1
|
Shankar D, Jayaganesh K, Gowda N, Lakshmi KS, Jayanthi KJ, Jambagi SC. Thermal spray processes influencing surface chemistry and in-vitro hemocompatibility of hydroxyapatite-based orthopedic implants. BIOMATERIALS ADVANCES 2024; 158:213791. [PMID: 38295645 DOI: 10.1016/j.bioadv.2024.213791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
Orthopedic implants made from titanium are a popular choice in the medical field because of their remarkable strength-to-weight ratio. Nevertheless, they may not interact well with human blood, resulting in thrombosis and hemolysis. In fact, non-hemocompatibility is believed to be responsible for about 31 % of medical device failures in the US alone, requiring painful and expensive revision surgery. To address this issue, bioactive hydroxyapatite coatings are applied to Ti-6Al-4V implants using thermal spray techniques. However, the temperature used during thermal processing impacts the coating's surface properties, affecting the mechanical and biological properties. Furthermore, the effectiveness of HA coatings on titanium for orthopedic applications has not been validated by biocompatibility tests, particularly hemocompatibility. In this study, we aimed to investigate the relative efficacy of three thermal spray processes of different temperature ranges: Atmospheric plasma spray (APS) (high temperature), Flame spray (FS) (moderate temperature), and High-Velocity Oxy-Fuel spray (HVOF) (low temperature), and study their impact on coating's surface properties, affecting blood components and implant's strength. The crystallinity of the HA coating increased by 32 % with a decrease in the operating temperature (APS < FS < HVOF). HVOF coating exhibited a ~ 34 % and ~ 120 % improvement in adhesion strength and ~ 31 % and 59 % increment in hardness compared to APS and FS coating, respectively, attributed to its low porosity, low coating thickness (~55 μm), and high degree of crystallinity. The HVOF coating showcased a significant increase in non-hemolytic behavior, with hemolysis rates ~8 and ~ 11 times lower than APS and FS coatings, respectively, owing to its smooth texture and high degree of crystallinity (p < 0.05). Furthermore, the HVOF coating exhibited minimal blood clotting based on the whole blood clotting assay, again confirmed by PT and aPTT assays showing delayed clotting time, indicating its non-thrombogenic behavior. The number of platelets adhered to the three coatings showed no significant difference compared to Ti-6Al-4V. APS and FS coatings showed low platelet activation, unlike HVOF coating and titanium, which revealed round platelets, similar to the negative control. Neither titanium nor HA coatings exhibited antibacterial properties, which may be due to their high affinity for organic substances, which promotes bacterial adhesion and replication. Among the three thermal processes, HVOF coating displayed good apatite growth, non-hemolytic, and non-thrombogenicity with no platelet activation owing to its low processing temperature, high degree of crystallinity (89.7 %), hydrophilicity, smooth (~4 μm) and dense (~97 %) microstructural properties. The results demonstrated that the HVOF-HA coating presented in this work meets the hemocompatible requirements and shows promise for prospective application as an orthopedic implant. Furthermore, this study has the potential to significantly reduce the use of animals in in-vivo research and improve their welfare while also cutting costs.
Collapse
Affiliation(s)
- Deep Shankar
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Srinivasnagar, 575025 Surathkal, India
| | - K Jayaganesh
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Srinivasnagar, 575025 Surathkal, India
| | - Niranjan Gowda
- Pathology Lab, Department of Pathology, Sanjay Gandhi Institute of Trauma and Orthopedics, Jayanagar East, Bengaluru 560011, India
| | - K S Lakshmi
- Pathology Lab, Department of Pathology, Sanjay Gandhi Institute of Trauma and Orthopedics, Jayanagar East, Bengaluru 560011, India
| | - K J Jayanthi
- Pathology Lab, Department of Pathology, Sanjay Gandhi Institute of Trauma and Orthopedics, Jayanagar East, Bengaluru 560011, India
| | - Sudhakar C Jambagi
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Srinivasnagar, 575025 Surathkal, India.
