1
|
Romanowicz GE, Zhang L, Bolger MW, Lynch M, Kohn DH. Beyond bone volume: Understanding tissue-level quality in healing of maxillary vs. femoral defects. Acta Biomater 2024; 187:409-421. [PMID: 39214162 DOI: 10.1016/j.actbio.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Currently, principles of tissue engineering and implantology are uniformly applied to all bone sites, disregarding inherent differences in collagen, mineral composition, and healing rates between craniofacial and long bones. These differences could potentially influence bone quality during the healing process. Evaluating bone quality during healing is crucial for understanding local mechanical properties in regeneration and implant osseointegration. However, site-specific changes in bone quality during healing remain poorly understood. In this study, we assessed newly formed bone quality in sub-critical defects in the maxilla and femur, while impairing collagen cross-linking using β-aminopropionitrile (BAPN). Our findings revealed that femoral healing bone exhibited a 73 % increase in bone volume but showed significantly greater viscoelastic and collagen changes compared to surrounding bone, leading to increased deformation during long-term loading and poorer bone quality in early healing. In contrast, the healing maxilla maintained equivalent hardness and viscoelastic constants compared to surrounding bone, with minimal new bone formation and consistent bone quality. However, BAPN-impaired collagen cross-linking induced viscoelastic changes in the healing maxilla, with no further changes observed in the femur. These results challenge the conventional belief that increased bone volume correlates with enhanced tissue-level bone quality, providing crucial insights for tissue engineering and site-specific implant strategies. The observed differences in bone quality between sites underscore the need for a nuanced approach in assessing the success of regeneration and implant designs and emphasize the importance of exploring site-specific tissue engineering interventions. STATEMENT OF SIGNIFICANCE: Accurate measurement of bone quality is crucial for tissue engineering and implant therapies. Bone quality varies between craniofacial and long bones, yet it's often overlooked in the healing process. Our study is the first to comprehensively analyze bone quality during healing in both the maxilla and femur. Surprisingly, despite significant volume increase, femur healing bone had poorer quality compared to the surrounding bone. Conversely, maxilla healing bone maintained consistent quality despite minimal bone formation. Impaired collagen diminished maxillary healing bone quality, but had no further effect on femur bone quality. These findings challenge the notion that more bone volume equals better quality, offering insights for improving tissue engineering and implant strategies for different bone sites.
Collapse
Affiliation(s)
- Genevieve E Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Lizhong Zhang
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Morgan W Bolger
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA.
| |
Collapse
|
2
|
Iskhakova K, Wieland DCF, Marek R, Schwarze UY, Davydok A, Cwieka H, AlBaraghtheh T, Reimers J, Hindenlang B, Sefa S, Lopes Marinho A, Willumeit-Römer R, Zeller-Plumhoff B. Sheep Bone Ultrastructure Analyses Reveal Differences in Bone Maturation around Mg-Based and Ti Implants. J Funct Biomater 2024; 15:192. [PMID: 39057313 PMCID: PMC11278010 DOI: 10.3390/jfb15070192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Magnesium alloys are some of the most convenient biodegradable materials for bone fracture treatment due to their tailorable degradation rate, biocompatibility, and mechanical properties resembling those of bone. Despite the fact that magnesium-based implants and ZX00 (Mg-0.45Zn-0.45Ca in wt.%), in particular, have been shown to have suitable degradation rates and good osseointegration, knowledge gaps remain in our understanding of the impact of their degradation properties on the bone's ultrastructure. Bone is a hierarchically structured material, where not only the microstructure but also the ultrastructure are important as properties like the local mechanical response are determined by it. This study presents the first comparative analysis of bone ultrastructure parameters with high spatial resolution around ZX00 and Ti implants after 6, 12, and 24 weeks of healing. The mineralization was investigated, revealing a significant decrease in the lattice spacing of the (002) Bragg's peak closer to the ZX00 implant in comparison to Ti, while no significant difference in the crystallite size was observed. The hydroxyapatite platelet thickness and osteon density demonstrated a decrease closer to the ZX00 implant interface. Correlative indentation and strain maps obtained by scanning X-ray diffraction measurements revealed a higher stiffness and faster mechanical adaptation of the bone surrounding Ti implants as compared to the ZX00 ones. Thus, the results suggest the incorporation of Mg2+ ions into the bone ultrastructure, as well as a lower degree of remodeling and stiffness of the bone in the presence of ZX00 implants than Ti.
Collapse
Affiliation(s)
- Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - D. C. Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Romy Marek
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (R.M.); (U.Y.S.)
| | - Uwe Y. Schwarze
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (R.M.); (U.Y.S.)
- Department of Dental Medicine and Oral Health, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| | - Anton Davydok
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany;
| | - Hanna Cwieka
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Tamadur AlBaraghtheh
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Jan Reimers
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Birte Hindenlang
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - André Lopes Marinho
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| |
Collapse
|
3
|
Li SG, Guo ZL, Tao SY, Han T, Zhou J, Lin WY, Guo X, Li CX, Diwas S, Hu XW. In vivo study on osteogenic efficiency of nHA/ gel porous scaffold with nacre water-soluble matrix. Tissue Cell 2024; 88:102347. [PMID: 38489914 DOI: 10.1016/j.tice.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND/PURPOSE Nano-hydroxyapatite (nHA)/ gel porous scaffolds loaded with WSM carriers are promising bone replacement materials that can improve osseointegration ability. This investigation aimed to evaluate the osteoinductive activity by implanting the composition of nano-hydroxyapatite (nHA)/ Gel porous scaffolds as a carrier of WSM via an animal model. MATERIALS AND METHODS WSM was extracted and nHA was added to the matrix to construct porous composite scaffolds. The dose-effect curve of WSM concentration and alkaline phosphatase (ALP) activity was made by culturing rat osteoblasts and examining the absorbance. Three different materials were implanted into critical size defects (CSD) in the skulls of rats, which were further divided into four groups: WSM nHA /Gel group, n-WSM nHA /Gel group, HA powder group, and control group. RESULTS WSM (150 μg/mL-250μg/mL) effectively improved the activity of ALP in rat osteoblasts. All rats in each group had normal healing. WSM-loaded nHA /Gel group showed better performance on newly-formed bone tissue of rat skull and back at 4th week and 8th week, respectively. At the 4th week, the network of woven bone formed in the WSM-loaded nHA/Gel scaffold material. At 8th week, the reticular trabecular bone in the WSM-loaded scaffold material became dense lamellar bone, and the defect was mature lamellar bone. In the subcutaneous implantation experiment, WSM-loaded nHA/Gel scaffold material showed a better performance of heterotopic ossification than the pure nHA/Gel scaffold material. CONCLUSION WSM promotes osteoblast differentiation and bone mineralization. The results confirm that the nHA/ Gel Porous Scaffold with Nacre Water-Soluble Matrix has a significant bone promoting effect and can be used as a choice for tissue engineering to repair bone defects.
Collapse
Affiliation(s)
- SiRi-GuLeng Li
- Department of Dentistry, Guangzhou Health Science College, Guangzhou, PR China
| | - Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China; Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Si-Yu Tao
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Tao Han
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Jie Zhou
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Wan-Yun Lin
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Xiang Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Chu-Xing Li
- Department of Dentistry, The Second Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Sunchuri Diwas
- School of International Education, Hainan Medical University, Haikou, PR China
| | - Xiao-Wen Hu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong provincial key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
4
|
Colabella L, Naili S, Le Cann S, Haiat G. Effect of collagen fibril orientation on the anisotropic properties of peri-implant bone. Biomech Model Mechanobiol 2024; 23:879-891. [PMID: 38300439 DOI: 10.1007/s10237-023-01811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
In orthopedic and dental surgery, the implantation of biomaterials within the bone to restore the integrity of the treated organ has become a standard procedure. Their long-term stability relies on the osseointegration phenomena, where bone grows onto and around metallic implants, creating a bone-implant interface. Bone is a highly hierarchical material that evolves spatially and temporally during this healing phase. A deeper understanding of its biomechanical characteristics is needed, as they are determinants for surgical success. In this context, we propose a multiscale homogenization model to evaluate the effective elastic properties of bone as a function of the distance from the implant, based on the tissue's structure and composition at lower scales. The model considers three scales: hydroxyapatite foam (nanoscale), ultrastructure (microscale), and tissue (mesoscale). The elastic properties and the volume fraction of the elementary constituents of bone matrix (mineral, collagen, and water), the orientation of the collagen fibril relative to the implant surface, and the mesoscale porosity constitute the input data of the model. The effect of a spatiotemporal variation in the collagen fibrils' orientation on the bone anisotropic properties in the proximity of the implant was investigated. The findings revealed a strong variation of the components of the effective elasticity tensor of the bone as a function of the distance from the implant. The effective elasticity appears to be primarily sensitive to the porosity (mesoscale) rather than to the collagen fibrils' orientation (sub-micro scale). However, the orientation of the fibrils has a significant influence on the isotropy of the bone. When analyzing the symmetry properties of the effective elasticity tensor, the ratio between the isotropic and hexagonal components is determined by a combination of the porosity and the fibrils' orientation. A decrease in porosity leads to a decrease in bone isotropy and, in turn, an increase in the impact of the fibrils' orientation. These results demonstrate that the collagen fibril orientation should be taken into account to properly describe the effective elastic anisotropy of bone at the organ scale.
