Iran
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Fathollah Moztarzadeh
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
- Institute of Biomedical Research, University of Tehran, Tehran 1417466191, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | | | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| |
Collapse
|
24
|
Weems AC, Pérez-Madrigal MM, Arno MC, Dove AP. 3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules 2020; 21:1037-1059. [PMID: 32058702 DOI: 10.1021/acs.biomac.9b01539] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The advent of additive manufacturing offered the potential to revolutionize clinical medicine, particularly with patient-specific implants across a range of tissue types. However, to date, there are very few examples of polymers being used for additive processes in clinical settings. The state of the art with regards to 3D printable polymeric materials being exploited to produce novel clinically relevant implants is discussed here. We focus on the recent advances in the development of implantable, polymeric medical devices and tissue scaffolds without diverging extensively into bioprinting. By introducing the major 3D printing techniques along with current advancements in biomaterials, we hope to provide insight into how these fields may continue to advance while simultaneously reviewing the ongoing work in the field.
Collapse
Affiliation(s)
- Andrew C Weems
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Maria C Arno
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
25
|
Rosso C, Weber T, Dietschy A, de Wild M, Müller S. Three anchor concepts for rotator cuff repair in standardized physiological and osteoporotic bone: a biomechanical study. J Shoulder Elbow Surg 2020; 29:e52-e59. [PMID: 31594725 DOI: 10.1016/j.jse.2019.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Previous biomechanical studies used single-pull destructive tests in line with the anchor and are limited by a great variability of bone density of cadaver samples. To overcome these limitations, a more physiological test setting was provided using titanium, bioresorbable, and all-suture anchors. METHODS In this controlled laboratory study, 3 anchor constructs were divided into 2 groups: physiological and osteoporotic. Sixty standardized artificial bone specimens (=10 for each anchor in each group) were used for biomechanical testing. The anchors were inserted at a 45° angle as during surgery. Cyclic loading for 1000 cycles followed by ultimate load-to-failure (ULTF) testing was performed. Elongation, ultimate load at failure, and the mode of failure were noted. RESULTS In the physiological group, the ULTF for the all-suture anchor (mean [standard deviation], 632.9 [96.8 N]) was found to be significantly higher than for the other anchors (titanium, 497.1 [50.5] N, and bioresorbable, 322.4 [3.1 N], P < .0001). The titanium anchor showed a significantly higher ULTF than the bioresorbable anchor (P < .0001). In the osteoporotic group, the all-suture anchor again showed a higher ULTF compared to the bioresorbable anchor (500.9 [50.6] N vs. 315.1 [11.3] N, P < .0001). In the osteoporotic group, cyclic loading revealed a higher elongation after 1000 loading cycles for the bioresorbable (0.40 [0.12] mm) compared to the titanium (0.22 [0.11] mm; P = .01) as well as the all-suture anchor (0.19 [0.15] mm, P = .003). CONCLUSION Regarding ULTF, the all-suture anchor outperformed the other anchors in physiological bone, but in osteoporotic bone, significance was reached only compared to the bioresorbable anchor. Although cyclic loading revealed significant differences, these might not be clinically relevant.
Collapse
Affiliation(s)
- Claudio Rosso
- ARTHRO Medics, Shoulder and Elbow Center, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Timo Weber
- University of Basel, Basel, Switzerland; Orthopaedicum Loerrach, Loerrach, Germany
| | - Alain Dietschy
- School of Life Sciences, Institute for Medical and Analytical Technologies, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Michael de Wild
- School of Life Sciences, Institute for Medical and Analytical Technologies, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Sebastian Müller
- University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
26
|
Dai Y, Chu L, Luo Z, Tang T, Wu H, Wang F, Mei S, Wei J, Wang X, Shang X. Effects of a Coating of Nano Silicon Nitride on Porous Polyetheretherketone on Behaviors of MC3T3-E1 Cells in Vitro and Vascularization and Osteogenesis in Vivo. ACS Biomater Sci Eng 2019; 5:6425-6435. [PMID: 33417795 DOI: 10.1021/acsbiomaterials.9b00605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To improve the bioperformances of porous polyetheretherketone (PPK) for bone repair, silicon nitride-coated PPK (CSNPPK) was prepared by a method of suspension coating and melt binding. The results revealed that, as compared with PPK, the surface roughness, compressive strength, and water absorption of CSNPPK increased, while the pore size and porosity of CSNPPK exhibited no obvious changes. In addition, the cellular responses (including attachment, proliferation, and differentiation as well as osteogenically related gene expressions) of the MC3T3-E1 cells to CSNPPK were remarkably promoted compared with PPK and dense polyetheretherketone in vitro. Moreover, in the model of rabbit femoral condyle defects, the results of micro computed tomography and histological and mechanical evaluation revealed that the ingrowth of new vessels and bone tissues into CSNPPK was significantly greater than that into PPK in vivo. Furthermore, the load-displacement and push-out loads for CSNPPK with bone tissues were higher than for PPK, indicating good osseointegration. In short, CSNPPK not only promoted vascularization but also enhanced osteogenesis as well as osseointegration in vivo. Therefore, it can be suggested that CSNPPK with good biocompatibility, osteogenic activity, and vascularization might be a promising candidate as an implant for bone substitute and repair.
