1
|
Wang J, Fan W, Liu B, Pu N, Wu H, Xue R, Li S, Song Z, Tao Y. Encapsulated cell technology: Delivering cytokines to treat posterior ocular diseases. Pharmacol Res 2024; 203:107159. [PMID: 38554790 DOI: 10.1016/j.phrs.2024.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Encapsulated cell technology (ECT) is a targeted delivery method that uses the genetically engineered cells in semipermeable polymer capsules to deliver cytokines. Thus far, ECT has been extensively utilized in pharmacologic research, and shows enormous potentials in the treatment of posterior segment diseases. Due to the biological barriers within the eyeball, it is difficult to attain effective therapeutic concentration in the posterior segment through topical administration of drug molecules. Encouragingly, therapeutic cytokines provided by ECT can cross these biological barriers and achieve sustained release at the desired location. The encapsulation system uses permeable materials that allow growth factors and cytokines to diffuse efficiently into retinal tissue. Moreover, the ECT based treatment can be terminated timely when we need to retrieve the implant, which makes the therapy reversible and provides a safer alternative for intraocular gene therapy. Meanwhile, we also place special emphasis on optimizing encapsulation materials and enhancing preservation techniques to achieve the stable release of growth factors and cytokines in the eyeball. This technology holds great promise for the treatment of patients with dry AMD, RP, glaucoma and MacTel. These findings would enrich our understandings of ECT and promote its future applications in treatment of degenerative retinopathy. This review comprises articles evaluating the exactness of artificial intelligence-based formulas published from 2000 to March 2024. The papers were identified by a literature search of various databases (PubMed/MEDLINE, Google Scholar, Cochrane Library and Web of Science).
Collapse
Affiliation(s)
- Jiale Wang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhui Fan
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Bo Liu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Pu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Rongyue Xue
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; Eye Research institute, Henan Academy of Medical Sciences, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China; Eye Research institute, Henan Academy of Medical Sciences, China.
| |
Collapse
|
2
|
Abbaszadeh S, Nosrati-Siahmazgi V, Musaie K, Rezaei S, Qahremani M, Xiao B, Santos HA, Shahbazi MA. Emerging strategies to bypass transplant rejection via biomaterial-assisted immunoengineering: Insights from islets and beyond. Adv Drug Deliv Rev 2023; 200:115050. [PMID: 37549847 DOI: 10.1016/j.addr.2023.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Novel transplantation techniques are currently under development to preserve the function of impaired tissues or organs. While current technologies can enhance the survival of recipients, they have remained elusive to date due to graft rejection by undesired in vivo immune responses despite systemic prescription of immunosuppressants. The need for life-long immunomodulation and serious adverse effects of current medicines, the development of novel biomaterial-based immunoengineering strategies has attracted much attention lately. Immunomodulatory 3D platforms can alter immune responses locally and/or prevent transplant rejection through the protection of the graft from the attack of immune system. These new approaches aim to overcome the complexity of the long-term administration of systemic immunosuppressants, including the risks of infection, cancer incidence, and systemic toxicity. In addition, they can decrease the effective dose of the delivered drugs via direct delivery at the transplantation site. In this review, we comprehensively address the immune rejection mechanisms, followed by recent developments in biomaterial-based immunoengineering strategies to prolong transplant survival. We also compare the efficacy and safety of these new platforms with conventional agents. Finally, challenges and barriers for the clinical translation of the biomaterial-based immunoengineering transplants and prospects are discussed.