Collapse
Affiliation(s)
- Lucas Colabella
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, F-94010, Creteil, France
- INTEMA, CONICET, Av. Cristóbal Colón 10850, B7606BWV, Mar del Plata, Argentina
| | - Salah Naili
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010, Creteil, France
| | - Sophie Le Cann
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, F-94010, Creteil, France
| | - Guillaume Haiat
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, F-94010, Creteil, France.
| |
Collapse
|
5
|
Casanova EA, Rodriguez-Palomo A, Stähli L, Arnke K, Gröninger O, Generali M, Neldner Y, Tiziani S, Dominguez AP, Guizar-Sicairos M, Gao Z, Appel C, Nielsen LC, Georgiadis M, Weber FE, Stark W, Pape HC, Cinelli P, Liebi M. SAXS imaging reveals optimized osseointegration properties of bioengineered oriented 3D-PLGA/aCaP scaffolds in a critical size bone defect model. Biomaterials 2023; 294:121989. [PMID: 36628888 DOI: 10.1016/j.biomaterials.2022.121989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/01/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023]
Abstract
Healing large bone defects remains challenging in orthopedic surgery and is often associated with poor outcomes and complications. A major issue with bioengineered constructs is achieving a continuous interface between host bone and graft to enhance biological processes and mechanical stability. In this study, we have developed a new bioengineering strategy to produce oriented biocompatible 3D PLGA/aCaP nanocomposites with enhanced osseointegration. Decellularized scaffolds -containing only extracellular matrix- or scaffolds seeded with adipose-derived mesenchymal stromal cells were tested in a mouse model for critical size bone defects. In parallel to micro-CT analysis, SAXS tensor tomography and 2D scanning SAXS were employed to determine the 3D arrangement and nanostructure within the critical-sized bone. Both newly developed scaffold types, seeded with cells or decellularized, showed high osseointegration, higher bone quality, increased alignment of collagen fibers and optimal alignment and size of hydroxyapatite minerals.
Collapse
Affiliation(s)
- Elisa A Casanova
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | | | - Lisa Stähli
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Kevin Arnke
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Yvonne Neldner
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Simon Tiziani
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Ana Perez Dominguez
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | | | - Zirui Gao
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Christian Appel
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Leonard C Nielsen
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | - Franz E Weber
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Wendelin Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Hans-Christoph Pape
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Paolo Cinelli
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland.
| | - Marianne Liebi
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden; Centre for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), St. Gallen, Switzerland
| |
Collapse
|
6
|
Haag SL, Martinez-Alvarez J, Schiele NR, Bernards MT. Delivery of Bioactive Albumin from Multi-Functional Polyampholyte Hydrogels. J Appl Polym Sci 2022; 139:e52846. [PMID: 36404914 PMCID: PMC9673991 DOI: 10.1002/app.52846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/02/2022] [Indexed: 12/27/2022]
Abstract
Tissue engineered scaffolds are currently being explored to aid in healing and regeneration of non-union fractures in bone. Additionally, albumin has been demonstrated to provide benefits to healing when applied to injury sites. This paper focuses on delivery of calcium modified, bioactive bovine serum albumin (BSA) from a multi-functional polyampholyte polymer scaffold. First, the inherent nonfouling and conjugation properties of the polyampholyte hydrogel were verified to determine the impact of calcium exposure. The polyampholyte hydrogel delivery platform was then assessed with calcium titrations and osteoblast-like cell (MC3T3-E1) adhesion, proliferation, and viability evaluations. Finally, integrin inhibitors were used to identify the binding mechanisms that mediate cell adhesion to the calcium-modified BSA-conjugated hydrogels. An increase in cell adhesion was observed following calcium exposure up to 0.075 M, although this and higher calcium concentrations affected hydrogel stability and cell growth. BSA exposed to 0.05 M calcium and delivered from polyampholyte hydrogels promoted the most promising viable cell adhesion over 7 days. Cell adhesion to the calcium-modified BSA-conjugated hydrogels appeared to be regulated by arginine-glycine-aspartic acid (RGD) and collagen specific integrins. These results demonstrate that the delivery of calcium modified BSA from an implantable polymer scaffold is promising for bone tissue engineering applications.
Collapse
Affiliation(s)
- Stephanie L. Haag
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844
| | | | - Nathan R. Schiele
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844
| | - Matthew T. Bernards
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844
| |
Collapse
|
7
|
Liebi M, Lutz-Bueno V, Guizar-Sicairos M, Schönbauer BM, Eichler J, Martinelli E, Löffler JF, Weinberg A, Lichtenegger H, Grünewald TA. 3D nanoscale analysis of bone healing around degrading Mg implants evaluated by X-ray scattering tensor tomography. Acta Biomater 2021; 134:804-817. [PMID: 34333163 DOI: 10.1016/j.actbio.2021.07.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
The nanostructural adaptation of bone is crucial for its biocompatibility with orthopedic implants. The bone nanostructure also determines its mechanical properties and performance. However, the bone's temporal and spatial nanoadaptation around degrading implants remains largely unknown. Here, we present insights into this important bone adaptation by applying scanning electron microscopy, elemental analysis, and small-angle X-ray scattering tensor tomography (SASTT). We extend the novel SASTT reconstruction method and provide a 3D scattering reciprocal space map per voxel of the sample's volume. From this reconstruction, parameters such as the thickness of the bone mineral particles are quantified, which provide additional information on nanostructural adaptation of bone during healing. We selected a rat femoral bone and a degrading ZX10 magnesium implant as model system, and investigated it over the course of 18 months, using a sham as control. We observe that the bone's nanostructural adaptation starts with an initially fast interfacial bone growth close to the implant, which spreads by a re-orientation of the nanostructure in the bone volume around the implant, and is consolidated in the later degradation stages. These observations reveal the complex bulk bone-implant interactions and enable future research on the related biomechanical bone responses. STATEMENT OF SIGNIFICANCE: Traumatic bone injuries are among the most frequent causes of surgical treatment, and often require the placement of an implant. The ideal implant supports and induces bone formation, while being mechanically and chemically adapted to the bone structure, ensuring a gradual load transfer. While magnesium implants fulfill these requirements, the nanostructural changes during bone healing and implant degradation remain not completely elucidated. Here, we unveil these processes in rat femoral bones with ZX10 magnesium implants and show different stages of bone healing in such a model system.