| |
Collapse
|
2
|
Jagadeeshanayaka N, Kele SN, Jambagi SC. An Investigation into the Relative Efficacy of High-Velocity Air-Fuel-Sprayed Hydroxyapatite Implants Based on the Crystallinity Index, Residual Stress, Wear, and In-Flight Powder Particle Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17513-17528. [PMID: 38050681 DOI: 10.1021/acs.langmuir.3c02840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Due to its resemblance to the bone, hydroxyapatite (HA) has been widely used for bioactive surface modification of orthopedic implants. However, it undergoes significant thermal decomposition and phase transformations at a high operating temperature, leading to premature implant failure. This investigation uses high-velocity air-fuel (HVAF) spray, an emerging low-temperature thermal spray technique, to deposit HA over the Ti-6Al-4V substrate. Coating characteristics, such as the crystallinity index and phase analysis, were measured using X-ray diffraction, Raman analysis, and Fourier transform infrared spectroscopy, residual stress using the sin2ψ method, and tribological performance by a fretting wear test. The coating retained an over 90% crystallinity index, a crystallite size of 41.04 nm, a compressive residual stress of -229 ± 34.5 MPa, and a wear rate of 1.532 × 10-3 mm3 N-1 m-1. Computational in-flight particle traits of HA particles (5 to 60 μm) were analyzed using computational fluid dynamics; it showed that 90% of particles were deposited at a 700 to 1000 m/s velocity and a 900 to 1450 K temperature with a 2.1 ms mean residence time. In-flight particle oxidation was minimized, and particle impact deformation was maximized, which caused severe plastic deformation, forming crystalline, compressive residual stressed coatings. The thermal decomposition model of low-temperature HVAF-sprayed HA particles helped to understand the implants' crystallinity index, residual stress, and tribological characteristics. Hence, this experimental and computational analysis shows that the HVAF process can be a promising candidate for biomedical applications for having strong and durable implants.
Collapse
Affiliation(s)
- N Jagadeeshanayaka
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
| | - Shubham Nitin Kele
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
| | - Sudhakar C Jambagi
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
| |
Collapse
|
3
|
Vu TV, Khyzhun O, Myronchuk GL, Denysyuk M, Piskach L, Selezen AO, Radkowska I, Fedorchuk AO, Petrovska SS, Tkach VA, Piasecki M. Insights from Experiment and Theory on Peculiarities of the Electronic Structure and Optical Properties of the Tl 2HgGeSe 4 Crystal. Inorg Chem 2023; 62:16691-16709. [PMID: 37791920 PMCID: PMC10583210 DOI: 10.1021/acs.inorgchem.3c01756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 10/05/2023]
Abstract
Tl2HgGeSe4 crystal was successfully, for the first time, synthesized by the Bridgman-Stockbarger technology, and its electronic structure and peculiarities of optical constants were investigated using both experimental and theoretical techniques. The present X-ray photoelectron spectroscopy measurements show that the Tl2HgGeSe4 crystal reveals small moisture sensitivity at ambient conditions and that the essential covalent constituent of the chemical bonding characterizes it. The latter suggestion was supported theoretically by ab initio calculations. The present experiments feature that the Tl2HgGeSe4 crystal is a high-resistance semiconductor with a specific electrical conductivity of σ ∼ 10-8 Ω-1 cm-1 (at 300 K). The crystal is characterized by p-type electroconductivity with an indirect energy band gap of 1.28 eV at room temperature. It was established that a good agreement with the experiments could be obtained when performing first-principles calculations using the modified Becke-Johnson functional as refined by Tran-Blaha with additional involvement in the calculating procedure of the Hubbard amendment parameter U and the impact of spin-orbit coupling (TB-mBJ + U + SO model). Under such a theoretical model, we have determined that the energy band gap of the Tl2HgGeSe4 crystal is equal to 1.114 eV, and this band gap is indirect in nature. The optical constants of Tl2HgGeSe4 are calculated based on the TB-mBJ + U + SO model.