Collapse
Affiliation(s)
- Yong Dai
- Shandong University, No. 44 West Wenhua Road, Jinan 250012, China.,Department of Orthopaedics, The Third People's Hospital of Hefei, No. 204, East Wangjiang Road, Hefei 230022, China
| | - Linyang Chu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 115 Jinzun Road, Shanghai 200125, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Hefei 230001, China
| | - Zhengliang Luo
- Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 115 Jinzun Road, Shanghai 200125, China
| | - Han Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Xuehong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Xifu Shang
- Department of Orthopaedic Surgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Hefei 230001, China
| |
Collapse
|
27
|
Farshadi M, Johari B, Erfani Ezadyar E, Gholipourmalekabadi M, Azami M, Madanchi H, Haramshahi SMA, Yari A, Karimizade A, Nekouian R, Samadikuchaksaraei A. Nanocomposite scaffold seeded with mesenchymal stem cells for bone repair. Cell Biol Int 2019; 43:1379-1392. [PMID: 30811084 DOI: 10.1002/cbin.11124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/23/2019] [Indexed: 01/24/2023]
Abstract
The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three-dimensional scaffold from nano-hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X-ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM-MSCs)/scaffold. After 1, 4, and 12 weeks post-injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin-eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM-MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre-seeded nHA/Gel/SiC scaffold with rBM-MSCs improves osteogenesis in the engineered bone implant.
Collapse
Affiliation(s)
- Maryam Farshadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Erfani Ezadyar
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abazar Yari
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ayoob Karimizade
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Nekouian
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Pediatrics Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Ning Y, Qin W, Ren Y, Li C, Chen W, Zhao H. [Effect of icariin/attapulgite/collagen type Ⅰ/polycaprolactone composite scaffold in repair of rabbit tibia defect]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:1181-1189. [PMID: 31512463 PMCID: PMC8355846 DOI: 10.7507/1002-1892.201902044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/11/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of icarin/attapulgite/collagen type Ⅰ/polycaprolactone (ICA/ATP/Col Ⅰ/PCL) composite scaffold in repair of rabbit tibia defect. METHODS The ICA/20%ATP/Col Ⅰ/PCL (scaffold 1), ICA/30%ATP/Col Ⅰ/PCL (scaffold 2), 20%ATP/Col Ⅰ/PCL (scaffold 3), and 30%ATP/Col Ⅰ/PCL (scaffold 4) composite scaffolds were constructed by solution casting-particle filtration method. The structure characteristics of the scaffold 2 before and after cross-linking were observed by scanning electron microscopy, and the surface contact angles of the scaffold 2 and the scaffold 4 were used to evaluate the water absorption performance of the material. The in vitro degradation test was used to evaluate the sustained-release effect of the scaffold 2. Thirty male Japanese white rabbits, weighing (2.0±0.1) kg, were randomly divided into groups A, B, C, D, and E, 6 in each group. After making a 1 cm- diameter bilateral tibial defects model, group A was the defect control group without any material implanted. Groups B, C, D, and E were implanted with scaffolds 3, 4, 1, and 2 at the defect sites, respectively. At 4, 8, and 12 weeks after operation, the repairing effects of 4 scaffolds were observed by gross observation, histological observation of HE and Masson staining, and immunohistochemical staining of osteogenic specific transcription factor (runt-related transcription factor 2, RUNX2), osteogenic related transcription factor [Osterix (OSX), Col Ⅰ, osteopontin (OPN)]. RESULTS Scanning electron microscopy observation showed that the scaffolds were all porous. The structure of the material was loose before and after cross-linking. The surface contact angle showed that the scaffold was hydrophobic, and the scaffold 2 was more hydrophobic than scaffold 4. The sustained-release effect in vitro showed that the drug could be released in a micro and long-term manner. In the animal implantation experiment, the gross observation showed that the defects were significantly smaller in groups D and E than in groups A, B, and C at 4 and 12 weeks after operation. HE and Masson staining showed that the defect of group A was full of connective tissue at 4 weeks after operation, a large number of fibers were seen in groups B and C, and the new bone formation was observed in groups D and E. The increase of new bone was observed in each group at 8 weeks after operation. The defect of group A was still dominated by connective tissue at 12 weeks after operation, and a small amount of new bone tissue was observed in groups B and C, and a large number of new bone tissue was observed in groups D and E, especially in group E, and most of the materials degraded. Immunohistochemical staining showed that the expressions of RUNX2 and OSX in the new tissues of groups D and E were significantly higher than those of the other groups at 4 weeks after operation. The expression of RUNX2 decreased at 8 and 12 weeks after operation. After 8 weeks and 12 weeks, the expressions of Col Ⅰand OPN increased than in 4 weeks. And the expressions of Col Ⅰ and OPN in the new tissues of groups D and E were significantly more than those of the other groups. CONCLUSION ICA/ATP/Col I/PCL composite scaffolds have good porosity and biocompatibility, can promote bone formation, and have good bone regeneration and repair effect.