Collapse
Affiliation(s)
- Marianne Liebi
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden; Paul Scherrer Institut, 5232 Villigen PSI, Switzerland; Center for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland.
| | | | | | - Bernd M Schönbauer
- Institute of Physics and Materials Science, University of Natural Resources and Life Science (BOKU), 1190 Vienna, Austria
| | - Johannes Eichler
- Department of Orthopaedics, Medical University Graz, 8010 Graz, Austria
| | | | - Jörg F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Annelie Weinberg
- Department of Orthopaedics, Medical University Graz, 8010 Graz, Austria
| | - Helga Lichtenegger
- Institute of Physics and Materials Science, University of Natural Resources and Life Science (BOKU), 1190 Vienna, Austria
| | | |
Collapse
|
8
|
Slay EE, Meldrum FC, Pensabene V, Amer MH. Embracing Mechanobiology in Next Generation Organ-On-A-Chip Models of Bone Metastasis. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:722501. [PMID: 35047952 PMCID: PMC8757701 DOI: 10.3389/fmedt.2021.722501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis in breast cancer is associated with high mortality. Biomechanical cues presented by the extracellular matrix play a vital role in driving cancer metastasis. The lack of in vitro models that recapitulate the mechanical aspects of the in vivo microenvironment hinders the development of novel targeted therapies. Organ-on-a-chip (OOAC) platforms have recently emerged as a new generation of in vitro models that can mimic cell-cell interactions, enable control over fluid flow and allow the introduction of mechanical cues. Biomaterials used within OOAC platforms can determine the physical microenvironment that cells reside in and affect their behavior, adhesion, and localization. Refining the design of OOAC platforms to recreate microenvironmental regulation of metastasis and probe cell-matrix interactions will advance our understanding of breast cancer metastasis and support the development of next-generation metastasis-on-a-chip platforms. In this mini-review, we discuss the role of mechanobiology on the behavior of breast cancer and bone-residing cells, summarize the current capabilities of OOAC platforms for modeling breast cancer metastasis to bone, and highlight design opportunities offered by the incorporation of mechanobiological cues in these platforms.
Collapse
Affiliation(s)
- Ellen E. Slay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Virginia Pensabene
- School of School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
- School of Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Inoue S, Takito J, Nakamura M. Site-Specific Fracture Healing: Comparison between Diaphysis and Metaphysis in the Mouse Long Bone. Int J Mol Sci 2021; 22:ijms22179299. [PMID: 34502206 PMCID: PMC8430651 DOI: 10.3390/ijms22179299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
The process of fracture healing varies depending upon internal and external factors, such as the fracture site, mode of injury, and mechanical environment. This review focuses on site-specific fracture healing, particularly diaphyseal and metaphyseal healing in mouse long bones. Diaphyseal fractures heal by forming the periosteal and medullary callus, whereas metaphyseal fractures heal by forming the medullary callus. Bone healing in ovariectomized mice is accompanied by a decrease in the medullary callus formation both in the diaphysis and metaphysis. Administration of estrogen after fracture significantly recovers the decrease in diaphyseal healing but fails to recover the metaphyseal healing. Thus, the two bones show different osteogenic potentials after fracture in ovariectomized mice. This difference may be attributed to the heterogeneity of the skeletal stem cells (SSCs)/osteoblast progenitors of the two bones. The Hox genes that specify the patterning of the mammalian skeleton during embryogenesis are upregulated during the diaphyseal healing. Hox genes positively regulate the differentiation of osteoblasts from SSCs in vitro. During bone grafting, the SSCs in the donor’s bone express Hox with adaptability in the heterologous bone. These novel functions of the Hox genes are discussed herein with reference to the site-specificity of fracture healing.
Collapse
|
10
|
Cevolani L, Bianchi G, Costantino E, Staals E, Lucarelli E, Spazzoli B, Frisoni T, Donati DM. Minimally invasive treatment of long bone non-unions with bone marrow concentrate, demineralized bone matrix and platelet-rich fibrin in 38 patients. J Tissue Eng Regen Med 2021; 15:831-840. [PMID: 34318612 DOI: 10.1002/term.3231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022]
Abstract
To determine the efficacy of percutaneous injection of autologous bone marrow concentrated (BMC), demineralized bone matrix (DBM), and platelet rich fibrin (PRF) in the treatment of long bone non-unions. From January 2011 to January 2018 patients with non-union of the lower limbs who were on the waiting list for open grafting with established tibial or femoral non-union and minimal deformity were eligible to participate in this study. Patients were treated with a single percutaneous injection of DBM, BMC and PRF. Our study group comprised 38 patients (26 males and 12 females; mean age 39, range 18 to 65). Non-unions were located in the femur (18 cases) and in the tibia (20 cases). Clinical and imaging follow-up ranged from 4 to 60 months (mean 20 months). Bone union occurred in 30 out of 38 patients (79%) in an average of 7 months (range 3 to 12) and all healed patients had full weight bearing after 9 months on average (range 6 to 12) from injection. In 19 cases the osteosynthesis was removed 12 months on average (range 3 to 36) from surgery. One patient developed infection at the non-union site after treatment. Percutaneous injection of DBM, BMC, and PRF is an effective treatment for long-bone non-unions. This technique allows the bone to heal with a minimally invasive approach and with a hospitalization of 2 days. Key elements of bone regeneration consist of a combination of biological and biomechanical therapeutic approach.
Collapse
Affiliation(s)
- Luca Cevolani
- Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Bianchi
- Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Errani Costantino
- Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Eric Staals
- Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Benedetta Spazzoli
- Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tommaso Frisoni
- Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide M Donati
- Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
11
|
Magnesium whitlockite - omnipresent in pathological mineralisation of soft tissues but not a significant inorganic constituent of bone. Acta Biomater 2021; 125:72-82. [PMID: 33610767 DOI: 10.1016/j.actbio.2021.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
Whitlockite is a calcium phosphate that was first identified in minerals collected from the Palermo Quarry, New Hampshire. The terms magnesium whitlockite [Mg-whitlockite; Ca18Mg2(HPO4)2(PO4)12] and beta-tricalcium phosphate [β-TCP; β-Ca3(PO4)2] are often used interchangeably since Mg-whitlockite is not easily distinguished from β-Ca3(PO4)2 by powder X-ray diffraction although their crystalline structures differ significantly. Being both osteoconductive and bioresorbable, Mg-whitlockite is pursued as a synthetic bone graft substitute. In recent years, advances in development of synthetic Mg-whitlockite have been accompanied by claims that Mg-whitlockite is the second most abundant inorganic constituent of bone, occupying as much as 20-35 wt% of the inorganic fraction. To find evidence in support of this notion, this review presents an exhaustive summary of Mg-whitlockite identification in biological tissues. Mg-whitlockite is mainly found in association with pathological mineralisation of various soft tissues and dental calculus, and occasionally with enamel and dentine. With the exception of high-temperature treated tumoural calcified deposits around interphalangeal and metacarpal joints and rhomboidal Mg-whitlockite crystals in post-apoptotic osteocyte lacunae in human alveolar bone, this unusual mineral has never been detected in the extracellular matrix of mammalian bone. Characterisation techniques capable of unequivocally distinguishing between different calcium phosphate phases, such as high-resolution imaging, crystallography, and/or spectroscopy have exclusively identified bone mineral as poorly crystalline, ion-substituted, carbonated apatite. The idea that Mg-whitlockite is a significant constituent of bone mineral remains unsubstantiated. Contrary to claims that such biomaterials represent a bioinspired/biomimetic approach to bone repair, Mg-whitlockite remains, exclusively, a pathological biomineral. STATEMENT OF SIGNIFICANCE: Magnesium whitlockite (Mg-whitlockite) is a unique calcium phosphate that typically features in pathological calcification of soft tissues; however, an alarming trend emerging in the synthetic bioceramics community claims that Mg-whitlockite occupies 20-35 wt% of bone mineral and therefore synthetic Mg-whitlockite represents a biomimetic approach towards bone regeneration. By providing an overview of Mg-whitlockite detection in biological tissues and scrutinising a diverse cross-section of literature relevant to bone composition analysis, this review concludes that Mg-whitlockite is exclusively a pathological biomineral, and having never been reported in bone extracellular matrix, Mg-whitlockite does not constitute a biomimetic strategy for bone repair.