Collapse
Affiliation(s)
- Tuan V. Vu
- Laboratory
for Computational Physics, Institute for Computational Science and
Artificial Intelligence, Van Lang University, 70000 Ho Chi Minh
City, Vietnam
- Faculty
of Mechanical—Electrical and Computer Engineering, School of
Technology, Van Lang University, 70000 Ho Chi Minh
City, Vietnam
| | - Oleg Khyzhun
- Frantsevych
Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Street, 03142 Kyiv, Ukraine
- Department
of Experimental Physics and Information-Measuring Technology, Lesya Ukrainka Volyn National University, 13 Voli Avenue, 43025 Lutsk, Ukraine
| | - Galyna L. Myronchuk
- Department
of Experimental Physics and Information-Measuring Technology, Lesya Ukrainka Volyn National University, 13 Voli Avenue, 43025 Lutsk, Ukraine
| | - Mariana Denysyuk
- Department
of Experimental Physics and Information-Measuring Technology, Lesya Ukrainka Volyn National University, 13 Voli Avenue, 43025 Lutsk, Ukraine
| | - Lyudmyla Piskach
- Department
of Chemistry and Technology, Lesya Ukrainka
Volyn National University, 13 Voli Avenue, 43025 Lutsk, Ukraine
| | - Andrij O. Selezen
- Department
of Chemistry and Technology, Lesya Ukrainka
Volyn National University, 13 Voli Avenue, 43025 Lutsk, Ukraine
| | - Ilona Radkowska
- Jan Dlugosz
University in Częstochowa, Armii Krajowej 13/15, PL-42-217 Częstochowa, Poland
| | - Anatolii O. Fedorchuk
- Department
of Inorganic and Organic Chemistry, Lviv
National University of Veterinary Medicine and Biotechnologies, 50 Pekarska Street, 79010 Lviv, Ukraine
| | - Svitlana S. Petrovska
- Frantsevych
Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Street, 03142 Kyiv, Ukraine
| | - Vira A. Tkach
- Frantsevych
Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Street, 03142 Kyiv, Ukraine
| | - Michał Piasecki
- Jan Dlugosz
University in Częstochowa, Armii Krajowej 13/15, PL-42-217 Częstochowa, Poland
- Inorganic
Chemistry Department, Uzhhorod National
University, 46 Pidhirna, UA-88000 Uzhhorod, Ukraine
| |
Collapse
|
4
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
5
|
Seredin P, Goloshchapov D, Buylov N, Kashkarov V, Emelyanova A, Eremeev K, Ippolitov Y. Compositional Analysis of the Dental Biomimetic Hybrid Nanomaterials Based on Bioinspired Nonstoichiometric Hydroxyapatite with Small Deviations in the Carbonate Incorporation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4453. [PMID: 36558306 PMCID: PMC9783965 DOI: 10.3390/nano12244453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
In our paper, we discuss the results of a comprehensive structural-spectroscopic and microscopic analysis of non-stoichiometric nanocrystalline hydroxyapatite (CHAp) with low carbonate anion content and biomimetic hybrid nanomaterials produced on its basis. It was shown that hydroxyapatite nanocrystals synthesized by chemical precipitation and biogenic calcium source mimic the properties of biogenic apatite and also have a morphological organization of "core-shell" type. The "core" of the CHAp nanocrystal is characterized by an overabundance of calcium Ca/P~1.9. Thus "a shell" with thickness of ~3-5 nm is formed from intermediate apatite-like phases where the most probable are octocalcium phosphate, dicalcium phosphate dihydrate and tricalcium phosphate. The multimode model of the Raman profile of samples CHAp and biomimetic composites for spectral region 900-1100 cm-1 proposed in our work has allowed to allocate precise contribution of B-type carbonate substitution, taking into account the presence on a surface of "core" HAp nanocrystal of various third-party intermediate apatite-like phases. The calibration function constructed on the basis of the described model makes it possible to reliably determine small concentrations of carbonate in the structure of hydroxyapatite with the application of Raman express method of diagnostics. The results of our work can inspire researchers to study the processes of induced biomineralization in mineralized tissues of the human body, using non-destructive methods of control with simultaneous analysis of chemical bonding, as well as determining the role of impurity atoms in the functions exhibited by biotissue.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
- Scientific and Educational Center, Nanomaterials and Nanotechnologies, Ural Federal University, Lenin Ave 51, 620002 Yekaterinburg, Russia
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Nikita Buylov
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Anna Emelyanova
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Konstantin Eremeev
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya Ul. 11, 394006 Voronezh, Russia
| |
Collapse
|
6
|
Jagadeeshanayaka N, Awasthi S, Jambagi SC, Srivastava C. Bioactive Surface Modifications through Thermally Sprayed Hydroxyapatite Composite Coatings: A Review over Selective Reinforcements. Biomater Sci 2022; 10:2484-2523. [DOI: 10.1039/d2bm00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) has been an excellent replacement for the natural bone in orthopedic applications, owing to its close resemblance; however, it is brittle and has low strength. Surface modification techniques...