Collapse
Affiliation(s)
- Yu Ning
- School of Basic Medical Sciences, Gansu University of Traditional Chinese Medicine, Lanzhou Gansu, 730000, P.R.China;Department of Orthopaedic Laboratory, Changzhou Second People's Hospital, Changzhou Jiangsu, 213000, P.R.China
| | - Wen Qin
- Department of Orthopaedic Laboratory, Changzhou Second People's Hospital, Changzhou Jiangsu, 213000, P.R.China
| | - Yahui Ren
- Department of Orthopaedic Laboratory, Changzhou Second People's Hospital, Changzhou Jiangsu, 213000, P.R.China
| | - Chenkai Li
- Department of Orthopaedic Laboratory, Changzhou Second People's Hospital, Changzhou Jiangsu, 213000, P.R.China
| | - Wenyang Chen
- Department of Orthopaedic Laboratory, Changzhou Second People's Hospital, Changzhou Jiangsu, 213000, P.R.China
| | - Hongbin Zhao
- School of Basic Medical Sciences, Gansu University of Traditional Chinese Medicine, Lanzhou Gansu, 730000, P.R.China;Department of Orthopaedic Laboratory, Changzhou Second People's Hospital, Changzhou Jiangsu, 213000,
| |
Collapse
|
29
|
Lai Y, Li Y, Cao H, Long J, Wang X, Li L, Li C, Jia Q, Teng B, Tang T, Peng J, Eglin D, Alini M, Grijpma DW, Richards G, Qin L. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials 2019; 197:207-219. [DOI: 10.1016/j.biomaterials.2019.01.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/26/2018] [Accepted: 01/05/2019] [Indexed: 01/08/2023]
|
30
|
Lin S, Cui L, Chen G, Huang J, Yang Y, Zou K, Lai Y, Wang X, Zou L, Wu T, Cheng JCY, Li G, Wei B, Lee WYW. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Biomaterials 2019; 196:109-121. [PMID: 29655516 DOI: 10.1016/j.biomaterials.2018.04.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/26/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022]
|
31
|
Yang Y, Chu L, Yang S, Zhang H, Qin L, Guillaume O, Eglin D, Richards RG, Tang T. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater 2018; 79:265-275. [PMID: 30125670 DOI: 10.1016/j.actbio.2018.08.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/29/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Infection is one of the pivotal causes of nonunion in large bone defect after trauma or tumor resection. Three-dimensional (3D) composite scaffold with multifunctional-therapeutic properties offer many advantages over allogenic or xenogenic bone grafting for the restoration of challenging infected bone defects. In the previous study, we demonstrated that quaternized chitosan (HACC)-grafted polylactide-co-glycolide (PLGA)/hydroxyapatite (HA) scaffold (PLGA/HA/HACC) via 3D-printing technique exhibited significantly improved antimicrobial and osteoconductive property in vitro, together with good biocompatibility in vivo. Hence, the present study further investigated whether such an innovative bone substitute could effectively inhibit the bacterial biofilm formation and promote bone regeneration in vivo. To evaluate the bone repairing effects of the 3D-printed scaffolds on infected cortical and cancellous bone defects scenarios, eighty female Sprague Dawley rats and thirty-six female New Zealand white rabbits were used to establish infected femoral shaft defect and condyle defect model, respectively. X-ray, micro-CT, microbiological and histopathological analyses were used to assess the anti-infection and bone repairing potential of the dual-functional porous scaffolds. We observed that HACC-grafted PLGA/HA scaffolds exhibited significantly enhanced anti-infection and bone regeneration capability in different infected bone defect models. In addition, the degradation rate of the scaffolds appeared to be closely related to the progress of infection, influencing the bone repairing potential of the scaffolds in infected bone defects models. In general, this investigation is of great significance as it demonstrates promising applications of the 3D-printed dual-functional PLGA/HA/HACC scaffold for repairing different types of bone defect under infection. STATEMENT OF SIGNIFICANCE Currently, it is clinically urgent to exploit bone substitutes with potential of bacterial inhibition and bone regeneration. However, bone scaffolds with relatively low risks of bacterial resistance and tissue toxicity used for combating infected bone defects remain to be developed. We have reported that quaternized chitosan (HACC)-grafted 3D-printed PLGA/HA composite scaffold had enhanced in vitro antimicrobial and osteoconductive property, and well cytocompatibility in our published study. This continuing study further confirmed that HACC-grafted PLGA/HA scaffolds exhibited significantly enhanced anti-infection and bone regeneration efficacy in both cortical bone defect in rat and cancellous bone defect in rabbit under infection. Meanwhile, we also found that the degradation rate of the scaffolds seemed to be closely related to the progress of infection, influencing the bone repairing potential of the scaffolds in infected bone defects models. In conclusion, this study provides significant opportunities to develop a 3D-printed bone scaffold with dual functions used for infected bone defects in future plastic and orthopaedic surgery.