Collapse
Affiliation(s)
- Samin Abbaszadeh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Kiyan Musaie
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Saman Rezaei
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mostafa Qahremani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715 China.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
3
|
Graves LE, Torpy DJ, Coates PT, Alexander IE, Bornstein SR, Clarke B. Future directions for adrenal insufficiency: cellular transplantation and genetic therapies. J Clin Endocrinol Metab 2023; 108:1273-1289. [PMID: 36611246 DOI: 10.1210/clinem/dgac751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Primary adrenal insufficiency occurs in 1 in 5-7000 adults. Leading aetiologies are autoimmune adrenalitis in adults and congenital adrenal hyperplasia (CAH) in children. Oral replacement of cortisol is lifesaving, but poor quality of life, repeated adrenal crises and dosing uncertainty related to lack of a validated biomarker for glucocorticoid sufficiency, persists. Adrenocortical cell therapy and gene therapy may obviate many of the shortcomings of adrenal hormone replacement. Physiological cortisol secretion regulated by pituitary adrenocorticotropin, could be achieved through allogeneic adrenocortical cell transplantation, production of adrenal-like steroidogenic cells from either stem cells or lineage conversion of differentiated cells, or for CAH, gene therapy to replace or repair a defective gene. The adrenal cortex is a high turnover organ and thus failure to incorporate progenitor cells within a transplant will ultimately result in graft exhaustion. Identification of adrenocortical progenitor cells is equally important in gene therapy where new genetic material must be specifically integrated into the genome of progenitors to ensure a durable effect. Delivery of gene editing machinery and a donor template, allowing targeted correction of the 21-hydroxylase gene, has the potential to achieve this. This review describes advances in adrenal cell transplants and gene therapy that may allow physiological cortisol production for children and adults with primary adrenal insufficiency.
Collapse
Affiliation(s)
- Lara E Graves
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - P Toby Coates
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Stefan R Bornstein
- University Clinic Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Brigette Clarke
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
4
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
5
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
6
|
Xue Z, Mei D, Zhang L. Advances in single-cell nanoencapsulation and applications in diseases. J Microencapsul 2022; 39:481-494. [PMID: 35998209 DOI: 10.1080/02652048.2022.2111472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Single-cell nanoencapsulation is a method of coating the surface of single cell with nanomaterials. In the early 20th century, with the introduction of various types of organic or inorganic nano-polymer materials, the selection of cell types, and the functional modification of the outer coating, this technology has gradually matured. Typical preparation methods include interfacial polycondensation, complex condensation, spray drying, microdroplet ejection, and layer-by-layer (LbL) self-assembly. The LbL assembly technology utilises nanomaterials with opposite charges deposited on cells by strong interaction (electrostatic interaction) or weak interaction (hydrogen bonding, hydrophobic interaction), which drives compounds to spontaneously form films with complete structure, stable performance and unique functions on cells. According to the needs of the disease, choosing appropriate cell types and biocompatible and biodegradable nanomaterials could achieve the purpose of promoting cell proliferation, immune isolation, reducing phagocytosis of the reticuloendothelial system, prolonging the circulation time in vivo, and avoiding repeated administration. Therefore, encapsulated cells could be utilised in various biomedical fields, such as cell catalysis, biotherapy, vaccine manufacturing and antitumor therapy. This article reviews cell nanoencapsulation therapies for diseases, including the various cell sources used, nanoencapsulation technology and the latest advances in preclinical and clinical research.
Collapse
Affiliation(s)
- Ziyang Xue
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Orive G, Hernandez RM. Cell microencapsulation technologies for sustained drug delivery: Latest advances in efficacy and biosafety. J Control Release 2021; 335:619-636. [PMID: 34116135 DOI: 10.1016/j.jconrel.2021.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
The development of cell microencapsulation systems began several decades ago. However, today few systems have been tested in clinical trials. For this reason, in the last years, researchers have directed efforts towards trying to solve some of the key aspects that still limit efficacy and biosafety, the two major criteria that must be satisfied to reach the clinical practice. Regarding the efficacy, which is closely related to biocompatibility, substantial improvements have been made, such as the purification or chemical modification of the alginates that normally form the microspheres. Each of the components that make up the microcapsules has been carefully selected to avoid toxicities that can damage the encapsulated cells or generate an immune response leading to pericapsular fibrosis. As for the biosafety, researchers have developed biological circuits capable of actively responding to the needs of the patients to precisely and accurately release the demanded drug dose. Furthermore, the structure of the devices has been subject of study to adequately protect the encapsulated cells and prevent their spread in the body. The objective of this review is to describe the latest advances made by scientist to improve the efficacy and biosafety of cell microencapsulation systems for sustained drug delivery, also highlighting those points that still need to be optimized.