Collapse
|
7
|
Osuchukwu OA, Salihi A, Abdullahi I, Abdulkareem B, Nwannenna CS. Synthesis techniques, characterization and mechanical properties of natural derived hydroxyapatite scaffolds for bone implants: a review. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04795-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AbstractHydroxyapatite (HAp) with good mechanical properties is a promising material meant for a number of useful bids in dentistry and orthopedic for biomedical engineering applications for drug delivery, bone defect fillers, bone cements, etc. In this paper, a comprehensive review has been done, by reviewing different literatures related to synthesis techniques, mechanical properties and property testing, method of calcination and characterization of hydroxyapatite which are product of catfish and bovine bones. The discussion is in relations of the obligatory features vital to attain the best properties for the envisioned bid of bone graft. The process approaches that are capable of fabricating the essential microstructure and the ways to advance the mechanical properties of natural mined HAp are reviewed. The standard values for tensile strength were found to be within the range of 40–300 MPa, compressive strength was 400–900 MPa, while Elastic modulus was 80–120 GPa and fracture toughness was 0.6–1 MPa m1/2 (Ramesh et al. in Ceram Int 44(9):10525–10530, 2018; Landi et al. in J Eur Ceram Soc 20(14–15):2377–2387, 2000; Munar et al. in Dent Mater J 25(1):51–58, 2006). Also, the porosity range was 70–85% (Yang et al. in Am Ceram Soc Bull 89(2):24–32, 2010), density is 3.16 g/cm3 and relative density is 95–99.5% (Ramesh et al. 2018; Landi et al. 2000; Munar et al. 2006). The literature revealed that CaP ratio varies in relation to the source and sintering temperature. For example, for bovine bone, a CaP ratio of 1.7 (Mezahi et al. in J Therm Anal Calorim 95(1):21–29, 2009) and 1.65 (Barakat et al. in J Mater Process Technol 209(7):3408–3415, 2009) was obtained at 1100 °C and 750 °C respectively. Basic understanding on the effect of adding foreign material as a strengthening agent to the mechanical properties of HAp is ground factor for the development of new biomaterial (Natural hydroxyapatite, NHAp). Therefore, it is inferred that upon careful combination of main parameters such as compaction pressures, sintering temperatures, and sintering dwell times for production natural HAp (NHAp), mechanical properties can be enhanced.
Graphic abstract
Collapse
|
8
|
Sathiyavimal S, Vasantharaj S, LewisOscar F, Pugazhendhi A, Subashkumar R. Biosynthesis and characterization of hydroxyapatite and its composite (hydroxyapatite-gelatin-chitosan-fibrin-bone ash) for bone tissue engineering applications. Int J Biol Macromol 2019; 129:844-852. [PMID: 30769044 DOI: 10.1016/j.ijbiomac.2019.02.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Hydroxyapatite (HAp) is a bioactive and biocompatible material possessing osteoconductive properties used widely in the biomedical sector. In the present study, synthesis of hydroxyapatite (HAp) using a Klebsiella pneumoniae SM24 (phosphate solubilizing bacteria) isolated from the slaughterhouse. HAp synthesized using biological source showed efficient and positive enzymatic activity in the National Botanical Research Institute Phosphate Medium (NBRIP). Characterization of HAp using FTIR revealed the presence of phosphate group hydroxyapatite and XRD spectra showed polycrystalline nature. The morphological characterization of HAp using FESEM revealed the mesoporous structure and EDX spectrum indicated presence of Ca and P as the major components. In addition, a new bone composite was prepared using the synthesized HAp, Gelatine (G), Chitosan (C), Fibrin (F) and Bone ash (HApGCF) using Simulated Body Fluid (SBF) solution. The confirmation of chemical and structural characteristics of HApGCF bone composite was achieved using FTIR, XRD and SEM analyses. The HApGCF bone composite was tested over osteoblast MG-63 cells showing effective biocompatibility and osteoblast attachment on the composite surface. Therefore, the present report proposes the in vitro application of HApGCF bone composite as a replacement for major bone damage and injury in a biocompatible and non-toxic way.