Collapse
|
32
|
Yu X, Shou W, Mahajan BK, Huang X, Pan H. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707624. [PMID: 29736971 DOI: 10.1002/adma.201707624] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/05/2018] [Indexed: 05/21/2023]
Abstract
Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics.
Collapse
Affiliation(s)
- Xiaowei Yu
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Wan Shou
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Bikram K Mahajan
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjing, 300072, China
| | - Heng Pan
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| |
Collapse
|
33
|
Chen CL, Tien HW, Chuang CH, Chen YC. A comparison of the bone regeneration and soft-tissue-formation capabilities of various injectable-grafting materials in a rabbit calvarial defect model. J Biomed Mater Res B Appl Biomater 2018; 107:529-544. [PMID: 29722122 DOI: 10.1002/jbm.b.34144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022]
Abstract
Restoring adequate blood supply is essential to the success of bone repair and augmentation procedures in craniofacial surgery. Nevertheless, the manner by which the incorporation of collagen gels (which can potentially induce angiogenesis), particulated deproteinized bovine bone grafts, or a combination of both can accelerate or delay bone regeneration in a clinical setting remains controversial. The objective of this study was to evaluate radiographically and histologically the capacity and functionality of particulated bone grafts and collagen gels on bone ossification and soft tissue formation in a rabbit calvarial defect. Bilateral calvarial defects in adult white New Zealand rabbits were filled or left either unfilled with bone grafts (DBBM), collagen gels (Gel), or a combination of both (DBBM + Gel). The defects were allowed to heal for 1, 2, and 6 months postoperatively before termination. Healing and regeneration patterns were assessed by 3D µCT and histological methods, and the biomechanical properties of regenerated tissue constructs were investigated and compared with autogenous calvarial bone. Results show that implanted DBBM and DBBM + Gel significantly enhanced immature bone formation compared with the empty and Gel groups; the latter treatment improved soft tissue formation and impeded immature bone formation but yielded no significant effect on mature bone formation. Implantation of DBBM not only effectively reconstructed 188.83 ± 25.25% of the tissue volume of the original defect, but it also regenerated bone tissue with similar tissue composition and biomechanical properties as the original autogenous bone. We also show that implanting different biomaterials can control the composition of soft and hard tissue in reconstructed tissue constructs in calvarial bone defects. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 529-544, 2019.
Collapse
Affiliation(s)
- Chih-Long Chen
- Department of Dentistry, Shin Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Han-Wen Tien
- Department of Applied Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chia-Hui Chuang
- Department of Applied Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
34
|
Quantitative determination of residual 1,4-dioxane in three-dimensional printed bone scaffold. J Orthop Translat 2018; 13:58-67. [PMID: 29662792 PMCID: PMC5894362 DOI: 10.1016/j.jot.2017.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/25/2017] [Accepted: 06/19/2017] [Indexed: 01/22/2023] Open
Abstract
Background/Objective A novel porous scaffold poly (lactide-co-glycolide) and tricalcium phosphate (PLGA/TCP) was developed by three-dimensional printing technology for bone defect repair. As a Class 2 solvent with less severe toxicity, content of residual 1,4-dioxane in this newly developed scaffold should be rigorously controlled when it is translated to clinical use. In this study, a headspace gas chromatography-mass spectrometric (HS-GC-MS) method and related testing protocol were developed for quantitative determination of 1,4-dioxane in the PLGA/TCP composite scaffolds. Methods Matrix effect analysis was used to optimise the pretreatment method of the scaffolds. Then, the procedure for testing 1,4-dioxane using HS-GC-MS was set up. The accuracy, precision, and robustness of this newly developed quantitative method were also validated before quantification of 1,4-dioxane in the scaffolds with different drying procedures. Results Dimethyl formamide (DMF) was the optimal solvent for dissolving scaffolds for GC-MS with proper sensitivity and without matrix effect. Then, the optimised procedure was determined as: the scaffolds were dissolved in DMF and kept at 90°C for 40 minutes, separated on a HP-5MS column, and detected by mass spectroscopy. Recovery experiments gave 97.9–100.7% recovery for 1,4-dioxane. The linear range for 1,4-dioxane was determined as 1–40 ppm with linear correlation coefficient ≥ 0.9999. Intraday and interday precision was determined as being within relative standard deviation of below 0.68%. The passable drying procedure was related to lyophilising (−50°C, 50 Pa) the scaffolds for 2 days and drying in vacuum (50 Pa) for 7 days. Conclusion This is the first quantitative method established to test 1,4-dixoane in a novel scaffold. This method was validated with good accuracy and reproducibility, and met the methodological requirements of the Guideline 9101 documented in the Chinese Pharmacopoeia 2015 Edition. The translational potential of this article This quantitative method for determination of residual 1,4-dioxane in the novel scaffolds is a key technical method during its translation into clinical use because this method is an important and indispensable file in the enterprise standard when the porous scaffold is registered as a Class III implanted medical device for bone defect repair, which is used to guarantee the safety of the scaffolds. It is also applied to optimise the drying process of scaffolds and to monitor the quality of scaffolds in the industrialisation process. Further, this method provides references for other solvents quantitative determination in porous scaffolds or materials.