Collapse
|
12
|
Schemenz V, Gjardy A, Chamasemani FF, Roschger A, Roschger P, Zaslansky P, Helfen L, Burghammer M, Fratzl P, Weinkamer R, Brunner R, Willie BM, Wagermaier W. Heterogeneity of the osteocyte lacuno-canalicular network architecture and material characteristics across different tissue types in healing bone. J Struct Biol 2020; 212:107616. [PMID: 32920138 DOI: 10.1016/j.jsb.2020.107616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
Various tissue types, including fibrous connective tissue, bone marrow, cartilage, woven and lamellar bone, coexist in healing bone. Similar to most bone tissue type, healing bone contains a lacuno-canalicular network (LCN) housing osteocytes. These cells are known to orchestrate bone remodeling in healthy bone by sensing mechanical strains and translating them into biochemical signals. The structure of the LCN is hypothesized to influence mineralization processes. Hence, the aim of the present study was to visualize and match spatial variations in the LCN topology with mineral characteristics, within and at the interfaces of the different tissue types that comprise healing bone. We applied a correlative multi-method approach to visualize the LCN architecture and quantify mineral particle size and orientation within healing femoral bone in a mouse osteotomy model (26 weeks old C57BL/6 mice). This approach revealed structural differences across several length scales during endochondral ossification within the following regions: calcified cartilage, bony callus, cortical bone and a transition zone between the cortical and callus region analyzed 21 days after the osteotomy. In this transition zone, we observed a continuous convergence of mineral characteristics and osteocyte lacunae shape as well as discontinuities in the lacunae volume and LCN connectivity. The bony callus exhibits a 34% higher lacunae number density and 40% larger lacunar volume compared to cortical bone. The presented correlations between LCN architecture and mineral characteristics improves our understanding of how bone develops during healing and may indicate a contribution of osteocytes to bone (re)modeling.
Collapse
Affiliation(s)
- Victoria Schemenz
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - André Gjardy
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | - Andreas Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany; Paris-Lodron-University of Salzburg, Department of Chemistry and Physics of Materials, Salzburg, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of ÖGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitaetsmedizin Berlin, Berlin 14197, Germany
| | - Lukas Helfen
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany; Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | | | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Richard Weinkamer
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Roland Brunner
- Materials Center Leoben Forschung GmbH, 8700 Leoben, Austria
| | - Bettina M Willie
- Research Centre, Shriners Hospitals for Children-Canada, Department of Pediatric Surgery, McGill University, 1003 Decarie Blvd, Montreal, Quebec H4A 0A9, Canada
| | - Wolfgang Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
13
|
Le Cann S, Törnquist E, Silva Barreto I, Fraulob M, Albini Lomami H, Verezhak M, Guizar-Sicairos M, Isaksson H, Haïat G. Spatio-temporal evolution of hydroxyapatite crystal thickness at the bone-implant interface. Acta Biomater 2020; 116:391-399. [PMID: 32937205 DOI: 10.1016/j.actbio.2020.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 02/02/2023]
Abstract
A better understanding of bone nanostructure around the bone-implant interface is essential to improve longevity of clinical implants and decrease failure risks. This study investigates the spatio-temporal evolution of mineral crystal thickness and plate orientation in newly formed bone around the surface of a metallic implant. Standardized coin-shaped titanium implants designed with a bone chamber were inserted into rabbit tibiae for 7 and 13 weeks. Scanning measurements with micro-focused small-angle X-ray scattering (SAXS) were carried out on newly formed bone close to the implant and in control mature cortical bone. Mineral crystals were thinner close to the implant (1.8 ± 0.45 nm at 7 weeks and 2.4 ± 0.57 nm at 13 weeks) than in the control mature bone tissue (2.5 ± 0.21 nm at 7 weeks and 2.8 ± 0.35 nm at 13 weeks), with increasing thickness over healing time (+30 % in 6 weeks). These results are explained by younger bone close to the implant, which matures during osseointegration. Thinner mineral crystals parallel to the implant surface within the first 100 µm indicate that the implant affects the ultrastructure of neighbouring bone , potentially due to heterogeneous interfacial stresses, and suggest a longer maturation process of bone tissue and difficulty in binding to the metal. The bone growth kinetics within the bone chamber was derived from the spatio-temporal evolution of bone tissue's nanostructure, coupled with microtomographic imaging. The findings indicate that understanding mineral crystal thickness or plate orientation can improve our knowledge of osseointegration.
Collapse
Affiliation(s)
- Sophie Le Cann
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France.
| | - Elin Törnquist
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | | | - Manon Fraulob
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France
| | - Hugues Albini Lomami
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France
| | - Mariana Verezhak
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland
| | | | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Guillaume Haïat
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France
| |
Collapse
|
14
|
Travascio F, Buller LT, Milne E, Latta L. Mechanical performance and implications on bone healing of different screw configurations for plate fixation of diaphyseal tibia fractures: a computational study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 31:121-130. [PMID: 32725431 DOI: 10.1007/s00590-020-02749-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/18/2020] [Indexed: 10/23/2022]
Abstract
Diaphyseal tibia fractures may require plate fixation for proper healing to occur. Currently, there is no consensus on the number of screws required for proper fixation or the optimal placement of the screws within the plate. Mechanical stability of the construct is a leading criterion for choosing plate and screws configuration. However, number and location of screws have implications on the mechanical environment at the fracture site and, consequently, on bone healing response: The interfragmentary motion attained with a specific plate and screw construct may elicit mechano-transduction signals influencing cell-type differentiation, which in turn affects how well the fracture heals. This study investigated how different screw configurations affect mechanical performance of a tibia plate fixation construct. Three configurations of an eight-hole plate were considered with the fracture in the center of the plate: eight screws-screws at first, fourth, fifth and eighth hole and screws at first, third, sixth and eighth hole. Constructs' stiffness was compared through biomechanical tests on bone surrogates. A finite element model of tibia diaphyseal fracture was used to conduct a stress analysis on the implanted hardware. Finally, the potential for bone regeneration of each screw configuration was assessed via the computational model through the evaluation of the magnitude of mechano-transduction signals at the bone callus. The results of this study indicate that having screws at fourth and fifth holes represents a preferable configuration since it provides mechanical properties similar to those attained by the stiffest construct (eight screws), and elicits an ideal bone regenerative response.
Collapse
Affiliation(s)
- Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Drive, Mc Arthur Engineering Building #276, Coral Gables, FL, USA. .,Department of Orthopaedic Surgery, University of Miami, Miami, FL, USA. .,Max Biedermann Institute for Biomechanics at Mount Sinai, Miami Beach, FL, USA.