Collapse
Affiliation(s)
- Selvam Sathiyavimal
- Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore 641 029, Tamil Nadu, India
| | - Seerangaraj Vasantharaj
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore 641 028, Tamil Nadu, India
| | | | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Rathinasamy Subashkumar
- Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore 641 029, Tamil Nadu, India; Department of Biotechnology, Sri Ramakrishna College of Arts and Science, Coimbatore 641 006, Tamil Nadu, India.
| |
Collapse
|
9
|
Marques CF, Olhero SM, Torres PM, Abrantes JC, Fateixa S, Nogueira HI, Ribeiro IA, Bettencourt A, Sousa A, Granja PL, Ferreira JM. Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:426-436. [DOI: 10.1016/j.msec.2018.09.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023]
|
10
|
Park SJ, Kim BS, Gupta KC, Lee DY, Kang IK. Hydroxyapatite Nanorod-Modified Sand Blasted Titanium Disk for Endosseous Dental Implant Applications. Tissue Eng Regen Med 2018; 15:601-614. [PMID: 30603582 PMCID: PMC6171708 DOI: 10.1007/s13770-018-0151-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sand blasted titanium (Ti) is commonly used in designing endosseous dental implants due to its biocompatibility and ability to form bonds with bone tissues. However, titanium implants do not induce strong interactions with teeth bones. To increase strong interactions between Ti disk implants and teeth bones, the l-glutamic acid grafted hydroxyapatite nanorods (nHA) were immobilized on albumin modified Ti disk implants (Ti-Alb). METHODS For modification of Ti disk implants by nHA, the l-glutamic acid grafted nHA was synthesized and then immobilized on albumin modified Ti disk implants. Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope; energy dispersive spectroscopy and confocal laser scanning microscopy were used to confirm the modification of Ti disk implants. The bioactivity of nHA-modified Ti disk implants was evaluated by seeding MC3T3-E1 cells on Ti-nHA implants. RESULTS Characterization techniques have confirmed the successful modification of Ti disk implants by l-glutamic acid grafted nHA. The nHA-modified Ti disk implants have shown enhanced adhesion, proliferation and cytotoxicity of MC3T3-E1 cells in comparison to pristine Ti implants. CONCLUSIONS The modification of Ti implants by l-glutamic acid grafted nHA has produced highly osteogenic Ti disk plants in comparison to pristine Ti disk implants due to the formation of bioactive surfaces by hydroxyapatite nano rods on Ti disk implants. Ti-nHA disk implants showed enhanced adhesion, proliferation, and MC3T3-E1 cells viability in comparison to pristine Ti disk implants. Thus nHA might be to be useful to enhance the osseointegration of Ti implants with teeth bones.