Collapse
|
35
|
Hoai TT, Nga NK. Effect of pore architecture on osteoblast adhesion and proliferation on hydroxyapatite/poly(D,L) lactic acid-based bone scaffolds. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1365-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Chu L, Jiang G, Hu XL, James TD, He XP, Li Y, Tang T. Biodegradable macroporous scaffold with nano-crystal surface microstructure for highly effective osteogenesis and vascularization. J Mater Chem B 2018; 6:1658-1667. [PMID: 32254282 DOI: 10.1039/c7tb03353b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Using the hydrothermal calcination method, bovine cancellous bone was transformed into a degradable macroporous scaffold with a nano-crystal surface microstructure, capable of releasing bioactive ions. Compared with the control group, the presence of the nano-crystal microstructure of the material scaffold significantly promoted the gene expression of adhesion proteins including integrin and vinculin, thus facilitating attachment, spreading, proliferation and focal adhesion formation of MC3T3-E1 cells on the surface of the scaffold. Additionally, the release of active magnesium and calcium ions from the scaffold promoted expression of osteogenic genes and formation of calcium nodules in osteoblasts. Both in vitro and in vivo assays demonstrated that the three-dimensional interconnected porous architecture promoted vascularization and tissue integration. Our findings provide new insight into the development of degradable macroporous composite materials with "three-dimensional" surface microstructures as bone substitutes or tissue engineering scaffolds with potential for clinical applications.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Qiao H, Tang T. Engineering 3D approaches to model the dynamic microenvironments of cancer bone metastasis. Bone Res 2018; 6:3. [PMID: 29507817 PMCID: PMC5826951 DOI: 10.1038/s41413-018-0008-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer metastasis to bone is a three-dimensional (3D), multistep, dynamic process that requires the sequential involvement of three microenvironments, namely, the primary tumour microenvironment, the circulation microenvironment and the bone microenvironment. Engineered 3D approaches allow for a vivid recapitulation of in vivo cancerous microenvironments in vitro, in which the biological behaviours of cancer cells can be assessed under different metastatic conditions. Therefore, modelling bone metastasis microenvironments with 3D cultures is imperative for advancing cancer research and anti-cancer treatment strategies. In this review, multicellular tumour spheroids and bioreactors, tissue engineering constructs and scaffolds, microfluidic systems and 3D bioprinting technology are discussed to explore the progression of the 3D engineering approaches used to model the three microenvironments of bone metastasis. We aim to provide new insights into cancer biology and advance the translation of new therapies for bone metastasis.
Collapse
Affiliation(s)
- Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| |
Collapse
|
38
|
Song Y, Lin K, He S, Wang C, Zhang S, Li D, Wang J, Cao T, Bi L, Pei G. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin. Int J Nanomedicine 2018; 13:505-523. [PMID: 29416332 PMCID: PMC5790108 DOI: 10.2147/ijn.s152105] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background and aim As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Methods Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. Results The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. Conclusion These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects.
Collapse
Affiliation(s)
- Yue Song
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaifeng Lin
- Second Department of Orthopedics and Traumatology, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, China
| | - Shu He
- Department of Orthopedics, Xi'an Hong Hui Hospital, Xi'an, China
| | - Chunmei Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuaishuai Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Donglin Li
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jimeng Wang
- Department of Orthopedics, The 251st Hospital of Chinese PLA, Zhangjiakou, China
| | - Tianqing Cao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
39
|
Chu L, Jiang G, Hu XL, James TD, He XP, Li Y, Tang T. Osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold in the treatment of large bone defects. J Mater Chem B 2018; 6:4197-4204. [DOI: 10.1039/c8tb00766g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a segmental radial bone defect model used to evaluate the osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold with nano-crystal surface microstructures that can release bioactive ions.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Guoqiang Jiang
- Department of Orthopaedic Surgery
- Affiliated Hospital of School of Medicine
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | | | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yaping Li
- Department of Orthopaedic Surgery
- Affiliated Hospital of School of Medicine
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| |
Collapse
|
40
|
Chen S, Zheng L, Zhang J, Wu H, Wang N, Tong W, Xu J, Huang L, Zhang Y, Yang Z, Lin G, Wang X, Qin L. A novel bone targeting delivery system carrying phytomolecule icaritin for prevention of steroid-associated osteonecrosis in rats. Bone 2018; 106:52-60. [PMID: 29030232 DOI: 10.1016/j.bone.2017.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023]
Abstract
One of the effective strategies for prevention of steroid-associated osteonecrosis (SAON) is to inhibit bone resorption and fat formation and promote bone formation at osteonecrotic sensitive skeletal sites. We identified a novel phytomolecule that showed positive effects on osteogenesis, anti-bone resorption and anti-adipogenesis in vitro and also developed a bone-targeting delivery system (BTDS) for in vivo experimental study. The study investigated if our innovative synthesized BTDS carrying this phytomolecule would be able to effectively prevent SAON in a rat model. SAON was induced by combined injections of lipopolysaccharide and methylprednisolone. SAON rats were divided into four groups, one SAON untreated control group and three SAON treatment groups with different types of delivery systems (Asp8-liposome-icaritin, liposome-icaritin and Asp8-liposome) for two weeks. SAON lesions were identified and osteoclasts activity, osteogenesis and adipogenesis at these sites were evaluated by immunohistochemistry. Ex vitro study was also designed to evaluate the osteogenic and adipogenic potential of the isolated bone marrow stromal cells (BMSCs) via real-time PCR and histochemical staining. Our results showed that as a bone surface-specific BTDS, Asp8-liposome-icaritin effectively prevented steroids-treated rats from SAON with significantly decreased osteocytes apoptosis, down-regulated osteoclatsogenesis and up-regulated osteogenesis. However, both liposome-icaritin and Asp8-liposome treatment did not show significant efficacy for SAON prevention. In summary, this proof-concept-study showed for the first time that the innovative Asp8-liposome-icaritin BTDS was effective for prevention of SAON in terms of bone resorption prevention, adipogenesis suppression, and bone-formation enhancement.