| | - Leonard T Buller
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward Milne
- Max Biedermann Institute for Biomechanics at Mount Sinai, Miami Beach, FL, USA
| | - Loren Latta
- Department of Orthopaedic Surgery, University of Miami, Miami, FL, USA.,Max Biedermann Institute for Biomechanics at Mount Sinai, Miami Beach, FL, USA
| |
Collapse
|
15
|
Zimmermann EA, Riedel C, Schmidt FN, Stockhausen KE, Chushkin Y, Schaible E, Gludovatz B, Vettorazzi E, Zontone F, Püschel K, Amling M, Ritchie RO, Busse B. Mechanical Competence and Bone Quality Develop During Skeletal Growth. J Bone Miner Res 2019; 34:1461-1472. [PMID: 30913317 DOI: 10.1002/jbmr.3730] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 02/01/2023]
Abstract
Bone fracture risk is influenced by bone quality, which encompasses bone's composition as well as its multiscale organization and architecture. Aging and disease deteriorate bone quality, leading to reduced mechanical properties and higher fracture incidence. Largely unexplored is how bone quality and mechanical competence progress during longitudinal bone growth. Human femoral cortical bone was acquired from fetal (n = 1), infantile (n = 3), and 2- to 14-year-old cases (n = 4) at the mid-diaphysis. Bone quality was assessed in terms of bone structure, osteocyte characteristics, mineralization, and collagen orientation. The mechanical properties were investigated by measuring tensile deformation at multiple length scales via synchrotron X-ray diffraction. We find dramatic differences in mechanical resistance with age. Specifically, cortical bone in 2- to 14-year-old cases exhibits a 160% greater stiffness and 83% higher strength than fetal/infantile cases. The higher mechanical resistance of the 2- to 14-year-old cases is associated with advantageous bone quality, specifically higher bone volume fraction, better micronscale organization (woven versus lamellar), and higher mean mineralization compared with fetal/infantile cases. Our study reveals that bone quality is superior after remodeling/modeling processes convert the primary woven bone structure to lamellar bone. In this cohort of female children, the microstructural differences at the femoral diaphysis were apparent between the 1- to 2-year-old cases. Indeed, the lamellar bone in 2- to 14-year-old cases had a superior structural organization (collagen and osteocyte characteristics) and composition for resisting deformation and fracture than fetal/infantile bone. Mechanistically, the changes in bone quality during longitudinal bone growth lead to higher fracture resistance because collagen fibrils are better aligned to resist tensile forces, while elevated mean mineralization reinforces the collagen scaffold. Thus, our results reveal inherent weaknesses of the fetal/infantile skeleton signifying its inferior bone quality. These results have implications for pediatric fracture risk, as bone produced at ossification centers during children's longitudinal bone growth could display similarly weak points. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Christoph Riedel
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Kilian E Stockhausen
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Yuriy Chushkin
- Beamline ID 10, European Synchrotron Radiation Facility, Grenoble, France
| | - Eric Schaible
- Experimental Systems Group, Advanced Light Source, Berkeley, CA, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, NSW, Australia
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center, Hamburg, Germany
| | - Federico Zontone
- Beamline ID 10, European Synchrotron Radiation Facility, Grenoble, France
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| |
Collapse
|
16
|
Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone-a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res 2019; 7:15. [PMID: 31123620 PMCID: PMC6531483 DOI: 10.1038/s41413-019-0053-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair. The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone. It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view. Interactions between incident electrons and atoms on the sample surface generate backscattered electrons, secondary electrons, and various other signals including X-rays that relay compositional and topographical information. Through selective removal or preservation of specific tissue components (organic, inorganic, cellular, vascular), their individual contribution(s) to the overall functional competence can be elucidated. With few restrictions on sample geometry and a variety of applicable sample-processing routes, a given sample may be conveniently adapted for multiple analytical methods. While a conventional SEM operates at high vacuum conditions that demand clean, dry, and electrically conductive samples, non-conductive materials (e.g., bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope. This review highlights important insights gained into bone microstructure and pathophysiology, bone response to implanted biomaterials, elemental analysis, SEM in paleoarchaeology, 3D imaging using focused ion beam techniques, correlative microscopy and in situ experiments. The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum, the SEM lends itself to many unique and diverse applications, which attest to the versatility and user-friendly nature of this instrument for studying bone. Significant technological developments are anticipated for analysing bone using the SEM.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Lei L, Liu Z, Yuan P, Jin R, Wang X, Jiang T, Chen X. Injectable colloidal hydrogel with mesoporous silica nanoparticles for sustained co-release of microRNA-222 and aspirin to achieve innervated bone regeneration in rat mandibular defects. J Mater Chem B 2019; 7:2722-2735. [PMID: 32255005 DOI: 10.1039/c9tb00025a] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nerve fibers and vessels play important roles in bone formation, and inadequate innervation in the bone defect area can delay the regeneration process. However, there are few studies aiming to promote innervation to engineer bone formation. Here, we report the development of an injectable thermoresponsive mesoporous silica nanoparticle (MSN)-embedded core-shell structured poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)-b-poly(N-isopropylacrylamide) (PEG-PLGA-PNIPAM) hydrogel for localized and long-term co-delivery of microRNA-222 and aspirin (ASP) (miR222/MSN/ASP hydrogel). ASP was found to stimulate bone formation as previously reported, and miR222 induced human bone mesenchymal stem cell differentiation into neural-like cells through Wnt/β-catenin/Nemo-like kinase signaling. In a rat mandibular bone defect, injection of the co-delivered MSN hydrogel resulted in neurogenesis and enhanced bone formation, indicating that the present injectable miR222- and ASP-co-delivering colloidal hydrogel is a promising material for innervated bone tissue engineering.
Collapse
Affiliation(s)
- Lei Lei
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Petersen A, Princ A, Korus G, Ellinghaus A, Leemhuis H, Herrera A, Klaumünzer A, Schreivogel S, Woloszyk A, Schmidt-Bleek K, Geissler S, Heschel I, Duda GN. A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat Commun 2018; 9:4430. [PMID: 30361486 PMCID: PMC6202397 DOI: 10.1038/s41467-018-06504-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Biomaterials developed to treat bone defects have classically focused on bone healing via direct, intramembranous ossification. In contrast, most bones in our body develop from a cartilage template via a second pathway called endochondral ossification. The unsolved clinical challenge to regenerate large bone defects has brought endochondral ossification into discussion as an alternative approach for bone healing. However, a biomaterial strategy for the regeneration of large bone defects via endochondral ossification is missing. Here we report on a biomaterial with a channel-like pore architecture to control cell recruitment and tissue patterning in the early phase of healing. In consequence of extracellular matrix alignment, CD146+ progenitor cell accumulation and restrained vascularization, a highly organized endochondral ossification process is induced in rats. Our findings demonstrate that a pure biomaterial approach has the potential to recapitulate a developmental bone growth process for bone healing. This might motivate future strategies for biomaterial-based tissue regeneration.
Collapse
Affiliation(s)
- A Petersen
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - A Princ
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - G Korus
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - A Ellinghaus
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - H Leemhuis
- Matricel GmbH, Kaiserstrasse 100, 52134, Herzogenrath, Germany
| | - A Herrera
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - A Klaumünzer
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - S Schreivogel
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - A Woloszyk
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Orthopaedic Surgery, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr, 78229, San Antonio, TX, USA
| | - K Schmidt-Bleek
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - S Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - I Heschel
- Matricel GmbH, Kaiserstrasse 100, 52134, Herzogenrath, Germany
| | - G N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
19
|
Kruck B, Zimmermann EA, Damerow S, Figge C, Julien C, Wulsten D, Thiele T, Martin M, Hamdy R, Reumann MK, Duda GN, Checa S, Willie BM. Sclerostin Neutralizing Antibody Treatment Enhances Bone Formation but Does Not Rescue Mechanically Induced Delayed Healing. J Bone Miner Res 2018; 33:1686-1697. [PMID: 29694687 DOI: 10.1002/jbmr.3454] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 12/31/2022]
Abstract
During bone healing, tissue formation processes are governed by mechanical strain. Sost/sclerostin, a key Wnt signaling inhibitor and mechano-sensitive pathway, is downregulated in response to mechanical loading. Sclerostin neutralizing antibody (SclAb) increases bone formation. Nevertheless, it remains unclear whether sclerostin inhibition can rescue bone healing in situations of mechanical instability, which otherwise delay healing. We investigated SclAb's influence on tissue formation in a mouse femoral osteotomy, stabilized with rigid or semirigid external fixation. The different fixations allowed different magnitudes of interfragmentary movement during weight bearing, thereby influencing healing outcome. SclAb or vehicle (veh) was administeredand bone healing was assessed at multiple time points up to day 21 postoperatively by in vivo micro-computed tomography, histomorphometry, biomechanical testing, immunohistochemistry, and gene expression. Our results show that SclAb treatment caused a greater bone volume than veh. However, SclAb could not overcome the characteristic delayed healing of semirigid fixation. Indeed, semirigid fixation resulted in delayed healing with a prolonged endochondral ossification phase characterized by increased cartilage, lower bone volume fraction, and less bony bridging across the osteotomy gap than rigid fixation. In a control setting, SclAb negatively affected later stages of healing under rigid fixation, evidenced by the high degree of endosteal bridging at 21 days in the rigid-SclAb group compared with rigid-veh, indicating delayed fracture callus remodeling and bone marrow reconstitution. Under rigid fixation, Sost and sclerostin expression at the gene and protein level, respectively, were increased in SclAb compared with veh-treated bones, suggesting a negative feedback mechanism. Our results suggest that SclAb could be used to enhance overall bone mass but should be carefully considered in bone healing. SclAb may help to increase bone formation early in the healing process but not during advanced stages of fracture callus remodeling and not to overcome delayed healing in semirigid fixation. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bettina Kruck
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elizabeth A Zimmermann
- Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Sophie Damerow
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Figge
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Dag Wulsten
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Thiele
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Madge Martin
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Laboratoire Modélisation et Simulation Multi-Echelle, Université Paris-Est Créteil, Paris, France
| | - Reggie Hamdy
- Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Marie K Reumann
- Siegfried Weller Institut für Unfallmedizinische Forschung, Berufsgenossenschaftliche Unfallklinik, Eberhard Karls Universität, Tuebingen, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada
| |
Collapse
|
20
|
Del Amo C, Olivares V, Cóndor M, Blanco A, Santolaria J, Asín J, Borau C, García-Aznar JM. Matrix architecture plays a pivotal role in 3D osteoblast migration: The effect of interstitial fluid flow. J Mech Behav Biomed Mater 2018; 83:52-62. [PMID: 29677555 DOI: 10.1016/j.jmbbm.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Osteoblast migration is a crucial process in bone regeneration, which is strongly regulated by interstitial fluid flow. However, the exact role that such flow exerts on osteoblast migration is still unclear. To deepen the understanding of this phenomenon, we cultured human osteoblasts on 3D microfluidic devices under different fluid flow regimes. Our results show that a slow fluid flow rate by itself is not able to alter the 3D migratory patterns of osteoblasts in collagen-based gels but that at higher fluid flow rates (increased flow velocity) may indirectly influence cell movement by altering the collagen microstructure. In fact, we observed that high fluid flow rates (1 µl/min) are able to alter the collagen matrix architecture and to indirectly modulate the migration pattern. However, when these collagen scaffolds were crosslinked with a chemical crosslinker, specifically, transglutaminase II, we did not find significant alterations in the scaffold architecture or in osteoblast movement. Therefore, our data suggest that high interstitial fluid flow rates can regulate osteoblast migration by means of modifying the orientation of collagen fibers. Together, these results highlight the crucial role of the matrix architecture in 3D osteoblast migration. In addition, we show that interstitial fluid flow in conjunction with the matrix architecture regulates the osteoblast morphology in 3D.