Collapse
Affiliation(s)
- So Jung Park
- Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566 Republic of Korea
| | - Bo Su Kim
- Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566 Republic of Korea
| | - Kailash Chandra Gupta
- Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566 Republic of Korea
- Polymer Research Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247 667 India
| | - Dong Yun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566 Republic of Korea
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566 Republic of Korea
| |
Collapse
|
11
|
Santos C, Turiel S, Sousa Gomes P, Costa E, Santos-Silva A, Quadros P, Duarte J, Battistuzzo S, Fernandes MH. Vascular biosafety of commercial hydroxyapatite particles: discrepancy between blood compatibility assays and endothelial cell behavior. J Nanobiotechnology 2018; 16:27. [PMID: 29566760 PMCID: PMC5863823 DOI: 10.1186/s12951-018-0357-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vascular homeostasis is ensured by a dynamic interplay involving the endothelium, the platelets and the coagulation system. Thus, the vascular safety of particulate materials must address this integrated system, an approach that has been largely neglected. This work analysed the effects of commercial hydroxyapatite (HA) particles in blood compatibility and in endothelial cell behavior, due to their clinical relevance and scarcity of data on their vascular biosafety. RESULTS Particles with similar chemical composition and distinct size and morphology were tested, i.e. rod-like, nano dimensions and low aspect ratio (HAp1) and needle-shape with wider size and aspect ratio (HAp2). HAp1 and HAp2, at 1 to 10 mg/mL, did not affect haemolysis, platelet adhesion, aggregation and activation, or the coagulation system (intrinsic and extrinsic pathways), although HAp2 exhibited a slight thrombogenic potential at 10 mg/mL. Notwithstanding, significantly lower levels presented dose-dependent toxicity on endothelial cells' behavior. HAp1 and HAp2 decreased cell viability at levels ≥ 250 and ≥ 50 μg/mL, respectively. At 10 and 50 μg/mL, HAp1 did not interfere with the F-actin cytoskeleton, apoptotic index, cell cycle progression, expression of vWF, VECad and CD31, and the ability to form a network of tubular-like structures. Comparatively, HAp2 caused dose-dependent toxic effects in these parameters in the same concentration range. CONCLUSION The most relevant observation is the great discrepancy of HA particles' levels that interfere with the routine blood compatibility assays and the endothelial cell behavior. Further, this difference was also found to be dependent on the particles' size, morphology and aspect ratio, emphasizing the need of a complementary biological characterization, taking into consideration the endothelial cells' functionality, to establish the vascular safety of particulate HA.
Collapse
Affiliation(s)
- Catarina Santos
- EST Setúbal, DEM, Instituto Politécnico de Setúbal, Campus IPS, 2914-508, Setúbal, Portugal.,CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Suzy Turiel
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Pedro Sousa Gomes
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal.,REQUIMTE/LAQV - U. Porto, Porto, Portugal
| | - Elísio Costa
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, U. Porto (FFUP), Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, U. Porto (FFUP), Porto, Portugal
| | | | - José Duarte
- CIAFEL, Faculdade de Desporto, Universidade do Porto, Porto, Portugal
| | - Sílvia Battistuzzo
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Campus Universitário s/n, Lagoa Nova, Natal, RN, 59072-970, Brazil
| | - Maria Helena Fernandes
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal. .,REQUIMTE/LAQV - U. Porto, Porto, Portugal.
| |
Collapse
|
12
|
Development of nanocomposite scaffolds based on TiO 2 doped in grafted chitosan/hydroxyapatite by freeze drying method and evaluation of biocompatibility. Int J Biol Macromol 2017; 101:51-58. [DOI: 10.1016/j.ijbiomac.2017.03.067] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 01/29/2023]
|
13
|
Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:385-392. [DOI: 10.1016/j.msec.2017.02.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/13/2016] [Indexed: 12/19/2022]
|
14
|
Asadian-Ardakani V, Saber-Samandari S, Saber-Samandari S. The effect of hydroxyapatite in biopolymer-based scaffolds on release of naproxen sodium. J Biomed Mater Res A 2016; 104:2992-3003. [PMID: 27449255 DOI: 10.1002/jbm.a.35838] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/09/2016] [Accepted: 07/21/2016] [Indexed: 11/11/2022]
Abstract
A scaffold capable of controlling drug release is highly desirable for bone tissue engineering. The objective of this study was to develop and characterize a highly porous biodegradable scaffold and evaluate the kinetic release behavior for the application of anti-inflammatory drug delivery. Porous scaffolds consisting of chitosan, poly(acrylic acid), and nano-hydroxyapatite were prepared using the freeze-drying method. The nanocomposite scaffolds were characterized for structure, pore size, porosity, and mechanical properties. The nanocomposite scaffolds were tested and characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive analysis of X-ray (EDS), X-ray diffraction (XRD) analysis, and tensile test instrument. The results showed that the pores of the scaffolds were interconnected, and their sizes ranged from 145 µm to 213 μm. The mechanical properties were found close to those of trabecular bone of the same density. The ability of the scaffolds to deliver naproxen sodium as a model drug in vitro was investigated. The release profile of naproxen sodium was measured in a phosphate-buffered saline solution by a ultra-violet spectrophotometer that was controlled by the Fickian diffusion mechanism. These results indicated that the chitosan-graft-poly(acrylic acid)/nano-hydroxyapatite scaffold may be a promising biomedical scaffold for clinical use in bone tissue engineering with a potential for drug delivery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2992-3003, 2016.