Collapse
Affiliation(s)
- Shihui Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China.; Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Jiayong Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, PR China
| | - Heng Wu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China.; Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, 55455, USA
| | - Nan Wang
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Le Huang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Yifeng Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, PR China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Xinluan Wang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China.; Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China..
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China.; Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China..
| |
Collapse
|
41
|
Wang H, Cheng H, Tang X, Chen J, Zhang J, Wang W, Li W, Lin G, Wu H, Liu C. The synergistic effect of bone forming peptide-1 and endothelial progenitor cells to promote vascularization of tissue engineered bone. J Biomed Mater Res A 2017; 106:1008-1021. [PMID: 29115001 DOI: 10.1002/jbm.a.36287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/06/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Huaixi Wang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Hao Cheng
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Xiangyu Tang
- Department of Radiology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Jingyuan Chen
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Jun Zhang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Wei Wang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Wenkai Li
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Guanlin Lin
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Hua Wu
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Chaoxu Liu
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| |
Collapse
|
42
|
Lai Y, Cao H, Wang X, Chen S, Zhang M, Wang N, Yao Z, Dai Y, Xie X, Zhang P, Yao X, Qin L. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials 2017; 153:1-13. [PMID: 29096397 DOI: 10.1016/j.biomaterials.2017.10.025] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Steroid-associated osteonecrosis (SAON) often requires surgical core decompression (CD) in the early stage for removal of necrotic bone to facilitate repair where bone grafts are needed for filling bone defect and avoiding subsequent joint collapse. In this study, we developed a bioactive composite scaffold incorporated with icariin, a unique phytomolecule that can provide structural and mechanical support and facilitate bone regeneration to fill into bone defects after surgical CD in established SAON rabbit model. An innovative low-temperature 3D printing technology was used to fabricate the poly (lactic-co-glycolic acid)/β-calcium phosphate/icariin (PLGA/TCP/Icariin, PTI) scaffold. The cytocompatibility of the PTI scaffold was tested in vitro, and the osteogenesis properties of PTI scaffolds were assessed in vivo in the SAON rabbit models. Our results showed that the fabricated PTI scaffold had a well-designed biomimic structure that was precisely printed to provide increased mechanical support and stable icariin release from the scaffold for bone regeneration. Furthermore, our in vivo study indicated that the PTI scaffold could enhanced the mechanical properties of new bone tissues and improved angiogenesis within the implanted region in SAON rabbit model than those of PLGA/TCP (PT) scaffold. The underlying osteoblastic mechanism was investigated using MC3T3-E1 cells in vitro and revealed that icariin could facilitate MC3T3-E1 cells ingrowth into the PTI scaffold and regulate osteoblastic differentiation. The PTI scaffold exhibited superior biodegradability, biocompatibility, and osteogenic capability compared with those of PT scaffold. In summary, the PTI composite scaffold which incorporated bioactive phyto-compounds is a promising potential strategy for bone tissue engineering and regeneration in patients with challenging SAON.