Collapse
Affiliation(s)
- Cristina Del Amo
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - Vanesa Olivares
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - Mar Cóndor
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - Alejandro Blanco
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Department of Design and Manufacturing Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jorge Santolaria
- Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain; Department of Design and Manufacturing Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jesús Asín
- Department of Statistical Methods, University of Zaragoza, Zaragoza, Spain
| | - Carlos Borau
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
21
|
Mathavan N, Turunen MJ, Guizar-Sicairos M, Bech M, Schaff F, Tägil M, Isaksson H. The compositional and nano-structural basis of fracture healing in healthy and osteoporotic bone. Sci Rep 2018; 8:1591. [PMID: 29371668 PMCID: PMC5785543 DOI: 10.1038/s41598-018-19296-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 12/28/2017] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis, a prevalent metabolic bone disorder, predisposes individuals to increased susceptibility to fractures. It is also, somewhat controversially, thought to delay or impair the regenerative response. Using high-resolution Fourier-transform infrared spectroscopy and small/wide-angle X-ray scattering we sought to answer the following questions: Does the molecular composition and the nano-structure in the newly regenerated bone differ between healthy and osteoporotic environments? And how do pharmacological treatments, such as bone morphogenetic protein 7 (BMP-7) alone or synergistically combined with zoledronate (ZA), alter callus composition and nano-structure in such environments? Cumulatively, on the basis of compositional and nano-structural characterizations of newly formed bone in an open-osteotomy rat model, the healing response in untreated healthy and ovariectomy-induced osteoporotic environments was fundamentally the same. However, the BMP-7 induced osteogenic response resulted in greater heterogeneity in the nano-structural crystal dimensions and this effect was more pronounced with osteoporosis. ZA mitigated the effects of the upregulated catabolism induced by both BMP-7 and an osteoporotic bone environment. The findings contribute to our understanding of how the repair processes in healthy and osteoporotic bone differ in both untreated and treated contexts and the data presented represents the most comprehensive study of fracture healing at the nanoscale undertaken to date.
Collapse
Affiliation(s)
- Neashan Mathavan
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Mikael J Turunen
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Martin Bech
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Florian Schaff
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Magnus Tägil
- Department of Orthopaedics, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopaedics, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
22
|
Correlations between nanostructure and micromechanical properties of healing bone. J Mech Behav Biomed Mater 2018; 77:258-266. [DOI: 10.1016/j.jmbbm.2017.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022]
|
23
|
Willumeit-Römer R, Moosmann J, Zeller-Plumhoff B, Florian Wieland DC, Krüger D, Wiese B, Wennerberg A, Peruzzi N, Galli S, Beckmann F, Hammel JU. Visualization of Implant Failure by Synchrotron Tomography. THE MINERALS, METALS & MATERIALS SERIES 2018. [DOI: 10.1007/978-3-319-72526-0_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
Somford MP, van Ruijven LJ, Kloen P, Bakker AD. Histological and micro Computed Tomography analysis of a femoral stress fracture associated with prolonged bisphosphonate use. ACTA ACUST UNITED AC 2017; 14:92-96. [PMID: 28740533 DOI: 10.11138/ccmbm/2017.14.1.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The origin of atypical femoral fractures (AFF) associated with bisphosphonate therapy remains to be elucidated. In this study, a biopsy of an AFF site is analyzed to determine whether microdamage and/or morphological changes are present in the area of the AFF. MATERIAL AND METHODS Cortical bone from an AFF region was obtained during a preventive stabilization in a patient with a symptomatic AFF. This bone was scanned using microCT (resolution=0.01 mm), stained with basic fuchsin and analyzed histologically. RESULTS The diameter of the Haversian canals was higher in the vicinity of the AFF compared to the bone further away from the AFF. The bone mineral density within the cortex ranged from 1020 to 1080 mg HA/cm3. We observed penetration of basic fuchsin into the matrix, which is a tell-tale sign of diffuse damage. DISCUSSION The higher diameter of haversian canals is likely to result in higher local stresses and consequently increased microdamage. The diffuse microdamage in the biopsy may furthermore be directly related to bisphosphonate use, preventing repair of microdamage, and consequently the development of the AFF. CONCLUSION Increased porosity of the cortex and accumulation of microdamage might have lead to a stress fracture and ultimately a complete AFF.
Collapse
Affiliation(s)
| | - Leo J van Ruijven
- Department of Oral Cell Biology and Functional Anatomy, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Peter Kloen
- Department of Orthopaedic Surgery, AMC, Groningen, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology and Functional Anatomy, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Seidel R, Blumer M, Zaslansky P, Knötel D, Huber DR, Weaver JC, Fratzl P, Omelon S, Bertinetti L, Dean MN. Ultrastructural, material and crystallographic description of endophytic masses – A possible damage response in shark and ray tessellated calcified cartilage. J Struct Biol 2017; 198:5-18. [DOI: 10.1016/j.jsb.2017.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/23/2022]
|
26
|
Casanova M, Balmelli A, Carnelli D, Courty D, Schneider P, Müller R. Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160971. [PMID: 28386450 PMCID: PMC5367284 DOI: 10.1098/rsos.160971] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/20/2017] [Indexed: 06/07/2023]
Abstract
Studies investigating micromechanical properties in mouse cortical bone often solely focus on the mechanical behaviour along the long axis of the bone. Therefore, data on the anisotropy of mouse cortical bone is scarce. The aim of this study is the first-time evaluation of the anisotropy ratio between the longitudinal and transverse directions of reduced modulus and hardness in mouse femurs by using the nanoindentation technique. For this purpose, nine 22-week-old mice (C57BL/6) were sacrificed and all femurs extracted. A total of 648 indentations were performed with a Berkovich tip in the proximal (P), central (C) and distal (D) regions of the femoral shaft in the longitudinal and transverse directions. Higher values for reduced modulus are obtained for indentations in the longitudinal direction, with anisotropy ratios of 1.72 ± 0.40 (P), 1.75 ± 0.69 (C) and 1.34 ± 0.30 (D). Hardness is also higher in the longitudinal direction, with anisotropic ratios of 1.35 ± 0.27 (P), 1.35 ± 0.47 (C) and 1.17 ± 0.19 (D). We observed a significant anisotropy in the micromechanical properties of the mouse femur, but the correlation for reduced modulus and hardness between the two directions is low (r2 < 0.3) and not significant. Therefore, we highly recommend performing independent indentation testing in both the longitudinal and transverse directions when knowledge of the tissue mechanical behaviour along multiple directions is required.