Collapse
Affiliation(s)
- Tania B Lopez-Mendez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), BTI Biotechnology Institute, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
8
|
Facklam AL, Volpatti LR, Anderson DG. Biomaterials for Personalized Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902005. [PMID: 31495970 DOI: 10.1002/adma.201902005] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Indexed: 05/13/2023]
Abstract
Cell therapy has already had an important impact on healthcare and provided new treatments for previously intractable diseases. Notable examples include mesenchymal stem cells for tissue regeneration, islet transplantation for diabetes treatment, and T cell delivery for cancer immunotherapy. Biomaterials have the potential to extend the therapeutic impact of cell therapies by serving as carriers that provide 3D organization and support cell viability and function. With the growing emphasis on personalized medicine, cell therapies hold great potential for their ability to sense and respond to the biology of an individual patient. These therapies can be further personalized through the use of patient-specific cells or with precision biomaterials to guide cellular activity in response to the needs of each patient. Here, the role of biomaterials for applications in tissue regeneration, therapeutic protein delivery, and cancer immunotherapy is reviewed, with a focus on progress in engineering material properties and functionalities for personalized cell therapies.
Collapse
Affiliation(s)
- Amanda L Facklam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lisa R Volpatti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Abstract
Stem cell therapy is a promising alternative approach to the treatment of a number of incurable degenerative diseases. However, low cell retention and survival after transplantation limit the therapeutic efficacy of stem cells for clinical translational applications. The utilization of biomaterials has been progressively successful in controlling the fate of transplanted cells by imitating the cellular microenvironment for optimal tissue repair and regeneration. This review mainly focuses on the engineered microenvironments with synthetic biomaterials in modification of stem cell behaviors. Moreover, the possible advancements in translational therapy by using biomaterials with stem cells are prospected and the challenges of the current restriction in clinical applications are highlighted.
Collapse
|
10
|
Chen JC, Li LM, Gao JQ. Biomaterials for local drug delivery in central nervous system. Int J Pharm 2019; 560:92-100. [DOI: 10.1016/j.ijpharm.2019.01.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
|
11
|
Therapeutic Engineered Hydrogel Coatings Attenuate the Foreign Body Response in Submuscular Implants. Ann Plast Surg 2018; 80:S410-S417. [DOI: 10.1097/sap.0000000000001347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7848901. [PMID: 29805977 PMCID: PMC5899851 DOI: 10.1155/2018/7848901] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) is the most important section of the nervous system as it regulates the function of various organs. Injury to the CNS causes impairment of neurological functions in corresponding sites and further leads to long-term patient disability. CNS regeneration is difficult because of its poor response to treatment and, to date, no effective therapies have been found to rectify CNS injuries. Biomaterial scaffolds have been applied with promising results in regeneration medicine. They also show great potential in CNS regeneration for tissue repair and functional recovery. Biomaterial scaffolds are applied in CNS regeneration predominantly as hydrogels and biodegradable scaffolds. They can act as cellular supportive scaffolds to facilitate cell infiltration and proliferation. They can also be combined with cell therapy to repair CNS injury. This review discusses the categories and progression of the biomaterial scaffolds that are applied in CNS regeneration.