Collapse
Affiliation(s)
| | - Samaneh Saber-Samandari
- Department of Chemistry, Eastern Mediterranean University, Gazimagusa, 10, TRNC via Mersin, Turkey.
| | | |
Collapse
|
15
|
Karkeh-Abadi F, Saber-Samandari S, Saber-Samandari S. The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:224-233. [PMID: 27037477 DOI: 10.1016/j.jhazmat.2016.03.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/29/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
Significant efforts have been made to develop highly efficient adsorbents to remove radioactive Co(II) ion pollutants from medical and industrial wastewaters. In this study, amide group functionalized multi-walled carbon nanotube (CNT-CONH2) imprinted in the network of sodium alginate containing hydroxyapatite, and new nanocomposite beads were synthesized. Then, they were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The prepared nanocomposite beads were used as an adsorbent of Co(II) ions from an aqueous solution. The presence and distribution of Co(II) ions in the surface of the nanocomposite beads was confirmed using FESEM, EDS and metal mapping analysis. The effect of various experimental conditions such as time, pH, and initial concentration of the adsorbate solution and temperature on the adsorption capacity of the nanocomposite beads were explored. The maximum Co(II) ions adsorption capacity of the prepared nanocomposite beads with the largest surface area of 163.4m(2)g(-1) was 347.8mgg(-1) in the optimized condition. The adsorption mechanism followed a pseudo-second-order kinetic model. Furthermore, the Freundlich appears to produce better fit than the Langmuir adsorption isotherm. Finally, thermodynamic studies suggest that endothermic adsorption process of Co(II) ions is spontaneous and thermodynamically favorable.
Collapse
Affiliation(s)
| | - Samaneh Saber-Samandari
- Department of Chemistry, Eastern Mediterranean University, Gazimagusa, TRNC via Mersin 10, Turkey.
| | | |
Collapse
|
16
|
Le QT, Bertrand C, Vilar R. Femtosecond laser ablation of enamel. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:65005. [PMID: 27330005 DOI: 10.1117/1.jbo.21.6.065005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3(PO4)2, at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel’s hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.
Collapse
Affiliation(s)
- Quang-Tri Le
- Lisbon University, Instituto Superior Técnico and CeFEMA Center of Physics and Engineering of Advanced Materials, Avenida Rovisco Pais, 1049-001 Lisboa, PortugalbLaboratoire ICMCB-CNRS-UPR9048, 87, Avenue du Dr Albert Schweitzer, 33608 PESSAC Cedex, Franc
| | - Caroline Bertrand
- Laboratoire ICMCB-CNRS-UPR9048, 87, Avenue du Dr Albert Schweitzer, 33608 PESSAC Cedex, France
| | - Rui Vilar
- Lisbon University, Instituto Superior Técnico and CeFEMA Center of Physics and Engineering of Advanced Materials, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
17
|
Saber-Samandari S, Saber-Samandari S, Kiyazar S, Aghazadeh J, Sadeghi A. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 2016; 86:434-42. [DOI: 10.1016/j.ijbiomac.2016.01.102] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 02/02/2023]
|
18
|
Nosenko V, Strutynska N, Vorona I, Zatovsky I, Dzhagan V, Lemishko S, Epple M, Prymak O, Baran N, Ishchenko S, Slobodyanik N, Prylutskyy Y, Klyui N, Temchenko V. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying. NANOSCALE RESEARCH LETTERS 2015; 10:464. [PMID: 26625888 PMCID: PMC4666891 DOI: 10.1186/s11671-015-1160-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.