Collapse
Affiliation(s)
| | - Anna Balmelli
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Davide Carnelli
- Complex Materials, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Diana Courty
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Casanova M, Balmelli A, Carnelli D, Courty D, Schneider P, Müller R. Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone. ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 28386450 DOI: 10.5061/dryad.h5p79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Studies investigating micromechanical properties in mouse cortical bone often solely focus on the mechanical behaviour along the long axis of the bone. Therefore, data on the anisotropy of mouse cortical bone is scarce. The aim of this study is the first-time evaluation of the anisotropy ratio between the longitudinal and transverse directions of reduced modulus and hardness in mouse femurs by using the nanoindentation technique. For this purpose, nine 22-week-old mice (C57BL/6) were sacrificed and all femurs extracted. A total of 648 indentations were performed with a Berkovich tip in the proximal (P), central (C) and distal (D) regions of the femoral shaft in the longitudinal and transverse directions. Higher values for reduced modulus are obtained for indentations in the longitudinal direction, with anisotropy ratios of 1.72 ± 0.40 (P), 1.75 ± 0.69 (C) and 1.34 ± 0.30 (D). Hardness is also higher in the longitudinal direction, with anisotropic ratios of 1.35 ± 0.27 (P), 1.35 ± 0.47 (C) and 1.17 ± 0.19 (D). We observed a significant anisotropy in the micromechanical properties of the mouse femur, but the correlation for reduced modulus and hardness between the two directions is low (r2 < 0.3) and not significant. Therefore, we highly recommend performing independent indentation testing in both the longitudinal and transverse directions when knowledge of the tissue mechanical behaviour along multiple directions is required.
Collapse
Affiliation(s)
| | - Anna Balmelli
- Institute for Biomechanics , ETH Zürich , Zürich , Switzerland
| | - Davide Carnelli
- Complex Materials, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Diana Courty
- Laboratory for Nanometallurgy, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Ralph Müller
- Institute for Biomechanics , ETH Zürich , Zürich , Switzerland
| |
Collapse
|
28
|
Masic A, Schuetz R, Bertinetti L, Li C, Siegel S, Metzger H, Wagermaier W, Fratzl P. Multiscale Analysis of Mineralized Collagen Combining X-ray Scattering and Fluorescence with Raman Spectroscopy under Controlled Mechanical, Thermal, and Humidity Environments. ACS Biomater Sci Eng 2017; 3:2853-2859. [DOI: 10.1021/acsbiomaterials.6b00676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Admir Masic
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139 Cambridge, United States
| | - Roman Schuetz
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Luca Bertinetti
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Chenghao Li
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Stefan Siegel
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Hartmut Metzger
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Wolfgang Wagermaier
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Peter Fratzl
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| |
Collapse
|
29
|
Okoukoni C, Lynch SK, McTyre ER, Randolph DM, Weaver AA, Blackstock AW, Lally BE, Munley MT, Willey JS. A cortical thickness and radiation dose mapping approach identifies early thinning of ribs after stereotactic body radiation therapy. Radiother Oncol 2016; 119:449-53. [DOI: 10.1016/j.radonc.2016.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/08/2023]
|
30
|
Grünewald T, Ogier A, Akbarzadeh J, Meischel M, Peterlik H, Stanzl-Tschegg S, Löffler J, Weinberg A, Lichtenegger H. Reaction of bone nanostructure to a biodegrading Magnesium WZ21 implant - A scanning small-angle X-ray scattering time study. Acta Biomater 2016; 31:448-457. [PMID: 26621693 DOI: 10.1016/j.actbio.2015.11.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 01/07/2023]
Abstract
Understanding the implant-bone interaction is of prime interest for the development of novel biodegrading implants. Magnesium is a very promising material in the class of biodegrading metallic implants, owing to its mechanical properties and excellent immunologic response during healing. However, the influence of degrading Mg implants on the bone nanostructure is still an open question of crucial importance for the design of novel Mg implant alloys. This study investigates the changes in the nanostructure of bone following the application of a degrading WZ21 Mg implant (2wt% Y, 1wt% Zn, 0.25wt% Ca and 0.15wt% Mn) in a murine model system over the course of 15months by small angle X-ray scattering. Our investigations showed a direct response of the bone nanostructure after as little as 1month with a realignment of nano-sized bone mineral platelets along the bone-implant interface. The growth of new bone tissue after implant resorption is characterized by zones of lower mineral platelet thickness and slightly decreased order in the stacking of the platelets. The preferential orientation of the mineral platelets strongly deviates from the normal orientation along the shaft and still roughly follows the implant direction after 15months. We explain our findings by considering geometrical, mechanical and chemical factors during the process of implant resorption. STATEMENT OF SIGNIFICANCE The advancement of surgical techniques and the increased life expectancy have caused a growing demand for improved bone implants. Ideally, they should be bio-resorbable, support bone as long as necessary and then be replaced by healthy bone tissue. Magnesium is a promising candidate for this purpose. Various studies have demonstrated its excellent mechanical performance, degradation behaviour and immunologic properties. The structural response of bone, however, is not well known. On the nanometer scale, the arrangement of collagen fibers and calcium mineral platelets is an important indicator of structural integrity. The present study provides insight into nanostructural changes in rat bone at different times after implant placement and different implant degradation states. The results are useful for further improved magnesium alloys.
Collapse
|
31
|
Ciocca L, Lesci IG, Mezini O, Parrilli A, Ragazzini S, Rinnovati R, Romagnoli N, Roveri N, Scotti R. Customized hybrid biomimetic hydroxyapatite scaffold for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2015; 105:723-734. [PMID: 26708554 DOI: 10.1002/jbm.b.33597] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/28/2015] [Indexed: 01/19/2023]
Abstract
Three-dimension (3D) scaffolds for bone tissue regeneration were produced combining three different phases: nanometric hydroxyapatite (HA) was synthesized by precipitation method and the crystals nucleation took place directly within collagen fibrils following a biologically inspired mineralization process; polycaprolactone was employed to give the material a 3D structure. The chemico-physical analysis carried out to test the material's properties and composition revealed a high similarity in composition and morphology with biologically mineralized collagen fibrils and a scaffold degradation pattern suitable for physiological processes. The micro- computerized tomography (micro-CT) showed 53.53% porosity and a 97.86% mean interconnected pores. Computer-aided design and computer-aided manufacturing (CAD-CAM) technology was used for molding the scaffold's volume (design/shape) and for guiding the surgical procedure (cutting guides). The custom made scaffolds were implanted in sheep mandible using prototyped surgical guides and customized bone plates. After three months healing, scanning electron microscopy (SEM) analysis of the explanted scaffold revealed a massive cell seeding of the scaffold, with cell infiltration within the scaffold's interconnected pores. The micro-CT of the explanted construct showed a good match between the scaffold and the adjacent host's bone, to shield the implant primary stability. Histology confirmed cell penetration and widely documented neoangiogenesis within the entire scaffold's volume. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 723-734, 2017.
Collapse
Affiliation(s)
- L Ciocca
- Department of Biomedical and Neuromotor Science, Section of Prosthodontics, Alma Mater Studiorum University of Bologna, 40125, Bologna, Italy
| | - I G Lesci
- Laboratory for Environment Biotechnology Structural engineering and Chemistry, LEBSC s.r.l. Bologna, Italy
| | - O Mezini
- Laboratory for Environment Biotechnology Structural Engineering and Chemistry, LEBSC s.r.l. Bologna, Italy
| | - A Parrilli
- Biocompatibility, Technological Innovations and Advanced Therapies Laboratory (BITTA), Rizzoli Orthopaedic Institute, 40136, Bologna, Italy
| | - S Ragazzini
- Department of Biomedical and Neuromotor Science - DIBINEM, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| | - R Rinnovati
- Faculty of Veterinary Medicine, Alma Mater Studiorum University of Bologna, Ozzano Emilia, Italy
| | - N Romagnoli
- Faculty of Veterinary Medicine, Alma Mater Studiorum University of Bologna, Ozzano Emilia, Italy
| | - N Roveri
- Department of Chemistry "G. Ciamician" via Selmi 2, University of Bologna, Italy
| | - R Scotti
- Department of Biomedical and Neuromotor Science, Section of Prosthodontics, Alma Mater Studiorum University of Bologna, 40125, Bologna, Italy
| |
Collapse
|
32
|
Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone. Biomaterials 2015; 76:250-60. [PMID: 26546917 DOI: 10.1016/j.biomaterials.2015.10.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 11/20/2022]
Abstract
Biocompatibility is a key issue in the development of new implant materials. In this context, a novel class of biodegrading Mg implants exhibits promising properties with regard to inflammatory response and mechanical properties. The interaction between Mg degradation products and the nanoscale structure and mineralization of bone, however, is not yet sufficiently understood. Investigations by synchrotron microbeam x-ray fluorescence (μXRF), small angle x-ray scattering (μSAXS) and x-ray diffraction (μXRD) have shown the impact of degradation speed on the sites of Mg accumulation in the bone, which are around blood vessels, lacunae and the bone marrow. Only at the highest degradation rates was Mg found at the implant-bone interface. The Mg inclusion into the bone matrix appeared to be non-permanent as the Mg-level decreased after completed implant degradation. μSAXS and μXRD showed that Mg influences the hydroxyl apatite (HAP) crystallite structure, because markedly shorter and thinner HAP crystallites were found in zones of high Mg concentration. These zones also exhibited a contraction of the HAP lattice and lower crystalline order.