Collapse
|
13
|
Gonzalez-Pujana A, Orive G, Pedraz JL, Santos-Vizcaino E, Hernandez RM. Alginate Microcapsules for Drug Delivery. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-6910-9_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Sola A, Saenz Del Burgo L, Ciriza J, Hernandez RM, Orive G, Martin Cordero J, Calle P, Pedraz JL, Hotter G. Microencapsulated macrophages releases conditioned medium able to prevent epithelial to mesenchymal transition. Drug Deliv 2017; 25:91-101. [PMID: 29250977 PMCID: PMC6058712 DOI: 10.1080/10717544.2017.1413449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) has emerged as a key process in the development of renal fibrosis. In fact, EMT-derived fibroblasts contribute to the progression of chronic renal disease. In addition, anti-inflammatory M2 macrophages have exhibited a great influence on renal fibrosis. However, because of the high impact that the inputs of different environmental cytokines have on their phenotype, macrophages can easily lose this property. We aim to known if microencapsulated macrophages on M2-inducing alginate matrices could preserve macrophage phenotype and thus release factors able to act on epithelial cells to prevent the epithelial differentiation towards mesenchymal cells. We reproduced an in vitro model of EMT by treating adipose-derived stem cells with all-trans retinoic acid (ATRA) and induced their transformation toward epithelia. Dedifferentiation of epithelial cells into a mesenchymal phenotype occurred when ATRA was retired, thus simulating EMT. Results indicate that induction of M2 phenotype by IL-10 addition in the alginate matrix produces anti-inflammatory cytokines and increases the metabolic activity and the viability of the encapsulated macrophages. The released conditioned medium modulates EMT and maintains healthy epithelial phenotype. This could be used for in vivo cell transplantation, or alternatively as an external releaser able to prevent epithelial to mesenchymal transformation for future anti-fibrotic therapies.
Collapse
Affiliation(s)
- Anna Sola
- a Biomedical Research Networking Center in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona , Spain
| | - Laura Saenz Del Burgo
- a Biomedical Research Networking Center in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona , Spain.,b NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain
| | - Jesús Ciriza
- a Biomedical Research Networking Center in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona , Spain.,b NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain
| | - Rosa Maria Hernandez
- a Biomedical Research Networking Center in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona , Spain.,b NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain
| | - Gorka Orive
- a Biomedical Research Networking Center in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona , Spain.,b NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain
| | - Jorge Martin Cordero
- c Department of Experimental Pathology , Instituto de Investigaciones Biomédicas de Barcelona, Spanish Research Council (IIBB-CSIC, IDIBAPS) , Barcelona , Spain
| | - Priscila Calle
- c Department of Experimental Pathology , Instituto de Investigaciones Biomédicas de Barcelona, Spanish Research Council (IIBB-CSIC, IDIBAPS) , Barcelona , Spain
| | - Jose Luis Pedraz
- a Biomedical Research Networking Center in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona , Spain.,b NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain
| | - Georgina Hotter
- a Biomedical Research Networking Center in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona , Spain.,c Department of Experimental Pathology , Instituto de Investigaciones Biomédicas de Barcelona, Spanish Research Council (IIBB-CSIC, IDIBAPS) , Barcelona , Spain
| |
Collapse
|
15
|
Gonzalez-Pujana A, Santos E, Orive G, Pedraz JL, Hernandez RM. Cell microencapsulation technology: Current vision of its therapeutic potential through the administration routes. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Lee JO, Narasimhan V, Du J, Ndjamen B, Sretavan D, Choo H. Biocompatible Multifunctional Black-Silicon for Implantable Intraocular Sensor. Adv Healthc Mater 2017; 6:10.1002/adhm.201601356. [PMID: 28081305 PMCID: PMC5522682 DOI: 10.1002/adhm.201601356] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/06/2016] [Indexed: 01/04/2023]
Abstract
Multifunctional black-silicon (b-Si) integrated on the surface of an implantable intraocular pressure sensor significantly improves sensor performance and reliability in six-month in vivo studies. The antireflective properties of b-Si triples the signal-to-noise ratio and increases the optical readout distance to a clinically viable 12 cm. Tissue growth and inflammation response on the sensor is suppressed demonstrating desirable anti-biofouling properties.