Collapse
Affiliation(s)
- Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Huijuan Cao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen 518055, PR China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Shukui Chen
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ming Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Nan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhihong Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xinhui Xie
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, PR China; The Department of Orthopedics, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Peng Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen 518055, PR China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
43
|
Zhang B, Chen X, Zhang R, Zheng F, Du S, Zhang X. Metabolite Profiling, Pharmacokinetics, and In Vitro Glucuronidation of Icaritin in Rats by Ultra-Performance Liquid Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1073607. [PMID: 28785509 PMCID: PMC5529662 DOI: 10.1155/2017/1073607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Icaritin is a naturally bioactive flavonoid with several significant effects. This study aimed to clarify the metabolite profiling, pharmacokinetics, and glucuronidation of icaritin in rats. An ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) assay was developed and validated for qualitative and quantitative analysis of icaritin. Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid- (UDPGA-) supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. A total of 30 metabolites were identified or tentatively characterized in rat biosamples based on retention times and characteristic fragmentations, following proposed metabolic pathway which was summarized. Additionally, the pharmacokinetics parameters were investigated after oral administration of icaritin. Moreover, icaritin glucuronidation in rat liver microsomes was efficient with CLint (the intrinsic clearance) values of 1.12 and 1.56 mL/min/mg for icaritin-3-O-glucuronide and icaritin-7-O-glucuronide, respectively. Similarly, the CLint values of icaritin-3-O-glucuronide and icaritin-7-O-glucuronide in rat intestine microsomes (RIM) were 1.45 and 0.86 mL/min/mg, respectively. Taken altogether, dehydrogenation at isopentenyl group and glycosylation and glucuronidation at the aglycone were main biotransformation process in vivo. The general tendency was that icaritin was transformed to glucuronide conjugates to be excreted from rat organism. In conclusion, these results would improve our understanding of metabolic fate of icaritin in vivo.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoli Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Rui Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fangfang Zheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
44
|
Deng Z, Han H, Yang J, Li Y, Du S, Ma J. Fabrication and Characterization of Carbon Fiber-Reinforced Nano-Hydroxyapatite/Polyamide46 Biocomposite for Bone Substitute. Med Sci Monit 2017; 23:2479-2487. [PMID: 28536416 PMCID: PMC5462530 DOI: 10.12659/msm.903768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Ideal bone repair material should be of good biocompatibility and high bioactivity. Besides, their mechanical properties should be equivalent to those of natural bone. The objective of this study was to fabricate a novel biocomposite suitable for load-bearing bone defect repair. Material/Methods A novel biocomposite composed of carbon fiber, hydroxyapatite and polyamide46 (CF/HA/PA46) was fabricated, and its mechanical performances and preliminary cell responses were evaluated to explore its feasibility for load-bearing bone defect repair. Results The resultant CF/HA/PA46 biocomposite showed a bending strength of 159–223 MPa, a tensile strength of 127–199 MPa and a tensile modulus of 7.7–10.8 GPa, when the CF content was 5–20% (mass fraction) in biocomposite. The MG63 cells, showing an osteogenic phenotype, were well adhered and spread on the surface of the CF/HA/PA46 biocomposite. Moreover, the cells vitality and differentiation on the CF/HA/PA46 biocomposite surface were obviously increased during the culture time and there was no significant difference between the CF/HA/PA46 biocomposite and HA/PA (as control) at all the experimental time (P>0.05). Conclusions The addition of CF into HA/PA46 composite manifest improved the mechanical performances and showed favorable effects on biocompatibility of MG63 cells. The obtained biocomposite has high potential for bone repair in load-bearing sites.
Collapse
Affiliation(s)
- Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Hongjuan Han
- Oral Department, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Jingyuan Yang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yuanyuan Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Shengnan Du
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Jianfeng Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
45
|
Wang L, Hong X, Yao Z, Dai Y, Zhao G, Qin Z, Wu B, Gonzalez FJ, Yao X. Glucuronidation of icaritin by human liver microsomes, human intestine microsomes and expressed UDP-glucuronosyltransferase enzymes: identification of UGT1A3, 1A9 and 2B7 as the main contributing enzymes. Xenobiotica 2017; 48:357-367. [PMID: 28443723 DOI: 10.1080/00498254.2017.1323139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. Icaritin is a natural flavonoid with anti-osteoporosis activity. This study aimed to characterize icaritin glucuronidation by pooled human liver microsomes (HLM) and pooled human intestine microsomes (HIM), and to determine the contribution of individual UDP-glucuronosyltrans-ferase (UGT) enzyme to icaritin glucuronidation. 2. Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid (UDPGA)-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Relative activity factors and activity correlation analysis were performed to identify main UGT isoforms. 3. UGT1A3, 1A7, 1A8, 1A9 and 2B7 were mainly responsible for catalyzing the formation of two glucuronides (G1 and G2). Icaritin 3-O-glucuronidation (G1) was significantly correlated with Chenodeoxycholic acid (CDCA) glucuronidation (r = 0.787, p = 0.002), propofol glucuronidation (r = 0.661, p = 0.019) and Zidovudine (AZT) glucuronidation (r = 0.805, p = 0.002). Similarly, icaritin 7-O-glucuronidation (G2) was also correlated with CDCA glucuronidation (r = 0.640, p = 0.025), propofol glucuronidation (r = 0.592, p = 0.043) and AZT glucuronidation (r = 0.661, p = 0.019). In addition, UGT1A3, 1A9 and 2B7 contributed 37.5, 33.8 and 21.3% for G1 in pooled HLM, respectively. Also, UGT1A3, 1A9 and 2B7 contributed 34.3, 20.0 and 8.6% for G2 in pooled HLM, respectively. 4. Icaritin was subjected to significant glucuronidation, wherein UGT1A3, 1A7, 1A8, 1A9 and 2B7 were main contributing enzymes.
Collapse
Affiliation(s)
- Li Wang
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Xiaodan Hong
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Zhihong Yao
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Yi Dai
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Guoping Zhao
- c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Zifei Qin
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Baojian Wu
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Frank J Gonzalez
- d Laboratory of Metabolism , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Xinsheng Yao
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| |
Collapse
|
46
|
Qi X, Liu Y, Ding ZY, Cao JQ, Huang JH, Zhang JY, Jia WT, Wang J, Liu CS, Li XL. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats. Sci Rep 2017; 7:42820. [PMID: 28230059 PMCID: PMC5322391 DOI: 10.1038/srep42820] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.