Collapse
|
33
|
Wagermaier W, Klaushofer K, Fratzl P. Fragility of Bone Material Controlled by Internal Interfaces. Calcif Tissue Int 2015; 97:201-12. [PMID: 25772807 PMCID: PMC4525333 DOI: 10.1007/s00223-015-9978-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/28/2015] [Indexed: 12/14/2022]
Abstract
Bone material is built in a complex multiscale arrangement of mineralized collagen fibrils containing water, proteoglycans and some noncollagenous proteins. This organization is not static as bone is constantly remodeled and thus able to repair damaged tissue and adapt to the loading situation. In preventing fractures, the most important mechanical property is toughness, which is the ability to absorb impact energy without reaching complete failure. There is no simple explanation for the origin of the toughness of bone material, and this property depends in a complex way on the internal architecture of the material on all scales from nanometers to millimeters. Hence, fragility may have different mechanical origins, depending on which toughening mechanism is not working properly. This article reviews the toughening mechanisms described for bone material and attempts to put them in a clinical context, with the hope that future analysis of bone fragility may be guided by this collection of possible mechanistic origins.
Collapse
Affiliation(s)
- Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Klaus Klaushofer
- First Medical Department, Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Heinrich Collin Str. 30, 1140 Vienna, Austria
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| |
Collapse
|
34
|
Cipitria A, Wagermaier W, Zaslansky P, Schell H, Reichert J, Fratzl P, Hutmacher D, Duda G. BMP delivery complements the guiding effect of scaffold architecture without altering bone microstructure in critical-sized long bone defects: A multiscale analysis. Acta Biomater 2015; 23:282-294. [PMID: 26004222 DOI: 10.1016/j.actbio.2015.05.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/10/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
Abstract
Scaffold architecture guides bone formation. However, in critical-sized long bone defects additional BMP-mediated osteogenic stimulation is needed to form clinically relevant volumes of new bone. The hierarchical structure of bone determines its mechanical properties. Yet, the micro- and nanostructure of BMP-mediated fast-forming bone has not been compared with slower regenerating bone without BMP. We investigated the combined effects of scaffold architecture (physical cue) and BMP stimulation (biological cue) on bone regeneration. It was hypothesized that a structured scaffold directs tissue organization through structural guidance and load transfer, while BMP stimulation accelerates bone formation without altering the microstructure at different length scales. BMP-loaded medical grade polycaprolactone-tricalcium phosphate scaffolds were implanted in 30mm tibial defects in sheep. BMP-mediated bone formation after 3 and 12 months was compared with slower bone formation with a scaffold alone after 12 months. A multiscale analysis based on microcomputed tomography, histology, polarized light microscopy, backscattered electron microscopy, small angle X-ray scattering and nanoindentation was used to characterize bone volume, collagen fiber orientation, mineral particle thickness and orientation, and local mechanical properties. Despite different observed kinetics in bone formation, similar structural properties on a microscopic and sub-micron level seem to emerge in both BMP-treated and scaffold only groups. The guiding effect of the scaffold architecture is illustrated through structural differences in bone across different regions. In the vicinity of the scaffold increased tissue organization is observed at 3 months. Loading along the long bone axis transferred through the scaffold defines bone micro- and nanostructure after 12 months.
Collapse
|
35
|
Beck-Broichsitter BE, Werk AN, Smeets R, Gröbe A, Heiland M, Cascorbi I, Wiltfang J, Häsler R, Becker ST. Targeting gene expression during the early bone healing period in the mandible: A base for bone tissue engineering. J Craniomaxillofac Surg 2015; 43:1452-60. [PMID: 26189147 DOI: 10.1016/j.jcms.2015.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/21/2015] [Accepted: 06/16/2015] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Although bone tissue engineering techniques have become more and more sophisticated than in the past, natural bone healing mechanisms have not been sufficiently considered for further improvement of these techniques so far. We used an established animal model with transcriptome analysis to generate an unbiased picture of early bone healing to support tissue engineering concepts. MATERIAL AND METHODS In 30 Wistar rats, a 3-mm bone defect was created in the mandibular angle. Tissue was sampled at 5, 10, and 15 days, and the former defect area was excised to undergo transcriptome analysis after RNA extraction. Five differentially expressed genes were further evaluated with reverse transcription-polymerase chain reaction (rt-PCR). RESULTS Transcriptome analysis revealed 2467 significantly over- and under-expressed transcripts after 5 days and 2265 after 15 days of bone healing, respectively. Validation via rt-PCR confirmed overexpression of osteoactivin, angiopoietin-like factor-4, and metallomatrix proteinase-9 and underexpression of mastcellprotease-10 and proteoglycane-2 in comparison to values in the control group. CONCLUSION This systematic genome-wide transcriptome analysis helps to decipher the physiological mechanisms behind physiological bone healing. The exemplary depiction of 5 genes demonstrates the great complexity of metabolic processes during early bone healing. Here, BMP-2 signaling pathways and local hypoxia play decisive roles in bone formation.
Collapse
Affiliation(s)
- Benedicta E Beck-Broichsitter
- University Medical Center Hamburg-Eppendorf, Department of Oral and Maxillofacial Surgery, Martinistraße 52, Campus Forschung Gebäude N27, 20246 Hamburg, Germany.
| | - Anneke N Werk
- Schleswig-Holstein University Hospital, Institute of Clinical and Experimental Pharmacology, Arnold-Heller-Straße 3, Haus 30, 24105 Kiel, Germany
| | - Ralf Smeets
- University Medical Center Hamburg-Eppendorf, Department of Oral and Maxillofacial Surgery, Martinistraße 52, Campus Forschung Gebäude N27, 20246 Hamburg, Germany
| | - Alexander Gröbe
- University Medical Center Hamburg-Eppendorf, Department of Oral and Maxillofacial Surgery, Martinistraße 52, Campus Forschung Gebäude N27, 20246 Hamburg, Germany
| | - Max Heiland
- University Medical Center Hamburg-Eppendorf, Department of Oral and Maxillofacial Surgery, Martinistraße 52, Campus Forschung Gebäude N27, 20246 Hamburg, Germany
| | - Ingolf Cascorbi
- Schleswig-Holstein University Hospital, Institute of Clinical and Experimental Pharmacology, Arnold-Heller-Straße 3, Haus 30, 24105 Kiel, Germany
| | - Jörg Wiltfang
- Schleswig-Holstein University Hospital, Department of Oral and Maxillofacial Surgery (Head: J. Wiltfang, MD, DMD, PhD), Arnold-Heller-Straße 3, Haus 26, 24105 Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Center for Molecular Biosciences, Christian Albrechts University of Kiel, Am Botanischen Garten 11, 24118 Kiel, Germany
| | - Stephan T Becker
- Schleswig-Holstein University Hospital, Department of Oral and Maxillofacial Surgery (Head: J. Wiltfang, MD, DMD, PhD), Arnold-Heller-Straße 3, Haus 26, 24105 Kiel, Germany
| |
Collapse
|