Collapse
Affiliation(s)
- Valentyna Nosenko
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45, Pr. Nauky, Kyiv, 03028, Ukraine.
| | - Nataliia Strutynska
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, 01601, Kyiv, Ukraine.
| | - Igor Vorona
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45, Pr. Nauky, Kyiv, 03028, Ukraine.
| | - Igor Zatovsky
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, 01601, Kyiv, Ukraine.
| | - Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45, Pr. Nauky, Kyiv, 03028, Ukraine.
| | - Sergiy Lemishko
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45, Pr. Nauky, Kyiv, 03028, Ukraine.
- National Technical University of Ukraine "KPI", 03056, Kyiv, Ukraine.
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse, 5-7, 45117, Essen, Germany.
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse, 5-7, 45117, Essen, Germany.
| | - Nikolai Baran
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45, Pr. Nauky, Kyiv, 03028, Ukraine.
| | - Stanislav Ishchenko
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45, Pr. Nauky, Kyiv, 03028, Ukraine.
| | - Nikolai Slobodyanik
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, 01601, Kyiv, Ukraine.
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, 01601, Kyiv, Ukraine.
| | - Nickolai Klyui
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45, Pr. Nauky, Kyiv, 03028, Ukraine.
| | - Volodymyr Temchenko
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45, Pr. Nauky, Kyiv, 03028, Ukraine.
| |
Collapse
|
19
|
Liu P, Zhu B, Yuan X, Tong G, Su Y, Zhu X. Physiochemical properties and bioapplication of nano- and microsized hydroxy zinc phosphate particles modulated by reaction temperature. J Mater Chem B 2015; 3:1301-1312. [DOI: 10.1039/c4tb01049c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Temperature plays an important part in determining the size, morphology, and physiochemical and biological properties of hydroxy zinc phosphate particles, which can be used in drug-loading and for the removal of heavy metal ions.
Collapse
Affiliation(s)
- Peng Liu
- Instrumental Analysis Center
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
- School of Chemistry and Chemical Engineering
| | - Bangshang Zhu
- Instrumental Analysis Center
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| | - Xiaoya Yuan
- Instrumental Analysis Center
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| | - Gangsheng Tong
- Instrumental Analysis Center
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| | - Yue Su
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| |
Collapse
|
20
|
Yeo IS. Reality of dental implant surface modification: a short literature review. Open Biomed Eng J 2014; 8:114-9. [PMID: 25400716 PMCID: PMC4231373 DOI: 10.2174/1874120701408010114] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 01/25/2023] Open
Abstract
Screw-shaped endosseous implants that have a turned surface of commercially pure titanium have a disadvantage of requiring a long time for osseointegration while those implants have shown long-term clinical success in single and multiple restorations. Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shorter edentulous period for a patient. This article reviewed some important modified titanium surfaces, exploring the in vitro, in vivo and clinical results that numerous comparison studies reported. Several methods are widely used to modify the topography or chemistry of titanium surface, including blasting, acid etching, anodic oxidation, fluoride treatment, and calcium phosphate coating. Such modified surfaces demonstrate faster and stronger osseointegration than the turned commercially pure titanium surface. However, there have been many studies finding no significant differences in in vivo bone responses among the modified surfaces. Considering those in vivo results, physical properties like roughening by sandblasting and acid etching may be major contributors to favorable bone response in biological environments over chemical properties obtained from various modifications including fluoride treatment and calcium phosphate application. Recently, hydrophilic properties added to the roughened surfaces or some osteogenic peptides coated on the surfaces have shown higher biocompatibility and have induced faster osseointegration, compared to the existing modified surfaces. However, the long-term clinical studies about those innovative surfaces are still lacking.
Collapse
Affiliation(s)
- In-Sung Yeo
- Department of Prosthodontics and Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| |
Collapse
|
21
|
Sofronia AM, Baies R, Anghel EM, Marinescu CA, Tanasescu S. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:153-63. [PMID: 25175200 DOI: 10.1016/j.msec.2014.07.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/15/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400°C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis-TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800°C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins.
Collapse
Affiliation(s)
- Ancuta M Sofronia
- Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest, Romania
| | - Radu Baies
- National Research Institute for Electrochemistry and Condensed Matter, 300224 Timisoara, Romania
| | - Elena M Anghel
- Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest, Romania
| | - Cornelia A Marinescu
- Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest, Romania.
| | - Speranta Tanasescu
- Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest, Romania
| |
Collapse
|