Collapse
Affiliation(s)
- Xin Qi
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Yang Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhen-Yu Ding
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jia-Qing Cao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jing-Huan Huang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jie-Yuan Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Wei-Tao Jia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Chang-Sheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.,The State Key Laboratory for Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.,Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiao-Lin Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| |
Collapse
|
47
|
Xu S, Liu J, Zhang L, Yang F, Tang P, Wu D. Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair. J Mater Chem B 2017; 5:6110-6118. [DOI: 10.1039/c7tb00790f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TCP possesses superior long-term effects in structuring tissue engineering scaffold for bone repair compared to HAp, though TCP lags behind HAp in the early repair period.
Collapse
Affiliation(s)
- Sijia Xu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jianheng Liu
- Department of Orthopaedics
- Chinese PLA General Hospital
- Beijing 100853
- China
| | - Licheng Zhang
- Department of Orthopaedics
- Chinese PLA General Hospital
- Beijing 100853
- China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Peifu Tang
- Department of Orthopaedics
- Chinese PLA General Hospital
- Beijing 100853
- China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
48
|
Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:976-982. [DOI: 10.1016/j.msec.2016.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/19/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
|
49
|
Yang Y, Yang S, Wang Y, Yu Z, Ao H, Zhang H, Qin L, Guillaume O, Eglin D, Richards RG, Tang T. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomater 2016; 46:112-128. [PMID: 27686039 DOI: 10.1016/j.actbio.2016.09.035] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/01/2016] [Accepted: 09/24/2016] [Indexed: 12/15/2022]
Abstract
Contaminated or infected bone defects remain serious challenges in clinical trauma and orthopaedics, and a bone substitute with both osteoconductivity and antibacterial properties represents an improvement for treatment strategy. In this study, quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) was grafted to 3D-printed scaffolds composed of polylactide-co-glycolide (PLGA) and hydroxyapatite (HA), in order to design bone engineering scaffolds endowed with antibacterial and osteoconductive properties. We found that both the PLGA/HA/HACC and PLGA/HACC composite scaffolds decreased bacterial adhesion and biofilm formation under in vitro and in vivo conditions. Additionally, ATP leakage assay indicated that immobilizing HACC on the scaffolds could effectively disrupt microbial membranes. Using human bone marrow-derived mesenchymal stem cells (hBMSCs), we demonstrated that HA incorporated scaffolds, including PLGA/HA and PLGA/HA/HACC, favoured cell attachment, proliferation, spreading and osteogenic differentiation compared to HA-free PLGA or PLGA/HACC scaffolds. Finally, an in vivo biocompatibility assay conducted on rats, showed that HA incorporated scaffolds (including PLGA/HA and PLGA/HA/HACC scaffolds) exhibited good neovascularization and tissue integration. Taken together, our findings support the approach for developing porous PLGA/HA/HACC composite scaffold with potential clinical application in the treatment of infected bone. STATEMENT OF SIGNIFICANCE Although plenty of conductive scaffold biomaterials have been exploited to improve bone regeneration under infection, potential tissue toxicity under high concentration and antibiotic-resistance are their main deficiencies. This study indicated that HACC-grafted PLGA/HA composite scaffold prepared using an innovative 3D-printing technique and covalent grafting strategy showed significantly enhanced antibacterial activities, especially against the antibiotic-resistant strains, together with good osteogenic activity and biocompatibility. Therefore, it provides an effective porous composite scaffold to combat the infected bone defect in clinic with decreased risks of bacterial resistance and open a feasible strategy for the modification of scaffold interfaces involved in the bone regeneration and anti-infection.
Collapse
|
50
|
Mok SW, Nizak R, Fu SC, Ho KWK, Qin L, Saris DBF, Chan KM, Malda J. From the printer: Potential of three-dimensional printing for orthopaedic applications. J Orthop Translat 2016; 6:42-49. [PMID: 30035082 PMCID: PMC5987023 DOI: 10.1016/j.jot.2016.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 01/08/2023] Open
Abstract
Three-dimensional (3D) printers can create complex structures based on digital models. The combination of medical diagnostic imaging with 3D printing has great potential in day-to-day clinics for patient-specific solutions and applications. In the musculoskeletal system, 3D printing is used to create custom-made implants, patient-specific instrumentation, and to regenerate tissues, in particular bone and cartilage. The major limiting factors for bioprinting include the lack of printing techniques with optimal printing resolution and materials with ideal mechanical strengths while maintaining cellular functionality. Before “tissues from the printer” can be widely applied, further research and development on improving and optimising printing techniques and biomaterials, and knowledge on the development of printed constructs into living tissues, is essential for future clinical application of this technology.
Collapse
Affiliation(s)
- Sze-Wing Mok
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Razmara Nizak
- Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sai-Chuen Fu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ki-Wai Kevin Ho
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Daniël B F Saris
- Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands.,MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | - Kai-Ming Chan
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jos Malda
- Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands.,Department of Equine Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|