Collapse
Affiliation(s)
- Jeong Oen Lee
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91106, (USA). Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91106, (USA)
| | - Vinayak Narasimhan
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91106, (USA)
| | - Juan Du
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, (USA)
| | - Blaise Ndjamen
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91106, (USA)
| | - David Sretavan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, (USA)
| | - Hyuck Choo
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91106, (USA). Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91106, (USA)
| |
Collapse
|
17
|
Price CF, Burgess DJ, Kastellorizios M. l -DOPA as a small molecule surrogate to promote angiogenesis and prevent dexamethasone-induced ischemia. J Control Release 2016; 235:176-181. [DOI: 10.1016/j.jconrel.2016.05.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/11/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
|
18
|
Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C. Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 2016; 23:179-201. [PMID: 27250036 DOI: 10.1111/xen.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Solène Passemard
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Carvello
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - François Noverraz
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christine Wandrey
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:2054-2130. [PMID: 28347111 PMCID: PMC5304774 DOI: 10.3390/nano5042054] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs) were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed.
Collapse
Affiliation(s)
- Fuli Zhao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Dan Yao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ruiwei Guo
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liandong Deng
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
20
|
Song K, Yan X, Li S, Zhang Y, Wang H, Wang L, Lim M, Liu T. Preparation and detection of calcium alginate/bone powder hybrid microbeads forin vitroculture of ADSCs. J Microencapsul 2015; 32:811-9. [DOI: 10.3109/02652048.2015.1094533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Pellegrini M, Cherukupalli A, Medini M, Falkowski R, Olabisi R. The Effect of Swelling Ratio on the Coulter Underestimation of Hydrogel Microsphere Diameters. Tissue Eng Part C Methods 2015; 21:1246-50. [PMID: 26414785 PMCID: PMC4663640 DOI: 10.1089/ten.tec.2015.0246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been demonstrated that the diameters of porous particles are underestimated by Coulter measurements. This phenomenon has also been observed in hydrogel particles, but not characterized. Since the Coulter principle uses the displacement of electrolyte to determine particle size, electrolyte contained within the swelled hydrogel microparticles results in an underestimate of actual particle diameters. The increased use of hydrogel microspheres in biomedical applications has led to the increased application of the Coulter principle to evaluate the size distribution of microparticles. A relationship between the swelling ratio of the particles and their reported Coulter diameters will permit calculation of the actual diameters of these particles. Using polyethylene glycol diacrylate hydrogel microspheres, we determined a correction factor that relates the polymer swelling ratio and the reported Coulter diameters to their actual size.
Collapse
Affiliation(s)
- Michael Pellegrini
- Department of Biomedical Engineering, Rutgers University , Piscataway, New Jersey
| | | | - Michael Medini
- Department of Biomedical Engineering, Rutgers University , Piscataway, New Jersey
| | - Ron Falkowski
- Department of Biomedical Engineering, Rutgers University , Piscataway, New Jersey
| | - Ronke Olabisi
- Department of Biomedical Engineering, Rutgers University , Piscataway, New Jersey
| |
Collapse
|
22
|
Cell encapsulation: technical and clinical advances. Trends Pharmacol Sci 2015; 36:537-46. [DOI: 10.1016/j.tips.2015.05.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/18/2023]
|
23
|
Abstract
Current treatment options for adrenal insufficiency are limited to corticosteroid replacement therapies. However, hormone therapy does not replicate circadian rhythms and has unpleasant side effects especially due to the failure to restore normal function of the hypothalamic-pituitary-adrenal (HPA) axis. Adrenal cell transplantation and the restoration of HPA axis function would be a feasible and useful therapeutic strategy for patients with adrenal insufficiency. We created a bioartificial adrenal with 3D cell culture conditions by encapsulation of bovine adrenocortical cells (BACs) in alginate (enBACs). We found that, compared with BACs in monolayer culture, encapsulation in alginate significantly increased the life span of BACs. Encapsulation also improved significantly both the capacity of adrenal cells for stable, long-term basal hormone release as well as the response to pituitary adrenocorticotropic hormone (ACTH) and hypothalamic luteinizing hormone-releasing hormone (LHRH) agonist, [D-Trp6]LHRH. The enBACs were transplanted into adrenalectomized, immunodeficient, and immunocompetent rats. Animals received enBACs intraperitoneally, under the kidney capsule (free cells or cells encapsulated in alginate slabs) or s.c. enclosed in oxygenating and immunoisolating βAir devices. Graft function was confirmed by the presence of cortisol in the plasma of rats. Both types of grafted encapsulated cells, explanted after 21-25 d, preserved their morphology and functional response to ACTH stimulation. In conclusion, transplantation of a bioartificial adrenal with xenogeneic cells may be a treatment option for patients with adrenocortical insufficiency and other stress-related disorders. Furthermore, this model provides a microenvironment that ensures 3D cell-cell interactions as a unique tool to investigate new insights into cell biology, differentiation, tissue organization, and homeostasis.
Collapse
|
24
|
Gurruchaga H, Saenz del Burgo L, Ciriza J, Orive G, Hernández RM, Pedraz JL. Advances in cell encapsulation technology and its application in drug delivery. Expert Opin Drug Deliv 2015; 12:1251-67. [PMID: 25563077 DOI: 10.1517/17425247.2015.1001362] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Cell encapsulation technology has improved enormously since it was proposed 50 years ago. The advantages offered over other alternative systems, such as the prevention of repetitive drug administration, have triggered the use of this technology in multiple therapeutic applications. AREAS COVERED In this article, improvements in cell encapsulation technology and strategies to overcome the drawbacks that prevent its use in the clinic have been summarized and discussed. Different studies and clinical trials that have been performed in several therapeutic applications have also been described. EXPERT OPINION The authors believe that the future translation of this technology from bench to bedside requires the optimization of diverse aspects: i) biosafety, controlling and monitoring cell viability; ii) biocompatibility, reducing pericapsular fibrotic growth and hypoxia suffered by the graft; iii) control over drug delivery; iv) and the final scale up. On the other hand, an area that deserves more attention is the cryopreservation of encapsulated cells as this will facilitate the arrival of these biosystems to the clinic.
Collapse
Affiliation(s)
- Haritz Gurruchaga
- University of the Basque Country, Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Group, Faculty of Pharmacy, UPV/EHU , Vitoria-Gasteiz, 01006 , Spain
| | | | | | | | | | | |
Collapse
|
25
|
Kastellorizios M, Tipnis N, Burgess DJ. Foreign Body Reaction to Subcutaneous Implants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:93-108. [DOI: 10.1007/978-3-319-18603-0_6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
Sustained Release of Hydrophilic l-ascorbic acid 2-phosphate Magnesium from Electrospun Polycaprolactone Scaffold-A Study across Blend, Coaxial, and Emulsion Electrospinning Techniques. MATERIALS 2014; 7:7398-7408. [PMID: 28788254 PMCID: PMC5512642 DOI: 10.3390/ma7117398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 12/02/2022]
Abstract
The purpose of this study was to achieve a sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium (ASP) from electrospun polycaprolactone (PCL) scaffolds, so as to promote the osteogenic differentiation of stem cells for bone tissue engineering (TE). ASP was loaded and electrospun together with PCL via three electrospinning techniques, i.e., coaxial, emulsion, and blend electrospinning. For blend electrospinning, binary solvent systems of dichloromethane–methanol (DCM–MeOH) and dichloromethane–dimethylformamide (DCM–DMF) were used to achieve the desired ASP release through the effect of solvent polarity and volatility. The scaffold prepared via a blend electrospinning technique with a binary solvent system of DCM–MeOH at a 7:3 ratio demonstrated a desirable, sustained ASP release profile for as long as two weeks, with minimal burst release. However, an undesirable burst release (~100%) was observed within the first 24 h for scaffolds prepared by coaxial electrospinning. Scaffolds prepared by emulsion electrospinning displayed poorer mechanical properties. Sustained releasing blend electrospun scaffold could be a good potential candidate as an ASP-eluting scaffold for bone tissue engineering.
Collapse
|